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Abstract
In black-box optimization, when directly evaluat-
ing the function values of solutions is very costly
or infeasible, access to the objective function is of-
ten limited to comparing pairs of solutions, which
yields dueling black-box optimization. Dueling op-
timization is solely based on pairwise preferences,
and thus notably reduces cost compared with func-
tion value based methods. However, the optimiza-
tion performance of dueling optimization is often
limited due to that most existing dueling optimiza-
tion methods do not make full use of the pairwise
preferences collected. To better utilize these prefer-
ences, this paper proposes relation-augmented du-
eling Bayesian optimization (RADBO) via prefer-
ence propagation. By considering solution similar-
ity, RADBO aims to uncover the potential dueling
relations between solutions within different prefer-
ences through the proposed preference propagation
technique. Specifically, RADBO first clusters so-
lutions using a Gaussian mixture model. After ob-
taining the solution set with the highest intra-cluster
similarity, RADBO utilizes a directed hypergraph
to model the potential dueling relations between
solutions, thereby realizing relation augmentation.
Extensive experiments are conducted on both syn-
thetic functions and real-world tasks such as mo-
tion control, car cab design and spacecraft trajec-
tory optimization. The experimental results dis-
close the satisfactory accuracy of augmented pref-
erences in RADBO, and show the superiority of
RADBO compared with existing dueling optimiza-
tion methods. Notably, it is verified that, under
the same evaluation cost budget, RADBO can be
competitive with or even surpass the function value
based Bayesian optimization methods with respect
to optimization performance.

1 Introduction
Black-box optimization [Conn et al., 2009; Yu et al., 2025],
also termed as derivative-free optimization, is a class of op-

∗Corresponding Author.

timization methods designed for situations where the objec-
tive function is unknown, complex, or expensive to evalu-
ate. It enables global search for the optimal solution, with
Bayesian optimization (BO) [Garnett, 2023; Mei et al., 2023;
Shahriari et al., 2016] as a representative. Due to the signif-
icant advantages and progress of black-box optimization, it
has been widely applied in fields such as chemical synthe-
sis [Shields et al., 2021], reinforcement learning [Qian and
Yu, 2021], machine learning [Freund and Schapire, 1997;
Elsken et al., 2019] and intelligent education [Li et al., 2025].

In traditional black-box optimization, evaluating the nu-
merical objective function values is typically necessary.
However, in many real-world scenarios, acquiring the objec-
tive function values can be extremely costly or entirely infea-
sible [Brochu et al., 2010] and it has been found that com-
paring two solutions by preferences is relatively cheaper than
scoring solutions [Kahneman and Tversky, 1979], like A/B
tests [Siroker and Koomen, 2013]. Thus, dueling or preferen-
tial optimization has been developed as an easier and cheaper
alternative, e.g., dueling Bayesian optimization [González et
al., 2017]. Instead of relying on function values, dueling op-
timization leverages preferences (i.e., which solution is pre-
ferred between two solutions) to guide the optimization, ex-
tending black-box optimization to the scenarios where ob-
jective function values are unavailable. Dueling optimiza-
tion has been successfully applied in a wide range of fields,
such as visual design optimization [Koyama et al., 2020] and
robotic gait optimization [Li et al., 2021], showcasing its
adaptability and effectiveness across various domains.

However, most existing dueling optimization methods,
such as dueling Bayesian optimization, typically make simple
use of pairwise preferences, without delving deeper into the
dueling relations among different preferences. It can be found
that these insufficient utilization of pairwise preferences can
significantly impact the performance of dueling optimization,
while making a fuller use of the preferences can improve the
dueling optimization process.

Problem. Although dueling optimization can optimize us-
ing only low-cost pairwise preferences, the insufficient ex-
ploitation of preferences of existing methods could signif-
icantly limit the optimization performance of dueling opti-
mization, e.g., dueling Bayesian optimization.

Contribution. This paper focuses on alleviating the lim-
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itations in dueling optimization performance caused by the
insufficient utilization of the pairwise preferences. To this
end, we propose the relation-augmented dueling Bayesian
optimization (RADBO) method via preference propagation.
RADBO aims to uncover the potential dueling relations be-
tween different preferences through the proposed preference
propagation technique based on solution similarity. RADBO
begins by clustering solutions using a Gaussian mixture
model and selects the cluster with the highest intra-cluster
similarity. It then models potential dueling relations between
solutions with a directed hypergraph to achieve relation aug-
mentation. The experimental results reveal that the prefer-
ences augmented by the preference propagation technique
achieve satisfactory accuracy, indicating that RADBO further
utilizes preferences, and comparative experiments verify its
superiority over existing dueling optimization methods. No-
tably, it is verified that, within the same evaluation cost bud-
get, the performance of RADBO can match or even surpass
that of function value based Bayesian optimization methods,
when function value evaluations are relatively more expen-
sive compared with comparing solutions.

The following sections review related work and prelimi-
naries, describe the proposed RADBO method, present ex-
perimental results, and conclude the paper.

