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Abstract
Tensor Robust Principal Component Analysis (TR-
PCA) has emerged as a powerful technique for
low-rank tensor recovery. To achieve better re-
covery performance, a variety of TNN (Tensor
Nuclear Norm) based low-rank regularizers have
been proposed case by case, lacking a general
and flexible framework. In this paper, we de-
sign a novel tensor low-rank regularization frame-
work coined FGTNN (Flexible Generalized Ten-
sor Nuclear Norm). Equipped with FGTNN, we
develop the FGTRPCA (Flexible Generalized TR-
PCA) framework, which has two desirable prop-
erties. 1) Generalizability: Many existing TR-
PCA methods can be viewed as special cases of
our framework; 2) Flexibility: Using FGTRPCA
as a general platform, we derive a series of new
TRPCA methods by tuning a continuous parame-
ter to improve performance. In addition, we de-
velop another novel smooth and low-rank regu-
larizer coined t-FGJP and the resulting SFGTR-
PCA (Smooth FGTRPCA) method by leveraging
the low-rankness and smoothness priors simultane-
ously. Experimental results on various tensor de-
noising and recovery tasks demonstrate the superi-
ority of our methods.

1 Introduction
Tensor data are ubiquitous, many real-world data are usu-
ally inherently multidimensional, with information stored in
multi-way arrays known as tensors, e.g., images, videos, net-
work flow data, etc. In recent years, significant advancements
across various interdisciplinary domains have been made in
tensor analysis, such as machine learning [Wen et al., 2024;
Phothilimthana et al., 2024], data mining [Zhang et al.,
2023a; Huang et al., 2024], and computer vision [Zhao et
al., 2024; Liu et al., 2024a]. However, due to the inherent
limitations of signal acquisition equipment, including sen-
sor sensitivity, photon effects, and calibration errors, tensor
data gathered from real-world environments frequently suf-
fer from substantial corruption [Wang et al., 2023a]. Conse-

†Corresponding author: Yulong Wang

Low-rank tensor Sparse error tensorObserved tensor

Figure 1: An illustration of TRPCA, which demonstrates the decom-
position of observation tensor into low-rank and sparse components.

quently, tensor recovery has become a crucial task in tensor
analysis.

This paper concentrates on the problem of Tensor Ro-
bust Principal Component Analysis (TRPCA) [Huang et al.,
2015], which seeks to recover the underlying low-rank tensor
L and sparse tensor E from their sum M (see Figure 1 for a
visual representation) and solves the following problem

min
L,E∈Rd1×d2×d3

rank(L) + λ∥E∥1 s.t. M = L+ E , (1)

where λ > 0 is a regularization parameter, rank(L) denotes
the rank of clean tensor L and ∥E∥1 is ℓ1-norm (sum of
the absolute values of all the entries) to measure the spar-
sity of the noise tensor E . A key challenge is the definition
of tensor rank, which is inherently more complex than ma-
trix rank. Various conventional methods for defining tensor
rank originate from distinct tensor decompositions. For in-
stance, inspired by the tensor singular value decomposition
(t-SVD), [Kilmer et al., 2013] proposed the tensor tubal rank
that can be efficiently computed using the fast Fourier Trans-
form (FFT). Since the non-convexity and discontinuity of the
rank function, solving the problem (1) is usually NP-hard.
Consequently, [Lu et al., 2020] proposed a novel tensor nu-
clear norm as a convex approximation to the tensor tubal rank
and proposed a new TRPCA method defined as follows

min
L,E

∥L∥∗ + λ∥E∥1 s.t. M = L+ E , (2)

where ∥ · ∥∗ represents the tensor nuclear norm (TNN). Fur-
thermore, recent research by [Kilmer et al., 2021] has demon-
strated the optimal representation and compression capabili-
ties of t-SVD, further highlighting the significance of model
(2) in capturing the intrinsic low-rank structures of tensors.
As a result, the model (2) under t-SVD has garnered consid-
erable interests recently [Hou et al., 2024; Liu et al., 2024c;
Qin et al., 2024].
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Figure 2: Take a color image sample from ZJU dataset as an example. The two frames illustrate the recovery performance of our proposed
FGTRPCA and SFGTRPCA with different values of shape parameter α (see Eq. (5)) under different structure priors of color images.

