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Abstract
Federated domain generalization addresses the cru-
cial challenge of developing models that can gen-
eralize across diverse domains while maintaining
data privacy in federated learning settings. Current
approaches either compromise privacy constraints
or focus narrowly on specific aspects of model in-
variance, often incurring significant computational
overhead. We propose a novel approach FedDIM,
which leverages the concept of “insight matrix” - a
fine-grained representation of the model’s decision-
making process derived from element-wise prod-
ucts between feature vectors and classifier weights.
By introducing a regularization term that promotes
consistency between individual sample insight ma-
trices and their class-wise mean representations,
our method effectively captures both feature and
classifier invariance. This approach not only main-
tains strict privacy requirements but also intro-
duces minimal computational overhead as it uti-
lizes intermediate computations already present in
the forward pass. Extensive experiments demon-
strate that our method achieves superior out-of-
distribution generalization compared to existing
federated learning approaches while being simple
to implement. Our work provides a new perspec-
tive on achieving robust generalization in feder-
ated learning settings through the lens of decision-
making processes.

1 Introduction
Federated Learning (FL) has revolutionized the machine
learning landscape by enabling collaborative model training
across distributed clients while preserving data privacy [Liao
et al., 2025]. In this paradigm, clients train local models on
their private data, which are then periodically aggregated by
a central server to form a global model, thereby circumvent-
ing the need for direct access to raw data [Li et al., 2020a;
Li et al., 2024; Chen et al., 2025]. Although FL has demon-
strated promising results in scenarios where data is inde-
pendently and identically distributed (i.i.d.) [McMahan et

∗ Corresponding author.
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Domain K
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Naive 
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Our 
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Figure 1: Problem illustration of federated domain generalization.

al., 2017; Shen et al., 2025], real-world applications often
present a more complex challenge: clients typically collect
data independently, resulting in distinct distributions across
different domains. Furthermore, during deployment, mod-
els frequently encounter data from previously unseen target
domains, leading to a significant distribution shift problem
[Huang et al., 2023; Liao et al., 2024; Wan et al., 2024].
This scenario, known as Federated Domain Generalization
(FedDG) and illustrated in Figure 1, raises a fundamental
challenge beyond traditional FL’s data heterogeneity: how
can federated models effectively generalize across diverse do-
mains while maintaining privacy constraints?

Traditional domain generalization methods focus on learn-
ing invariant relationships explicitly from data or representa-
tions [Hu et al., 2024; Fu et al., 2025a; Huang et al., 2025].
However, these methods require a centralized setting where
data or representations are shared across clients, potentially
compromising client privacy. To address this challenge, re-
searchers have begun exploring federated domain generaliza-
tion [Qi et al., 2024]. To investigate the invariance relation-
ships between clients, various FL methods have been devel-
oped, focusing either on the feature level or the logit level
[Qiao et al., 2024]. [Zhang et al., 2023] proposed a novel
model aggregation method based on locally estimated gener-
alization gaps, but their insight was limited to scenarios where
each training domain was treated as a single client. [Huang
et al., 2023] proposed a prototype aggregation method, FPL,
from the feature perspective. By introducing consistency reg-
ularization, it aligns local features with prototypes to ex-
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plicitly learn invariance in the feature extractor. [Guo et
al., 2023] introduced a regularization approach FedIIR based
on local empirical risk minimization, which aims to implic-
itly learn invariance by constraining the parameter space.
However, these methods fail to integrate information from
both the feature extractor and the classifier [Hu et al., 2023;
Zhang et al., 2024; Qi et al., 2025; Fu et al., 2025b].