2 Related Work
This section provides a brief overview of the related work,
i.e., dueling Bayesian optimization.

Dueling Bayesian optimization (DBO) extends BO to sce-
narios where direct access to the objective function is unavail-
able, but information about user preferences can be obtained.
González et al. [2017] propose a framework called prefer-
ential Bayesian optimization (PBO), which leverages pair-
wise preferences to fit a Gaussian process (GP) [Rasmussen
and Williams, 2006] within preference function domain. The
PBO employs the dueling-Thompson Sampling (DTS) to de-
termine the potential optimal solution and the solution with
high uncertainty as candidates for the next duel. Benavoli
et al. [2021] prove that the true posterior distribution of the
preference function is a skewed Gaussian process (SkewGP),
and incorporate SkewGP to enhance the performance of duel-
ing Bayesian optimization. Based on the work of Benavoli et
al. [2021], Takeno et al. [2023] propose a practical method,
which ensures high computational efficiency and low sam-
ple complexity. Due to the lack of theoretical guarantees
for most acquisition functions in dueling Bayesian optimiza-
tion, Astudillo et al. [2023] introduce qEUBO, a promising
acquisition function with a grounded decision-theoretic justi-
fication. Guided by the optimism principle, POP-BO [Xu et
al., 2024] constructs a confidence set from preferences and
employs an optimistic strategy that ensures a bound on cu-
mulative regret, enabling it to effectively report an estimated
best solution with guaranteed convergence. To address the
dimensionality issue exacerbated by modeling the preference
function, PE-DBO [Zhang et al., 2023] extends the concept
of intrinsic effective dimensionality to preference function.
Despite these advancements, these methods still do not fully
utilize the available pairwise preferences, which continues to

impact the performance of dueling optimization.
Unlike PBO, kernel-self-sparring (KSS) [Sui et al., 2017]

and comp-GP-UCB (COMP-UCB) [Xu et al., 2020] do not
construct a surrogate model to fit the preference function.
KSS uses a GP to model the function, where the function
value represents the probability of one solution beating the
optimal solution, rather than modeling a preference function.
COMP-UCB employs the Borda function, inspired by the
Borda score [Sui et al., 2018], to replace the preference func-
tion and regards the average performance of all solutions as
the basis for comparison. While these methods simplify the
dueling optimization problems compared to the methods that
model the preference function, they may still face challenges
caused by the insufficient utilization of pairwise preferences,
leading to a poor optimization performance.

DBO differs significantly from reinforcement learning
from human feedback (RLHF) [Christiano et al., 2017], and
direct preference optimization (DPO) [Rafailov et al., 2023;
Liu et al., 2025] in both their objectives and methodolo-
gies. While these methods all involve preference optimiza-
tion, RLHF and DPO primarily focus on optimizing behav-
ioral strategies based on human feedback to address sequen-
tial decision-making problems. RLHF emphasizes feedback-
driven guidance in reinforcement learning, whereas DPO re-
fines preference comparisons to enhance model performance.
In contrast, DBO focuses on identifying the global optimum
in black-box optimization problems through Bayesian meth-
ods, prioritizing efficient search in the function space. There-
fore, although all three techniques involve preference opti-
mization, they are applied in distinct problem domains with
different methodological approaches.

3 Preliminaries
3.1 Dueling Optimization
Consider a black-box function f : X → R, where X ⊂ RD,
which is costly to evaluate. The goal of global optimization
is to find the optimal solution x∗ = argmaxx∈X f(x) in a D-
dimensional continuous solution space. Instead of directly
evaluating numerical function values, dueling optimization
evaluates the objective function by comparing pairs of solu-
tions (x,x′), i.e., duels. For each duel, we obtain a prefer-
ence indicating which solution is better. This preference is
represented as binary information (i.e., 0 indicates x′ is bet-
ter, while 1 indicates x is better). These preferences are then
used to guide the dueling optimization process. Throughout
this paper, each duel is treated as a column vector, represented
by [x;x′] ∈ R2D, where the space with dimension 2D is
called dueling solution space.

Preference Function. In dueling optimization, the pref-
erence of a duel [x;x′] is sampled from a Bernoulli distri-
bution, where the probability reflects the likelihood that so-
lution x is preferred over x′. Under the assumption that
the probability of solution x being preferred over x′ is pos-
itively correlated with the difference in their objective func-
tion values, i.e., P (x ≻ x′) ∝ f(x) − f(x′), the logistic
function is commonly used to convert this difference into a
probability. Therefore, the preference function in the dueling
solution space can be formulated as πf ([x;x