Despite the impressive performance of TRPCA, it still ex-
hibits several limitations. Specifically, when minimizing the
TNN, TRPCA employs tensor singular value thresholding to
uniformly diminish all singular values. In real-world applica-
tions, singular values often carry distinct physical meanings,
supported by prior knowledge indicating that larger singular
values are generally associated with more significant infor-
mation. The uniform shrinkage approach of TRPCA fails to
account for these differences among singular values, poten-
tially leading to suboptimal results.

While many existing advanced methodologies [Gao et al.,
2020; Jiang et al., 2020; Wang et al., 2023b; Zhang et al.,
2023b; Yan and Guo, 2024; Liu et al., 2024b] develop various
TNN-based low-rank regularizers that penalize large singular
values less and small singular values more, thereby efficiently
preserving essential information and filtering out irrelevant
details. However, their discrete and fixed models lack flexibil-
ity for diverse scenarios. To address this problem, we design a
novel Flexible Generalized low-rank regularizer (FGTNN) to
adaptively assign different penalties to distinct singular val-
ues and impose the constraint on the sparse component. We
have shown that several existing TRPCA models can be re-
formulated as special cases of FGTRPCA. Apart from that,
we can also derive a wider family of new TRPCA models
by tuning a continuous parameter to improve performance.
Through this, our model significantly improves flexibility and
efficiency in complex situations.

Note that the low-rankness prior and the smoothness prior
modeled by total variation (TV) are widely utilized in tensor
recovery applications [Ko et al., 2020; Qiu et al., 2021]. This
prior states how similar objects/scenes (with shapes) are adja-
cently distributed [Peng et al., 2022b]. Most previous works
encoded the two priors with two independent regularizers and
incorporated them into a unified model, which achieved better
performance [Peng et al., 2020; Peng et al., 2022a]. However,

they have two drawbacks: (1) it is challenging to fine-tune the
regularization parameter between the two terms; (2) the theo-
retical guarantee for exact recovery remains unproven for the
related methods.

Given the circumstances above, [Wang et al., 2023a] pro-
posed the tensor Correlated Total Variation (t-CTV) norm
which integrates the two priors into a single regularization
term, eliminating the need for tuning separate parameters.
Moreover, this work offered theoretical guarantees for the
precise recovery of analogous tensor methods that concur-
rently model both priors. Analogously, the integration reg-
ularization term was also based on TNN in the gradient
domain. Consequently, [Huang et al., 2024] proposed a
reweighted regularizer based on ℓp norm as a surrogate for
t-CTV term. In this paper, we employ FGTNN to explore the
inherent structural properties of gradient tensors and intro-
duce a new tensor-correlated Flexible Generalized Joint Prior
(t-FGJP) regularizer.

Our principal contributions are outlined as follows:

• We propose a flexible generalized low-rank regularizer
(FGTNN) that accounts for the varying importance of
different singular values in low-rank tensors and develop
a novel FGTRPCA framework. The FGTRPCA, not
only regards many existing TRPCA methods as special
cases, but also opens a door to design a broad new fam-
ily of TRPCA methods by tuning a continuous parame-
ter. This enhances the flexibility of our model to counter
more intricate scenarios.

• Considering the low-rankness and smoothness priors
simultaneously, we propose a novel tensor-correlated
Flexible Generalized Joint Prior (t-FGJP) regularizer
based on FGTNN. It maintains the flexibility of discrim-
inatively controlling different singular values of the gra-
dient tensors and can derive a new smooth FGTRPCA
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model, termed SFGTRPCA.
• We design ADMM-based [Boyd et al., 2011] optimiza-

tion algorithmic frameworks tailored for our FGTRPCA
and SFGTRPCA models. Extensive experiments on var-
ious tensor denoising and recovery tasks demonstrate the
advantages of our models.