In response, we suggest a novel approach that emphasizes
the decision-making process in the classifier layer of deep
neural networks, rather than focusing solely on feature or
classifier invariance. In conventional models, final output
logits are computed by multiplying the penultimate layer’s
features with the classifier’s weights. A deeper analysis re-
veals that [Chen et al., 2023] each logit value can be decom-
posed into the summation of element-wise products between
the feature vector and corresponding weight vector . While
most FL methods rely on feature prototypes [Wan et al., 2024;
Bai et al., 2024] to learn invariance, the intermediate element-
wise products (before summation) retain more fine-grained
information. Viewing each product term as a contribution to
its corresponding logit, we collect these contributions across
all classes into a matrix. This matrix, which we term the “in-
sight matrix”, encapsulates the model’s decision-making pro-
cess for input classification. By exchanging insight matrices
in FL, clients can share cross-domain knowledge representa-
tions, thus facilitating invariant learning.

Based on insight matrices decision, we propose a feder-
ated domain generalization model, named FedDIM, which
provides a new theoretical and practical framework for in-
variant learning. We assume that different clients have het-
erogeneous input/output distributions, but a well-generalized
model should make decisions based on cues that are con-
sistent across samples and clients. Based on this intuition,
we propose a regularization term that promotes similarity
between each sample’s insight matrix and the mean insight
matrix of its corresponding class. Our approach offers two
key advantages: First, it explicitly combines the semantic in-
formation of the encoder and classifier through fine-grained
modeling, thus enhancing the model’s ability to adapt to
client-domain heterogeneity; Second, the insight matrix, as a
natural byproduct of the logit computation process, has mini-
mal computational overhead. Experimental results show that
FedDIM improves the model’s ability to learn invariant rela-
tionships across client domains. In summary, the main con-
tributions of this paper are as follows:

• New perspective: In this paper, considering the privacy
of FL, we propose a novel method built upon the con-
cept of category-wise mean insight matrices. Bridging
the gap between focusing only on feature invariance or
logit invariance in FL, offering new insights into out-of-
distribution (OOD) generalization of FL.

• Simple yet effective algorithm: We introduce an effi-
cient strategy that leverages insight matrices to enhance
model robustness. Our method requires minimal modifi-
cations to the standard FedAvg algorithm while achiev-
ing superior performance. The lightweight implementa-
tion adds only a few lines of code while its effectiveness
is theoretically guaranteed.

• Superior Performance: We conduct extensive exper-
iments on multiple benchmark datasets. The results
demonstrate that FedDIM consistently outperforms ex-
isting federated learning methods in Out-of-Distribution
generalization.

2 Preliminaries
2.1 Problem Setting
In federated domain generalization, the data in each client
is sampled from different domains. Let D denote the set
of all client domains. We denote the training domain by
Dtr = {D1, · · · DM}, Dtr ⊆ D , where M is the number
of training domains (or clients). Let X and Y represent the
input space and target space, respectively, the sample contains
K classes. Each client c ∈ D holds a local dataset denoted
as {(xc

i , y
c
i )}

nc
i=1, where nc is the number of samples. Let the

loss function as L(f(x), y). Then, for each client c, the ex-
pected risk as Ec(f) = Exc,ycL(f(xc), yc), and the global
expected risk of model f denotes as EDtr (f) = EDtrEc(f).

The ideal goal of FL training is to minimize the overall
loss function on the dataset D. However, in practice, FL typ-
ically involves a large number of clients with heterogeneous
data distributions, and only a subset of clients participate in
the training. This introduces a distribution shift between the
participating clients and those not seen during training, lead-
ing to the out-of-distribution (OOD) generalization problem
[Qi et al., 2024; Xie et al., 2024]. Therefore, instead of opti-
mizing the expected risk over the entire domain, we focus on
optimizing the following empirical risk objective:

min
θ
ED(f) ≈ EDtr

(f) =
1

M

M∑
c=1

nc∑
i=1

L (f(xc
i ; θ), y

c
i ) (1)

The federated OOD problem cannot be solved directly since
not all potential clients are observed. This is more challeng-
ing than ordinary heterogeneous FL. To generalize to non-
participating clients, the key to our study is how to learn the
invariant relationship between inputs and goals.