′]) = P (x ≻
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x′) = 1/(1 + e−[f(x)−f(x′)]), where πf ([x;x
′]) represents

the probability that solution x is preferred over solution x′.
Copeland Score. To find the optimal solution x∗, we in-

troduce the concept of the Condorcet winner [González et al.,
2017], an extension from multi-armed bandit tasks, which
is the solution that outperforms all others. However, in du-
eling optimization, a strict Condorcet winner cannot be ob-
tained, so the solution with the highest Copeland score is
selected as the best one. Due to that the objective func-
tion is continuous, the normalized Copeland score is de-

fined as S(x) = Vol(X )
−1

∫
X
I{πf ([x;x′])≥0.5} dx′, where

Vol(X )−1 =
∫
X 1dx′ is a normalizing constant that ensures

S(x) is in the [0, 1] range and I{·} is the indicator function.
For the optimal solution x∗, πf ([x

∗;x′]) ≥ 0.5 holds for all
solutions, which implies that S(x∗) = Vol(X )−1

∫
X 1dx′ =

1. The difficulty in calculating the normalized Copeland
score limits its applicability in dueling optimization, thus
the soft-Copeland score [González et al., 2017] is adopted,
which has the empirically same maximum as the normal-
ized Copeland score. The soft-Copeland score is defined as

C(x) = Vol(X )−1

∫
X
πf ([x;x

′])dx′.

Dueling Bayesian Optimization. Dueling Bayesian Opti-
mization [González et al., 2017] is a representative method
for dueling optimization. It leverages a Gaussian process
(GP) to model the preference function in a dueling solution
space. The process involves optimizing an acquisition func-
tion to determine the next duel, querying the preference func-
tion for the preference of the duel, and updating the dataset to
refine the GP model. This cycle is repeated until a predefined
number of iterations is reached. A detailed description can be
found in the Appendix A and Appendix A-F can be found in
https://github.com/X-Xia0828/RADBO.

3.2 Sampling Strategies in Dueling Bayesian
Optimization

Rather than classifying dueling optimization methods based
on the surrogate models (see Section 2), we categorize them
according to whether the current best solution is used as one
of the candidate solutions in the next duel. For methods where
one solution in the duel is fixed, such as HB [Takeno et al.,
2023] and POP-BO [Xu et al., 2024], the first solution is se-
lected as the current best, while the second solution is re-
sampled based on a given acquisition function. In this case,
pairwise preferences are not entirely independent, as there is
a common solution in the duels of consecutive comparisons,
which allows a part of relations between different preferences
to be inferred. However, this strategy limits the ability of
methods to explore the solution space. In contrast, in the sec-
ond type of methods, both solutions in a candidate duel are re-
sampled through acquisition functions, with PBO [González
et al., 2017] being a typical example. PBO uses DTS to
choose the potential optimal solution and the most uncertain
one for the next duel, balancing exploration and exploitation.
However, these approaches lead to pairwise preferences be-
ing more isolated, making it challenging to obtain the dueling
relations between different preferences.

Algorithm 1 Relation-Augmented Dueling Bayesian Opti-
mization (RADBO)

Input: Initial dataset DM = {[xi;x
′
i], pi}Mi=1, number of

available duels N , boundary of subspace X ⊂ RD and
preference propagation parameter k.

Procedure:
1: for j = M to M +N − 1 do
2: Fit a GP to Dj and perform preference propagation

with parameter k to get the augmented dataset D+
j .

3: Fit a GP+ to D+
j and learn πfp,j([x;x

′]).
4: Sample a function πf̂p

from GP+.
5: xnext = argmaxx∈X

∫
X πf̂p

([x;x′];D+
j )dx

′ .
6: x′

next = argmaxx′∈Xσ(GP|x = xnext,Dj) .
7: Run the duel [xnext;x

′
next] and obtain pj+1.

8: Augment Dj+1 = {Dj ∪ ([xnext;x
′
next], pj+1)}.

9: end for
10: Fit a GP to DM+N and find the solution x∗ with the

highest soft-Copeland score.
11: return x∗.

In this paper, we focus on the second type of methods and
aim to uncover the potential dueling relations through a pref-
erence propagation technique, thereby enhancing the perfor-
mance of dueling optimization.

3.3 Directed Hypergraph
Directed hypergraphs [Bretto, 2013] are extensions of tra-
ditional graphs in which edges, called directed hyperedges,
can connect multiple vertices from a source set to a target
set, unlike traditional graphs that link pairs of vertex. This
characteristic enables directed hypergraphs to naturally rep-
resent more complex, higher-order relationships, particularly
excelling in modeling multi-party interactions. Consequently,
directed hypergraphs are widely used in fields such as ma-
chine learning [Gao et al., 2022], data mining [Ji et al., 2020],
and social network analysis [Lin et al., 2009].

Formally, a directed hypergraph is defined as G = (V, E),
where V is the set of vertices and E is the set of directed hy-
peredges. Each directed hyperedge ε ∈ E is an ordered pair of
vertex subsets (Vs,Vt), where Vs,Vt ⊆ V are disjoint source
and target sets, with Vs ∩ Vt = ∅. Directed hypergraphs pro-
vide a flexible way to model complex interactions between
groups of vertices, avoiding the individual connections be-
tween each pair, as would be necessary in traditional graphs.