2 Notations and Preliminaries
First, we present some key notations and definitions used
throughout the paper. We represent scalars, vectors, and ma-
trices using lowercase letters, boldface lowercase letters, and
boldface uppercase letters, e.g., x, x, X, respectively. Tensors
are presented by bold calligraphic letters, e.g., X . 1d1×d2

and 1d1×d2×d3
represent a matrix of size d1×d2 and a tensor

of size d1 × d2 × d3 with all entries as ones. For a 3-order
tensor X ∈ Rd1×d2×d3 , we denote X ijk as its (i, j, k)-th
entry, X (i, :, :) as its horizontal slice, X (:, j, :) as its lateral
slice, X (:, :, k) as its frontal slice, respectively. For conve-
nience, the frontal slice X (:, :, k) is often denoted as X(k).
The tensor nuclear norm (TNN), tensor ℓ1 norm (TL1N), ten-
sor Frobenius norm and tensor infinity norm of X are defined
by ∥X∥∗ , ∥X∥1 =

∑
ijk |X ijk| , ∥X∥F =

√∑
ijk |X ijk|2

and ∥X∥∞ = maxijk|X ijk|, respectively. The transpose of
X is defined as X T ∈ Rd2×d1×d3 [Lu et al., 2020].
Definition 1. (T-SVD) [Kilmer and Martin, 2011] For a ten-
sor X ∈ Rd1×d2×d3 , it can be factorized by t-SVD as

X = U ∗ S ∗ VT , (3)

where U ∈ Rd1×d1×d3 , V ∈ Rd2×d2×d3 are orthogonal ten-
sors, i.e., U ∗ UT = UT ∗ U = V ∗ VT = VT ∗ V = I ,
and S ∈ Rd1×d2×d3 is an f-diagonal tensor, i.e., each frontal
slices are the diagonal matrices, and “∗” is the t-product.
Definition 2. (Tensor Nuclear Norm, TNN) [Lu et al., 2020]
For a tensor X ∈ Rd1×d2×d3 , d = min(d1, d2), the Tensor
Nuclear Norm of X is defined as

∥X∥∗ =
1

d3

d3∑
k=1

d∑
i=1

σi

(
X̄(k)

)
, (4)

where X̄ is the result by applying FFT on X along the third
dimension, i.e., X̄ = fft(X , [], 3). X̄(k) is the k-th frontal
slice of X̄ , σi

(
X̄(k)

)
is the i-th singular value of X̄(k).

3 Proposed Methods
We begin by detailing the motivation for FGTNN and its char-
acteristics, then propose the FGTRPCA framework and im-
plement it using an efficient optimization algorithm. Fur-
thermore, by simultaneously considering low-rankness and
smoothness priors, we develop a novel t-FGJP regularizer and
apply it to solve TRPCA problem, termed SFGTRPCA.

3.1 Flexible Generalized TNN
According to Definition 2, the original TNN uniformly
shrinks each singular value of the low-rank tensor L when
minimizing the tensor nuclear norm, which may lead to sub-
optimal solution. Indeed, larger singular values are associated

jxj , = 1 , = 0:5 , = 0 , = !0:5 , = !1

Figure 3: gα(x) and its corresponding weight function ξ(x).

with more critical information within the tensor. Inspired by
the common purposes of enhancing TRPCA methods, we in-
troduce a flexible generalized tensor nuclear norm (FGTNN)
as a unified framework, which is defined below.
Definition 3. (FGTNN) For a tensor X ∈ Rd1×d2×d3 , d =
min(d1, d2), the Flexible Generalized Tensor Nuclear Norm
(FGTNN) is defined as follows

∥X∥G,α,∗ =
1

d3

d3∑
k=1

d∑
i=1

gα

(
σi

(
X̄(k)

))
, (5)

where gα(x) follows [Barron et al., 2023]:

gα(x) = c · |α− 1|
α

((
|x|/c
|α− 1|

+ 1

)α

− 1

)
, (6)