2.2 Modeling Decision Insight Matrix
In the current deep model, the final output of the decision
process involves two main steps: (1) the feature extractor:
transforming the input from the original feature space to the
feature embedding space, i.e., z = h(φ, x) ∈ RD : X → Z;
and (2) the classifier: using the features to compute the final
logits, i.e., o = g(w, z) ∈ RK : Z → Ŷ . Thus the model can
be written as f(θ) = g(w) ◦ h(φ), where θ = (φ,w).

In the FedDG scenario, clients primarily focus on samples
from their local domains, while the server needs to aggregate
inter-domain information from multiple clients to learn in-
variant relationships. Most existing research has focused on
learning invariance by uploading features or logits to regular-
ize the model, but these approaches have certain limitations:
❶ Solely focusing on feature invariance often overlooks the
importance of classifier weights across different feature ele-
ments, which may lead to biased estimates of feature impor-
tance, thereby weakening the model’s generalization ability.
❷ Although logits implicitly encode the relationship between
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Figure 2: An overview of FedDIM based on insight matrix. The clients process data from different domains. clients update the local model by
minimizing the classification loss Lce and the distance Lim between the global and the local insight matrix. then upload them to the server.
The server sends down the global model and matrix to the client after aggregating it and updating the global insight matrix.

the classifier’s weights, they only provide rough numerical
values and lack fine-grained recognition of cross-domain gen-
eralizability, thus lacking deeper insight into the underlying
decision-making process.

Since each logit value can be decomposed into the sum of
the element-wise products of the feature vector and the cor-
responding weight vector, we argue that these intermediate
product terms retain more granular information. Therefore,
assuming the label set contains K classes, the logits can be
represented as o = WT z ∈ RK , where W ∈ RD×K is the
weight. For simplicity, we ignore the bias term of the classi-
fier. Based on this decomposition, we treat each product term
as the contribution of its corresponding logit. Thus, the logic
value of class k can be expressed as

ok = W⊤
{,k}z =

D∑
j=1

W{j,k}zj . (2)

We aggregate the contributions of all categories into a matrix,
called the “Insight Matrix”, which is defined sa following:

I =


W{1,1}z1 W{1,2}z1 · · · W{1,K}z1
W{2,1}z2 W{2,2}z2 . . . W{2,K}z2

...
...

. . .
...

W{D,1}zD W{D,2}zD . . . W{D,K}zD

 . (3)

The insight matrix I ∈ RD×K encapsulates key information
about the model’s decision-making process when classifying
an input.

3 Methodology
We propose a federated domain generalization solution that
utilizes the insight matrix as a key component for exchanging
information between servers and clients. The core idea is that
the insight matrix of samples from the same class is consis-
tent with its corresponding average value, implying that the
insight matrices for the same class across different domains

should exhibit similarity. This ensures that the model makes
classification decisions based on the same reasoning process.
The framework of our method is illustrated in Figure 2.

3.1 Local Mean Class Insight Matrix
According to Eq. (2), the client generates an insight matrix
for each sample. We define a local mean insight matrix I

(k)
c

to represent the k-th class. For the c-th client, the average in-
sight matrix is the mean of the insight matrices of the samples
belonging to class k.

I(k)c =
1

|nc,k|
∑

(x,y)∈nc,k

W ⊙ h(φ, x), (4)

where ⊙ represents element-wise product, I(k)c ∈ RD×K and
nc,k denotes the samples with class k in client c. We calculate
the average insight matrix for each class and stack to get the
local mean insight matrix Ic = [I

(1)
c , · · · , I(K)

c ] ∈ RK×D×K .