4 The Proposed Method
Although dueling optimization, e.g., preferential Bayesian
optimization [González et al., 2017], adapts well to scenarios
where the objective function can only be evaluated through
comparing a pair of solutions, the performance of the dueling
optimization is also affected by the insufficient utilization of
pairwise preferences (i.e., which solution is preferred). This
section introduces the proposed method, relation-augmented
dueling Bayesian optimization (RADBO), which aims to
make fuller use of pairwise preferences and enhance the per-
formance of dueling optimization through a preference prop-
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agation technique. To clarify the explanation of the proposed
method, we have included a notation section in Appendix B.

To make fuller use of the pairwise preferences and thus en-
hance the performance of dueling optimization, the RADBO
method is proposed, with pseudo-code shown in Algorithm 1.

By utilizing a preference propagation technique (detailed
in Section 4.1) to uncover potential dueling relations be-
tween different preferences, and employing PBO [González
et al., 2017] as the framework for this process, RADBO is
proposed. The RADBO begins with an initial dataset DM ,
consisting of M evaluated pairwise preferences {[x;x′], p},
where p indicates whether one solution can beat the other
(i.e., 0 means x′ is better, and 1 means x is better.). In each
iteration j, RADBO fits a Gaussian process GP as the surro-
gate model to the current dataset Dj and performs the pref-
erence propagation with parameter k to create an augmented
dataset D+

j (line 2). This augmented dataset includes both
original preferences and additional dueling relations, allow-
ing for fuller utilization of the existing pairwise preferences.
A new GP model GP+ is then trained on D+

j to learn the pref-
erence function πfp,j([x;x

′]) (line 3). After training the sur-
rogate models, the dueling-Thompson sampling [González et
al., 2017] acquisition function guides the sampling process.
A sample function πf̂p

is drawn from the new GP model
GP+, which guides the selection of the first solution xnext
(lines 4-5). Next, based on the GP , the solution with the
highest uncertainty is chosen as x′

next (line 6), resulting in a
candidate duel [xnext;x

′
next]. Then, the duel is evaluated, and

the resulting preference pj+1 is used to update the dataset to
Dj+1 (lines 7-8). It is worth noting that the additional dueling
relations generated by the preference propagation technique
in each iteration do not carry over to the next iteration. Af-
ter N iterations, the model GP is fit to the complete dataset
DM+N , and the optimal solution x∗ is determined based on
the highest soft-Copeland score (line 10).

In the following sections, we will provide a detailed expla-
nation of the preference propagation technique as well as the
time and space complexity of the technique.

4.1 Preference Propagation Technique
Since insufficient utilization of pairwise preferences signif-
icantly impacts the performance of dueling optimization, a
preference propagation technique is used to uncover poten-
tial relations between different preferences, enabling a fuller
utilization of the preferences, with the pseudo-code in Ap-
pendix C. The preference propagation technique first clus-
ters solutions using a clustering algorithm. Specifically, we
employ the Gaussian mixture model [Reynolds et al., 2009],
which excels in capturing complex data distributions by mod-
eling them as a combination of multiple Gaussian compo-
nents. Other clustering algorithms such as k-means can also
be used, and k-means yields similar results. After identify-
ing the solution set with the highest intra-cluster similarity,
the technique utilizes a hypergraph to model the dueling re-
lations between solutions, achieving relation augmentation.
This technique enables a fuller utilization of pairwise prefer-
ences, ultimately enhancing the optimization process.

Inspired by Sui et al. [2017], we construct an adaptive RBF

Preference Propagation Technique

 good solution bad solution

 similar solution  preference 
 hyperedges 

solution

Figure 1: A diagram of the preference propagation technique. The
pairwise preferences are modeled as a directed graph (left). During
preference propagating, a set of similar solutions (green) is provided
by a Gaussian mixture model and then a directed hypergraph is used
to model the dueling relations between the different solutions (right).

kernel-based similarity model [Gardner et al., 2018], denoted
as K. The kernel is initially set as RBF(1.0), and the model
is used to fit a function where the value represents the proba-
bility that one solution beats the current optimal solution, en-
suring that K operates in the D-dimensional solution space.
Then, K can compute the covariance between any two solu-
tions in the dataset, which can serve as a measure of similarity
between solutions. Finally, these similarities are transformed
into distances and clustering will be performed based on the
distances, resulting in a set of solutions with the highest intra-
cluster similarity (i.e., the smallest intra-cluster distance).