where α ∈ R is a continuous parameter that controls the
shape of gα(x) and c > 0 is a scale parameter.
Remark 1. Our proposed FGTNN mainly exhibits two desir-
able properties. 1) Generalizability: By introducing a con-
tinuous parameter α, low-rank regularizers in many existing
popular methods such as TRPCA, LRTF, ETR, and DATR-
PCA can be viewed as special cases of FGTNN with different
values of α.(see Table 1 for more details); 2) Flexibility: We
can develop plenty of new low-rank regularizers by tuning α
and achieve better performance. Compared to the method
with fixed-form low-rank regularizer, our model gains flexi-
bility and can adapt to more complex scenarios. Apart from
that, gα(x) in FGTNN controls the penalty strength to singu-
lar values. Figure 3(a) intuitively presents the characteristics
of gα(x). We observe that gα(x) increases slower than |x|
for various α, which means less shrunk to large singular val-
ues, preserving the critical information within the tensor to
a greater extent. More importantly, α is related to the shape
of gα(x). When α → −∞, gα(x) follows an approximately
exponential form; When α = 0, gα(x) takes a logarithmic
form; When α = 1, gα(x) turns to |x|; And in the other case
of α, gα(x) is represented in a approximate power form.

Specifically, we can extend FGTNN to the sparse com-
ponent and define the flexible generalized tensor ℓ1 norm
(FGTL1N).
Definition 4. (FGTL1N) For a tensor X ∈ Rd1×d2×d3 , the
Flexible Generalized Tensor ℓ1 Norm (FGTL1N) is defined as
follows:

∥X∥G,α,1 =

d1∑
i=1

d2∑
j=1

d3∑
k=1

gα (|X ijk|) . (7)
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Author and year Method Value of α gα(x) Low-rank Regularizer

[Lu et al., 2020] TRPCA α = 1 |x| ∥X∥G,1,∗

[Chen et al., 2021] LRTF α = 0 c ln (|x|/c+ 1) ∥X∥G,0,∗

[Ji and Feng, 2023] ETR α = −1 2|x|
|x|/c+2 ∥X∥G,−1,∗

[Wang et al., 2023b] DATRPCA α→ −∞ c (1− exp (−|x|/c)) ∥X∥G,−∞,∗

Table 1: The FGTNN regularizer view for many special cases.

3.2 Flexible Generalized TRPCA
By integrating FGTNN and FGTL1N into the TRPCA frame-
work, we formulate the following Flexible Generalized TR-
PCA (FGTRPCA) model.

min
L,E∈Rd1×d2×d3

∥L∥G,α,∗+λ∥E∥G,α,1 s.t. M = L+E . (8)

Remark 2. It is worth pointing out that FGTRPCA serves as
a versatile framework for addressing TRPCA problems. By
adjusting the parameter α, it can be tailored to develop new
TRPCA methods. Specifically, in this paper, we introduce a
variant of FGTRPCA with α = 0.5, a choice that has not
been explored before.

Note that FGTNN includes a series of specific functions
that are nonlinear and complex, thus making it hard to ob-
tain the optimal solution of the FGTRPCA model. In this
paper, we design an efficient algorithm optimization frame-
work based on the ADMM framework [Boyd et al., 2011] to
implement the FGTRPCA model.
Proposition 1. For gα(x), there exists a convex conjugate
function ϕ : R → R which satisfies

gα(x) = min
w∈R+

(w|x|+ ϕ(w)), (9)

and for fixed x, the minimum is reached at w = ξ(x; c)(c is a
positive constant), which is defined as

w = ξ(x; c) =


1, if α = 1

c/(|x|+ c), if α = 0

exp (−|x|/c) , if α = −∞(
|x|/c
|α−1| + 1

)α−1

, otherwise,

(10)

Remark 3. According to Proposition 1, gα(x) in Eq. (6)
can be optimized by an adaptive alternating weighted min-
imization scheme. From the perspective of weights, smaller
weights represent smaller shrinkages to singular values. As
shown in Figure 3(b), TNN assigns equal weight to each sin-
gular value, i.e., TNN treats each singular value equally. For
our proposed FGTNN, larger singular values will adaptively
receive smaller weights, resulting in less shrinkage.

According to Proposition 1, FGTNN can be transformed
into

∥L∥G,α,∗ = min
W

1

d3

d3∑
k=1

d∑
i=1

(Wkiσi(L̄
(k))+ϕ(Wki)), (11)

where the Wki is the k, i-th element of matrix W ∈ Rd3×d.
The minimum is reached at Wki = ξ(σi(L̄

(k)); c). Similarly,
as for FGTL1N, we have

∥E∥G,α,1 = min
W

d1∑
i=1

d2∑
j=1

d3∑
k=1

(W ijk|Eijk|+ ϕ(W ijk)),

(12)
where the W ijk is the i, j, k-th element of tensor W ∈
Rd1×d2×d3 . The minimum is reached at W ijk = ξ(|E ijk|; c).

Notably, problem (8) can be reformulated as the weighted
tensor nuclear norm minimization problem (11) and the
weighted tensor ℓ1 norm minimization problem (12). The
following defines two key concepts: Weighted tensor nuclear
norm (WTNN) and weighted tensor ℓ1 norm (WTL1N).
Definition 5. (Weighted Tensor Nuclear Norm,
WTNN)[Wang et al., 2023b] For a tensor X ∈ Rd1×d2×d3

and a weight matrix W ∈ Rd3×d, d = min(d1, d2), the
WTNN of X is defined as

∥X∥W,∗ =
1

d3

d3∑
k=1

d∑
i=1

Wkiσi

(
X̄(k)

)
. (13)

Definition 6. (Weighted Tensor ℓ1 Norm, WTL1N)[Wang et
al., 2023b] For a tensor X ∈ Rd1×d2×d3 and a weight tensor
W ∈ Rd1×d2×d3 , the WTL1N of X is defined as

∥X∥W,1 =

d1∑
i=1

d2∑
j=1

d3∑
k=1

|W ijkX ijk|. (14)

By incorporating Eq. (11) and Eq. (12) into model (8), and
according to the definition of WTNN and WTL1N, we have

min
L,E,W,W

∥L∥W,∗ + λ∥E∥W,1 +ΦM (W) + ΦT (W)

s.t. M = L+ E , (15)
where ΦM (W) and ΦT (W) are defined such that
ΦM (W) =

∑d1

k=1

∑d2

i=1 ψ(Wki) and ΦT (W) =∑d1

i=1

∑d2

j=1

∑d3

k=1 ψ(W ijk). In the next part, we will
present the optimization for implementing FGTRPCA.

3.3 Optimization for FGTRPCA
The Lagrangian function of the FGTRPCA model is
L(L,E ,W,W ,Z, µ) = ∥L∥W,∗ + λ∥E∥W,1 +ΦM (W)

+ ΦT (W) +
µ

2

∥∥∥∥L+ E −M+
Z
µ

∥∥∥∥2
F

− µ

2
∥Z/µ∥2F ,

(16)
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where Z ∈ Rd1×d2×d3 denotes the Lagrangian multiplier and
µ is a positive parameter. Each variable can be updated alter-
nately in the scheme of the ADMM framework.

Step1: Update L by fixing the other variables:

Lt+1 = argmin
L

1

µt
∥L∥W,∗+

1

2
∥L−(M−Et−Zt/µt)∥2F .

(17)
The closed-form solution of (17) can be easily obtained with
the following proximity operator.
Lemma 1. Given X ∈ Rd1×d2×d3 with t-SVD X = U ∗S ∗
V∗ and a weight matrix W ∈ Rd×d3 , where wk is the k-th
column of W and d = min{d1, d2}. Considering the follow-
ing Weighted Tensor Nuclear Norm minimization (WTNNM)
problem

Prox∥·∥W,∗(X ) = argmin
L

1

2
∥L−X∥2F + ∥L∥W,∗, (18)

where ∥ · ∥W,∗ denotes the WTNN, and Prox∥·∥W,∗ is de-
fined as a proximal operator. For non-descending weights
0 ≤ Wk1 ≤ Wk2 ≤ · · · ≤ Wkd(k = 1, . . . , d3), the problem
(18) has the global solution which is defined as

L∗ = Prox∥·∥W,∗(X ) = U ∗ifft(PW(S̄), [], 3)∗V∗, (19)

where ifft denotes the inverse fast Fourier transform ap-
plied along the third dimension, PW(S̄) is a tensor to meet
the conditions of its k-th frontal slice is Pwk