As shown in Figure 1, pairwise preferences are modeled as
a directed graph, where each vertex represents a solution, and
each preference corresponds to a directed edge pointing from
the worse solution to the better one. Next, preference propa-
gation is conducted on the current dataset, with all solutions
defined as set V . The preference propagation technique first
utilizes clustering based on the similarity model K to partition
all solutions into k clusters and obtain a solution set with the
highest intra-cluster similarity (the green circle), where the
solutions in this set are termed similar solutions (the green
vertices), and this set is defined as Vs ⊆ V . We assume that
similar solutions exhibit analogous dueling relations, mean-
ing that if solution A and solution B are similar and solution A
is preferred over solution C, then solution B is also preferred
over solution C. Subsequently, all solutions that can direct
towards similar solutions via directed edges are termed bad
solutions (the blue vertices), forming the set of the bad solu-
tions Vbad ⊆ V , while all solutions that can be reached from
similar solutions through directed edges are termed good so-
lutions (the red vertices), forming the set of the good solutions
Vgood ⊆ V . The sets Vbad, Vs, and Vgood have no intersection
with each other. Finally, we construct a directed hypergraph G
using two directed hyperedges. Specifically, ε1 directs from
the set of bad solutions to the set of similar solutions, i.e., ε1
is an ordered pair of sets (Vbad,Vs), and ε2 directs from the
set of similar solutions to the set of good solutions, i.e., ε2 is
an ordered pair of sets (Vs,Vgood).

Based on this directed hypergraph G = (V, E), where
E = {ε1, ε2}, RADBO can uncover more potential dueling
relations, i.e., all similar solutions are better than the bad so-
lutions, and all good solutions are better than the similar solu-
tions. Moreover, by leveraging the transitivity of preferences,
we can also conclude that all good solutions are better than
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the bad solutions. Thus, the preference propagation technique
realizes relation augmentation based on the existing dataset,
enabling a fuller utilization of the pairwise preferences.

4.2 Algorithmic Complexity Analysis
In this section, we analyze the improvements in time and
space complexity achieved by using hypergraphs to model
dueling relations between different solutions in the preference
propagation technique.

The introduction of hypergraphs avoids the full connection
that occurs when traditional graphs are used in the prefer-
ence propagation technique. To establish the connections be-
tween the three solution sets, a traditional graph requires full
connections from the bad solution set to the similar solution
set, and from the similar solution set to the good solution
set. We denote the quantities of bad solutions, similar so-
lutions, and good solutions as n1, n2 and n3, respectively.
Specifically, in the case of using a traditional graph, the time
complexity of modeling the relations between solutions is
O(n1 ×n2 +n2 ×n3), and the space complexity of the pref-
erence propagation technique is also O(n1 × n2 + n2 × n3).
However, when employing a hypergraph instead of a tradi-
tional graph, the two solution sets can be directly connected
through a single hyperedge, resulting in the time complex-
ity of modeling the relations reducing to O(m), where m
is the number of hyperedges and m = 2 in the preference
propagation technique. Thus, the time complexity can also
be expressed as O(2). Additionally, the space complexity
of the preference propagation technique also decreases to
O(m+n1+n2+n3) with m = 2. The reduction in complex-
ity brought about by the hypergraphs makes the preference
propagation technique more efficient and practical.

5 Experiment
In this section, we compare RADBO with a series of duel-
ing optimization algorithms through experiments on synthetic
functions and real-world tasks. RADBO is implemented by
BoTorch [Balandat et al., 2020]. RADBO uses a Gaussian
process with default parameters from the BoTorch library
as the surrogate model, employs CMA-ES [Hansen et al.,
2003] as the optimizer of the acquisition function, and imple-
ments the Gaussian mixture model using the default parame-
ters from the scikit-learn library. We compare RADBO with
four dueling optimization methods, where both solutions in
a candidate duel are resampled based on specific acquisition
functions, rather than having one solution fixed as the current
best, such as HB [Takeno et al., 2023] and POP-BO [Xu et
al., 2024]. The methods include PBO [González et al., 2017],
KSS [Sui et al., 2017], qEUBO [Astudillo et al., 2023] and
a simplified version of COMP-UCB [Xu et al., 2020], which
omits the second part of the optimization process that depends
on function values. Specifically, PBO can be regarded as the
version of RADBO after ablating the preference propagation
technique. Further details of these methods are provided in
the Appendix D. The experiments are designed to answer the
following four significant questions.

Q1: Effectiveness and superiority: Can RADBO handle du-
eling optimization tasks and achieve better performance

than other dueling optimization methods?
Q2: Utilization: Does RADBO uncover potential dueling re-

lations based on the existing preferences and make fuller
use of pairwise preferences?

Q3: The benefit of dueling optimization: Under a fixed bud-
get, can RADBO match or even surpass the performance
of function value based Bayesian optimization methods?

Q4: The impact of hyper-parameters: How sensitive is
RADBO to changes in hyper-parameters?

The four questions are answered sequentially in this sec-
tion. For all tasks, the best function value found so far is
used as the evaluation criterion, with min-max scaling ap-
plied to the values to enable a more intuitive analysis of
the results. The experimental code is publicly available at
https://github.com/X-Xia0828/RADBO.