(S̄(k)) for
k = 1, . . . , d3. S̄(k) is the k-th frontal slice of S̄, and
Pwk

(S̄(k)) denotes a diagonal matrix which can be computed
as (Pwk

(S̄(k)))ii = (S̄
(k)
ii −wki)+, where (x)+ = x if x > 0

and (x)+ = 0 otherwise. wki is the i-th element of the wk.
By recalling the definition of WTNN in Definition 5, we

have 1
µt
∥L∥W,∗ = ∥L∥ 1

µt
W,∗. Based on Lemma 1, the so-

lution of the subproblem (17) can be described as

Lt+1 = Prox∥·∥ 1
µt

W,∗
(M− Et −Zt/µt). (20)

Step2: Update E by fixing other variables:

Et+1 = argmin
E

λ

µt
∥E∥W,1+

1

2
∥E−(M−Lt+1−Zt/µt)∥2F .

(21)
To get the closed-form solution of the above problem, we

utilize the tensor soft-thresholding operator (TST) defined
below to update Et+1.

Et+1 = TST(M−Lt+1 −Zt/µt,
λ

µt
Wt), (22)

where the ijk-th entry of TST is defined by

(TST(X ,W))ijk = sign(X ijk)(|X ijk| −W ijk)+. (23)

Step3: Update the elements of W and W by an adaptive
way according to Proposition 1

(Wt+1)ki = ξ(σi(L̄
(k)
t+1); c), (Wt+1)ijk = ξ(|(Et+1)ijk|; c).

(24)
Step4: Update the Lagrangian multiplier tensor Z and the

parameter µ by

Zt+1 = Zt + µt(Lt+1 + Et+1 −M), (25)

Algorithm 1 FGTRPCA algorithm
Input: Observation tensor data M ∈ Rd1×d2×d3 , and the
parameter λ.

1: Initialize L0 = E0 = Z0 = 0, W0 = 1d3×d, W0 =
1d1×d2×d3

, µ0 = 10−2, ρ = 1.1, ϵ = 10−6, and t = 0.
2: while not converge do
3: Update the low-rank tensor L by Eq. (17).
4: Update the sparse tensor E by Eq. (21).
5: Update the weights W and W by Eq. (24).
6: Update the Lagrangian multiplier Z by Eq. (25).
7: Update the parameter µ by Eq. (26).
8: Check the convergence condition in Eq. (27).
9: end while

Output: L = Lt+1,E = Et+1

µt+1 = ρµt, (26)
where ρ = 1.1. The convergence conditions are defined as

max

{ ∥Lt+1 −Lt∥∞,
∥Et+1 − Et∥∞,
∥M−Lt+1 − Et+1∥∞

}
≤ ϵ. (27)

The whole optimization procedure is summarized in Algo-
rithm 1.

3.4 Smooth FGTRPCA
Considering a structured tensor that exhibits both low-
rankness and smoothness, we devise a novel regularizer that
aims to represent both two properties simultaneously on the
gradient tensors, instead of employing a combination of two
distinct regularizers for encoding the two properties. We first
introduce the definition of the gradient tensor and present our
proposed tensor-correlated Flexible Generalized Joint Prior
(t-FGJP) regularizer.
Definition 7. (Gradient tensor)[Wang et al., 2023a] For a
tensor X ∈ Rd1×d2×d3 , its gradient tensor along the k-th
mode is defined as

Gk := ∇k(X ) = X ×k Ddk
, k = 1, 2, 3, (28)

where Ddk
is a row circulant matrix of (−1, 1, 0, ..., 0).

Definition 8. (t-FGJP) For a tensor X ∈ Rd1×d2×d3 , the
proposed t-FGJP norm is defined as

∥X∥t-FGJP :=
1

γ

∑
k∈Γ

∥Gk∥G,α,∗, (29)

where Γ represents a priori set of directions along which X
equips both low-rankness and smoothness priors and γ :=
#{Γ} denotes the cardinality of Γ. By incorporating both t-
FGJP and FGTL1N into the TRPCA framework, we propose
a smooth FGTRPCA (SFGTRPCA) model defined as

min
L,E

∥L∥t-FGJP + λ∥E∥G,α,1 s.t. M = L+ E . (30)