5.1 Experimental Settings
The Setting of Synthetic Functions. To evaluate the perfor-
mance of RADBO, experiments are first conducted on syn-
thetic functions. In this paper, we construct objective func-
tions for evaluation in a standard setting based on different
synthetic functions1. Specifically, let f : RD → R be a base
synthetic function, with its domain adjusted to [−1, 1]D. The
input is a D-dimensional vector x = [x1, x2, . . . , xD], and
the output is the function value f(x). In the experiments,
we evaluate RADBO on 18 synthetic functions. These syn-
thetic functions collectively cover various optimization types,
including multimodal landscapes, complex terrains, periodic
variations, and convex optimization. All experiments on syn-
thetic functions are maximization optimization.

The Setting of Real-world Tasks. To further explore the
performance of RADBO and its applicability to real-world
tasks, RADBO is evaluated on five real-world datasets. The
first dataset is RobotPush problem [Eriksson et al., 2019],
which is a noisy 14-dimensional motion control problem in-
volving optimizing the pre-image for pushing an object to
a goal location. The second dataset is Sagas [Schlueter et
al., 2021], a 12-dimensional problem, which is designed for
trajectory optimization problems, aiming to minimize the
overall mission length to reach targets. The third dataset is
a 10-dimensional problem, Cassini1-MINLP [Schlueter and
Munetomo, 2019], which is designed to optimize a mixed-
integer nonlinear programming problem (MINLP), allowing
for flexible selection of any planet in the solar system. The
remaining two tasks are a 5-dimensional animation optimiza-
tion problem (Animation) and a 7-dimensional car cab de-
sign problem (Carcab). These real-world datasets are well-
suited for dueling optimization. RobotPush is a noisy dataset
where the noise affects the performance of function value
based methods, while dueling optimization can mitigate the
impact of noise to some extent. Cassini1-MINLP and Sagas
are spacecraft trajectory optimization problems where evalu-
ating the function value of a given solution may be very costly
and time-consuming, while comparing a pair of solutions is
much more manageable. Animation and Carcab are widely
used in the prior work like qEUBO [Astudillo et al., 2023].
All real-world tasks are maximization tasks.

1http://www.sfu.ca/∼ssurjano/optimization.html
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Figure 2: The best function value found by RADBO on synthetic
functions are compared with different dueling optimization algo-
rithms. All methods are evaluated with 5 initial duels, 95 iterations,
and each experiment is repeated 20 times. The mean and standard
deviation of the results are plotted. The horizontal axis of the plots
represents the number of evaluations, and the vertical axis represents
the best function value found by the algorithm.
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Figure 3: The best function value found by algorithms on three real-
world datasets. Each experiment is repeated 20 times. The mean
and standard deviation of the results are plotted. The horizontal axis
of the plots represents the number of evaluations, and the vertical
axis represents the best function value found by the algorithm. All
methods are evaluated with 5 initial duels and 95 iterations.

5.2 The Performance of RADBO
To Q1: Effectiveness and Superiority. In the synthetic func-
tions and real-world tasks experiments, I = 500 samples are
employed to estimate the integral of the soft-Copeland score,
and the GP model is initialized using M = 5 duels, followed
by N = 95 duels for optimization. For RADBO, we use
k = 3 to execute the preference propagation technique.

As shown in Figure 2, across most synthetic functions,
RADBO consistently achieves better performance compared
to the other optimization methods, showcasing its ability to
handle dueling optimization tasks well. First, the RADBO
curve converges relatively quickly and stays above other
methods at around 50 iterations, indicating that it finds bet-
ter solutions earlier in the optimization process. Moreover,
RADBO shows a stable improvement in performance during
optimization, particularly as other methods begin to converge
around iterations 70 (a phenomenon we will explore further in
the next section). Finally, the standard deviation of RADBO
is relatively narrow in most cases, suggesting that its perfor-
mance is more reliable compared to the other methods, par-
ticularly in challenging functions like Griewank.

As shown in Figure 3, across most real-world tasks,

RADBO adapts well to the real-world tasks and achieves the
best results. In RobotPush task, PBO, KSS, and COMP-UCB
all achieve the similar final performance, as they are troubled
by noise during optimization. However, due to the preference
propagation technique, which uncovers many potential duel-
ing relations from the existing preferences, RADBO can find
the better solutions. In Cassini1-MINLP and Carcab tasks,
RADBO exhibits a stable improvement throughout the opti-
mization process, and ultimately achieves the best results.

The experiments on the remaining synthetic functions and
real-world tasks yield similar conclusions, with results pro-
vided in the Appendix E. To verify that RADBO statistically
outperforms other methods in most cases, the detailed results
supported by t-tests are provided in the Appendix E.

In a nutshell, the experimental results verify that RADBO
can handle dueling optimization tasks well and reflect the su-
periority of RADBO over other dueling optimization meth-
ods, which answers Q1.

To Q2: Utilization. To explore the utilization of pair-
wise preferences in RADBO and explain why RADBO shows
a stable improvement in performance, we analyze the aug-
mented preferences to better understand the factors driving
the algorithm performance, as shown in Figure 4. The ex-
periments are conducted on the Griewank function and three
real-world tasks, with all settings consistent with those in the
above section, and the experiments are repeated 20 times.

As shown in Figure 4, a significant number of aug-
mented preferences maintaining satisfactory accuracy are
newly added after preference propagation, which verifies that
pairwise preferences are not fully utilized in previous work.

The Figure 4 (a) illustrates the results on the Griewank
function, which we consider as an ideal environment. In the
top plot, it is clear that as optimization progresses, the num-
ber of newly added augmented preferences significantly ex-
ceeds that of original preferences, with a faster growth rate as
well. The bottom plot shows the mean accuracy of the aug-
mented preferences, which increases steadily throughout the
optimization process, consistently remaining above 0.5. Ad-
ditionally, the lower accuracy of the augmented preferences
during the early process of optimization may explain why
RADBO performs worse than methods like PBO and KSS in
certain situations, as shown in Figure 2, and as the accuracy
of the augmented preferences increases, the performance of
RADBO also improves rapidly. The Figure 4 (b) shows the
results on the RobotPush task, and due to the presence of the
noise, the accuracy of the augmented preferences is relatively
low, but it remains consistently above 0.5. In this context,
the preference propagation technique does not merely seek
to propagate more relations, but instead uncovers a limited
number of relations from the existing pairwise preferences,
i.e., the scope of preference propagation is relatively narrow.
This behavior ensures that the accuracy of the augmented
preferences does not decline further, thereby preventing the
newly generated dueling relations from affecting optimiza-
tion performance. The Figure 4 (c) and (d) show the results
on the Cassini1-MINLP and Carcab tasks, respectively. In
both tasks, the augmented preferences all exhibit relatively
high accuracy, which encourages the preference propagation
technique to uncover more dueling relations from the existing
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Figure 4: The utilization of RADBO on Griewank function and three
real-world tasks. The figure shows the mean number of preferences
in the original dataset (blue) and the augmented preferences newly
added after preference propagation (red) in the top plot, with mean
accuracy of the augmented preferences in the bottom plot. During
the optimization process, RADBO uses a combination of original
preferences and augmented preferences (blue + red). All settings
are the same as Figure 2, 3. Each experiment is repeated 20 times.
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Figure 5: The best function value found by algorithms with a fixed
budget of 100, where initialization uses 30 duels or solutions. Define
the cost of observing the value of a function as Cost1, and the cost
of comparing a pair of solutions as Cost2. The mean and standard
deviation of the results are plotted. The vertical axis represents the
best function value found by the algorithm and the horizontal axis
of the plots represents is the Cost1/Cost2.

dataset, i.e., the scope of preference propagation is relatively
broad. In the three real-world tasks, due to the complexity
of the tasks, there is no gradual increase in accuracy of the
augmented preferences as shown in Figure 4 (a).

In a nutshell, the results indicate that RADBO has effec-
tively uncovered the potential dueling relations, thereby fur-
ther utilizing the available preferences, which answers Q2.

5.3 Dueling Optimization vs. Function Value
based Optimization

To Q3: The Benefit of Dueling Optimization. To verify
that the performance of RADBO can match or even surpass
that of function value based Bayesian optimization meth-
ods, RADBO and PBO (regarded as the ablated version of
RADBO) are compared with the function value based meth-
ods, GP-UCB [Srinivas et al., 2010] and GP-EI [Garnett,
2023]. With the results shown in Figure 5, all methods are
tested on the real-world tasks and repeated 20 times. In Fig-
ure 5, the cost of evaluating the function value is defined as
Cost1, while comparing a pair of solutions is defined as Cost2
= 1. Each method is allocated a budget of 100, with function
value based methods initialized with 30 solutions and prefer-
ence based methods with 30 duels. Other parameters match
those in the previous section.

In Figure 5, we test different values of Cost1 and show
the best function value found by each method under varying
ratios of Cost1/Cost2. First, when the cost of observing a
function value equals the cost of comparing a pair of solu-

tions (Cost1 = Cost2), GP-UCB clearly outperforms prefer-
ence based methods, which exhibits a clear optimization per-
formance gap between preference based and function value
based methods. However, as the cost of observing a function
value increases, the advantage of preference based methods
gradually becomes apparent, with RADBO surpassing GP-
UCB and GP-EI when Cost1/Cost2 reaches approximately
1.5 to 2.5. This verifies that, under a fixed budget, RADBO
can achieve optimization performance comparable to func-
tion value based Bayesian optimization methods. Finally, as
Cost1 continues to increase, the optimization performance of
preference based methods significantly exceeds that of GP-
UCB, showcasing the advantages of preference based opti-
mization in expensive black-box optimization problems.

In a nutshell, these results verify that, under the same eval-
uation cost budget, when evaluating function values is rel-
atively more expensive compared with comparing solutions,
RADBO is competitive with or even surpass the function
value based Bayesian optimization methods with respect to
optimization performance. It indicates for the first time that,
if dueling relations between solutions within different pref-
erences are fully and deeply exploited and utilized, dueling
optimization could be more effective for expensive and costly
optimization tasks, which answers Q3.