The SFGTRPCA optimization problem is similar to the
FGTRPCA problem. Details of the optimization algorithm
and the entire procedure are presented in the supplementary
material due to space limitations.
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(d) FGTRPCA (g) SFGTRPCA(f) RTCTV(e) t-CTV(c) TRPCA (b) Observation(a) Original

PSNR/SSIM 26.27/0.9066 29.98/0.9481 30.26/0.9456 33.23/0.9607 34.66/0.9773

PSNR/SSIM 30.15/0.9330 29.66/0.9567 34.62/0.961131.27/0.9368 33.36/0.9566

PSNR/SSIM 40.16/0.9759 47.24/0.9895 43.79/0.9821 44.00/0.9772 51.46/0.9958

PSNR/SSIM 32.80/0.9536 39.68/0.9782 38.46/0.9759 39.48/0.9759 44.63/0.9918

PSNR/SSIM 31.46/0.9667 37.01/0.9860 35.95/0.9827 37.05/0.9805 38.64/0.9913

PSNR/SSIM 27.37/0.9006 31.04/0.9463 29.69/0.9321 33.53/0.9574 35.46/0.9773

Figure 4: Recovery results on 6 color images from the BSD dataset with 20% noise ratio.

4 Experiments
In this section, we present several real-world experiments to
substantiate the effectiveness of our models. Additional re-
sults are provided in the supplementary material.

4.1 Settings
Datasets. For comprehensive comparison, we use 4 widely
used tensor data types including color images, grayscale
videos, hyperspectral images (HSIs), and multispectral im-
ages (MSIs). For color images, we choose 3 widely used
datasets including Berkeley Segmentation Dataset1 (BSD)
[Martin et al., 2001], Kodak [Kodak, 1993] dataset2, and
ZheJiang University (ZJU) [Hu et al., 2012] dataset3. For
grayscale videos, we use 14 grayscale video sequences from
the YUV dataset4 and select the first 100 frames for each se-
quence. For HSIs, we utilize Cuprite5, DCMall5, Urban5, In-

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/

2http://r0k.us/graphics/kodak/
3https://sites.google.com/site/zjuyaohu/
4http://trace.eas.asu.edu/yuv/
5https://lesun.weebly.com/hyperspectral-data-set.html

dian Pines5, and Pavia University5 (PaviaU) with their first 50
bands from each HSI dataset for experiments. For MSIs, we
randomly select 4 MSIs from the CAVE dataset [Yasuma et
al., 2008].

Baselines. Our baselines are divided into two categories
based on different priors. (1) Low-rankness: TRPCA [Lu et
al., 2020], ETRPCA [Gao et al., 2020], and PTRPCA [Yan
and Guo, 2024]; (2) Joint Low-rankness & Smoothness: t-
CTV [Wang et al., 2023a] and RTCTV [Huang et al., 2024].
We utilize the parameters recommended by the authors. For
the key parameter α in our models, we search from a can-
didate set and employ α = 0.5. More detailed parameter
settings are described in the supplementary material.

Evaluation metrics. The peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) are used to evaluate
the recovery performance.

Noising Data Construction. For each color channel of the
color image, each frame of the grayscale video, and each band
of HSI and MSI, we add random salt and pepper noise at vary-
ing noise ratios of 10%, 20%, and 30%.
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Noise Ratio 10% 20%
Methods PSNR SSIM PSNR SSIM