5.4 Hyper-parameter Analysis
To Q4: The Impact of Hyper-parameters. To explore the
sensitivity of RADBO to different hyper-parameters, we con-
duct hyper-parameter experiments for k on 6 synthetic func-
tions, with the results shown in Appendix F. It can be found
that RADBO consistently outperforms PBO (the ablated ver-
sion of RADBO) across different hyper-parameter k and is
not significantly affected by changes in k, showcasing its in-
sensitivity to hyper-parameter variations, which answers Q4.
A more detailed analysis can be found in the Appendix F.

6 Conclusion
This paper aims to alleviate the limitations in dueling op-
timization performance caused by insufficient utilization of
pairwise preferences. To address this limitation, we propose
the method, relation-augmented dueling Bayesian optimiza-
tion (RADBO), which enhances the performance of dueling
optimization by capturing potential dueling relations between
different solutions through the proposed preference propaga-
tion technique. Extensive experiments on synthetic functions
and real-world tasks disclose the satisfactory accuracy of aug-
mented preferences in RADBO, and exhibit the superiority of
RADBO compared with existing dueling optimization meth-
ods. Notably, it is verified that, when function value evalua-
tions are relatively more expensive than comparing solutions,
the performance of RADBO can match or even surpass that
of the function value based Bayesian optimization methods
under the same cost budget.

In the future, we plan to conduct a theoretical justification
for the proposed method. Specifically, the theoretical anal-
ysis includes convergence rate comparison between relation-
augmented and traditional methods, and the accuracy of the
augmented preferences. The challenge of these theoretical
analyses stems mainly from the complexity of hypergraphs.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Ethical Statement
This work does not include any human subjects, personal
data, or sensitive information. All testing datasets utilized
are publicly accessible, and no proprietary or confidential in-
formation has been employed.

Acknowledgements
The authors would like to thank the anonymous reviewers for
their valuable and insightful comments. This work is sup-
ported by the National Natural Science Foundation of China
(No. 62476091) and the National Undergraduate Train-
ing Program on Innovation and Entrepreneurship Grant (No.
202510269105G).

References
[Astudillo et al., 2023] Raul Astudillo, Zhiyuan (Jerry) Lin,

Eytan Bakshy, and Peter I. Frazier. qeubo: A decision-
theoretic acquisition function for preferential Bayesian op-
timization. In Proceedings of the 26th International Con-
ference on Artificial Intelligence and Statistics, volume
206, pages 1093–1114, Valencia, Spain, 2023.

[Balandat et al., 2020] Maximilian Balandat, Brian Karrer,
Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. Botorch: A
framework for efficient monte-carlo Bayesian optimiza-
tion. In Advances in Neural Information Processing Sys-
tems 33, pages 21524–21538, Virtual Event, 2020.

[Benavoli et al., 2021] Alessio Benavoli, Dario Azzimonti,
and Dario Piga. Preferential Bayesian optimisation with
skew Gaussian processes. In Proceeedings of the 33th
Genetic and Evolutionary Computation Conference, pages
1842–1850, Lille, France, 2021.

[Bretto, 2013] Alain Bretto. Hypergraph theory. An intro-
duction. Mathematical Engineering. Cham: Springer, 1,
2013.

[Brochu et al., 2010] Eric Brochu, Vlad M Cora, and Nando
De Freitas. A tutorial on Bayesian optimization of expen-
sive cost functions, with application to active user model-
ing and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[Christiano et al., 2017] Paul F. Christiano, Jan Leike,
Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human pref-
erences. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 4299–4307,
Long Beach, CA, 2017.

[Conn et al., 2009] Andrew R. Conn, Katya Scheinberg, and
Luı́s Nunes Vicente. Introduction to Derivative-Free Opti-
mization, volume 8 of MPS-SIAM series on optimization.
SIAM, 2009.

[Elsken et al., 2019] Thomas Elsken, Jan Hendrik Metzen,
and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20:55:1–55:21,
2019.

[Eriksson et al., 2019] David Eriksson, Michael Pearce, Ja-
cob R. Gardner, Ryan Turner, and Matthias Poloczek.
Scalable global optimization via local Bayesian optimiza-
tion. In Advances in Neural Information Processing Sys-
tems 33, pages 5497–5508, Vancouver, Canada, 2019.

[Freund and Schapire, 1997] Yoav Freund and Robert E.
Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139, 1997.

[Gao et al., 2022] Yue Gao, Zizhao Zhang, Haojie Lin,
Xibin Zhao, Shaoyi Du, and Changqing Zou. Hypergraph
learning: Methods and practices. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(5):2548–
2566, 2022.

[Gardner et al., 2018] Jacob R. Gardner, Geoff Pleiss, Kil-
ian Q. Weinberger, David Bindel, and Andrew Gordon
Wilson. Gpytorch: Blackbox matrix-matrix Gaussian pro-
cess inference with GPU acceleration. In Advances in Neu-
ral Information Processing Systems 31, pages 7587–7597,
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