C
ol

or
im

ag
es

TRPCA 31.20 0.9464 29.55 0.9115
ETRPCA 33.26 0.9580 31.23 0.9233
PTRPCA 33.37 0.9622 31.43 0.9350

FGTRPCA 37.26 0.9796 33.26 0.9415
t-CTV 32.84 0.9525 31.71 0.9348

RTCTV 34.96 0.9689 33.46 0.9529
SFGTRPCA 40.96 0.9907 36.93 0.9782

G
ra

ys
ca

le
vi

de
os TRPCA 35.19 0.9636 34.16 0.9538

ETRPCA 38.29 0.9772 36.13 0.9433
PTRPCA 38.95 0.9807 37.31 0.9669

FGTRPCA 41.85 0.9858 39.07 0.9743
t-CTV 37.37 0.9721 36.52 0.9665

RTCTV 41.11 0.9843 38.62 0.9482
SFGTRPCA 44.51 0.9911 41.91 0.9846

H
SI

s

TRPCA 44.18 0.9754 42.48 0.9718
ETRPCA 44.54 0.9747 43.20 0.9720
PTRPCA 47.38 0.9815 45.48 0.9772

FGTRPCA 47.30 0.9858 44.90 0.9787
t-CTV 45.72 0.9779 44.39 0.9759

RTCTV 48.29 0.9812 46.76 0.9789
SFGTRPCA 52.38 0.9888 50.16 0.9856

M
SI

s

TRPCA 42.07 0.9898 40.41 0.9867
ETRPCA 45.95 0.9931 44.00 0.9906
PTRPCA 46.87 0.9939 44.84 0.9920

FGTRPCA 49.73 0.9960 46.05 0.9921
t-CTV 46.62 0.9938 45.21 0.9925

RTCTV 50.19 0.9952 48.69 0.9941
SFGTRPCA 57.37 0.9977 53.35 0.9955

Table 2: Denoising performance on 4 types of tensor data with vary-
ing noise levels, evaluated in terms of average PSNR and SSIM val-
ues. The best and second-best results are marked in bold, and the
second-best results are underlined.

4.2 Experimental Results
Visual Quality. To clearly illustrate the advantages of our
methods on color image recovery, Figure 4 presents 6 sample
images from the BSD dataset, along with the recovery re-
sults under 20% salt and pepper noise. The PSNR and SSIM
values are listed above the recovered images to enhance the
credibility of the results. The results show that SFGTRPCA
constructs more image details and color information (Espe-
cially the contour and color of the moon in the 4-th image).
Additionally, we have observed that the proposed FGTRPCA
and SFGTRPCA methods significantly outperform the base-
line methods under corresponding priors.

Quantitative Quality. Table 2 displays the results of all the
competitors on the 4 tensor types with 10% and 20% noise.
From the results, we draw the following conclusions:

• Firstly, SFGTRPCA outperforms all comparison meth-
ods, achieving an average PSNR improvement of over
4.4 dB compared to the second-best baseline. Specifi-
cally, it attains PSNR gains of 17.16% and 14.31% for
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(a) ZJU (color images)
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(b) Indian Pine (HSIs)

Figure 5: PSNR values of our SFGTRPCA algorithm on different
cases. For various values of α, with the point of highest value
marked by a pentagram.

color images and MSIs with 10% noise, respectively.
This is because our model can adaptively learn appro-
priate weights for the frontal slices of the tensor through
a weighting function.

• Secondly, compared to the baselines that only consider
the low-rankness prior (TRPCA, ETRPCA, and PTR-
PCA), our FGTRPCA demonstrates the best perfor-
mance in most situations, and achieves an average im-
provement of over 1.7 dB in PSNR compared to the
second-best baseline. Notably, our FGTRPCA always
leads in SSIM values, which indicates that our FGTR-
PCA can recover more structural information.

• Thirdly, our methods consistently achieve competitive
evaluation scores across diverse tensor data types under
varying noise levels, demonstrating their ability to effec-
tively leverage low-rank and sparse structures for robust
recovery.

Parameter Analysis. It should be noticed that the param-
eter α plays a crucial role in our models, which can adjust
the flexibility and generalizability to adapt to various scenar-
ios. To explore its impact on different cases, we examine
some recovery tasks with different values of α under various
noise ratios on ZJU (color images) and Indian Pines (HSIs)
datasets in Figure 5. As seen, by tuning α, our SFGTRPCA
model gains significant improvements in various situations.
This improvement highlights the advantage of incorporating
α as a hyperparameter instead of a fixed formula and validates
the flexibility of our framework.

5 Conclusion
In this article, we propose a flexible generalized low-rank
regularizer termed FGTNN, and develop a novel FGTRPCA
framework. Many existing TRPCA methods can fall into
our special cases, which reveals connections between existing
and new TRPCA approaches through a continuous parameter.
Additionally, by integrating low-rankness and smoothness
priors, we design a novel regularizer based on FGTNN and
propose a smooth FGTRPCA (SFGTRPCA) model. Com-
pared to existing works, our models process with flexibility
and generalizability, demonstrating superior performance.
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