3.2 Global Aggregation and Update
To generalize the global model to unseen clients, it is insuf-
ficient to simply aggregate the models of participating clients
on the server. Although the clients possess domain infor-
mation with different distributions, they share the same label
space, which enables the participating clients to share a com-
mon embedding space. By aggregating the clients’ insight
matrices based on class information, we can learn invariant
relationships in the federated domain generalization scenario.
Thus, our aggregated global model and global insight matrix
can be expressed as:

θt+1 =
1

C

∑
c∈C

θtc, and Īg =
1

C

∑
c∈C

Ic, (5)

where θtc is the model trained by client c in round t, and C is
the number of clients sampled per round.

In the FL training process, clients perform random sam-
pling in each round. However, in the FedDG scenario, the
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Algorithm 1 FedDIM
Input: total rounds T , local epochs E, total number of clients
M , sampled number of clients C, learning rate η, hyper-
parameter for loss λ
Server executes:

1: Initialize global model θ and global insight matrix Ī
2: for each round t = 1 · · ·T do
3: Server samples subset C of clients
4: for each client c ∈ C in parallel do
5: {θtc, Ic} ← Clients updates(θt, Īt)
6: end for
7: Update global model and calculate the global insight

matrix by Eq. (5)
8: Update global insight matrix Īt+1 by Eq. (6)
9: end for

Clients updates:
1: Initialize local model θtc = θt

2: for each local epoch e = 1 · · ·E do
3: Sample mini-batch in B:
4: Calculate the n-th sample insight matrix In
5: Calculate local loss by Eq. (7)
6: Update local model: θtc ← θtc − η∇Lc (θ

t
c;Bc)

7: end for
8: Calculate the mean class insight matrix Ic by Eq. (4)
9: return θtc and Ic

significant differences in client data distributions can lead to
considerable variations in the aggregated insight matrix in
each round. Therefore, we adopt a momentum to update the
global insight matrix in each round. This method reduces the
impact of noise in each iteration and balances new informa-
tion with historical data, making the update process smoother
and preventing overreaction to individual training data.

Īt+1 = (1−m)× Īt +m× Īg, (6)

where m is a positive momentum value, and Ī is initialized
from the first iteration to compute the processed insight ma-
trix, and Īg calculated by Eq. (5).

3.3 Local Model Update
Clients update their local models to learn invariant relation-
ships and generate consistent insight matrices across clients.
To achieve this, we introduce a regularization term in the local
loss, which enables the local model to capture the invariant
relationship between data and targets during single-domain
learning. Specifically, the loss is defined as follows:

L = Lce + Lim

=
B∑
i=1

Lce (f(x
c
i ; θ), y

c
i ) + λ

1

B

∑
k

∑
{i|yi=k}

∥Ii − Īk∥2,

(7)
where || · || is the l2 norm, Lce is the cross entropy loss, B
is the number of samples in a mini-batch. Ii is the insight
matrix for the n-th sample. Īk is the global insight matrix
corresponding to the k-th class distributed by the server.

4 Theoretical Analysis
This section presents the theoretical analysis demonstrating
how our methods address the distribution shift problem. At
first, we provide the following lemma, which is from [Ben-
David et al., 2010] to bound the distribution divergence be-
tween two different domains.
Lemma 4.1. Let dH∆H(A,B) denotes the domain di-
vergence between two domain distributions A and B.
The expected risk gap between A and B is bounded as
|EA(θ)− EB(θ)| ≤ 1

2dH∆H(A,B).
Then, we consider the federated domain generalization set-

ting where the training data follow the distribution D =⋃|C|
c=1Dc, with Dc denoting the data distribution of client c

among |C| total clients [Yan and Guo, 2025]. Each client
maintains a training set Dc sampled from Dc with size nc =
|Dc|, forming an overall training set D of n =

∑
c nc sam-

ples and model aggregation weights {pc = nc

n }. Let ED(θ)
denote the expected risk on D and ÊD(θ) denote the empiri-
cal risk on D. We define ÊDc

(θ), Îc(θ), as the two loss terms
in Eq. (7).

Theorem 4.2. Let θ̂ be the aggregated global model federat-
edly trained with the proposed overall loss function. Define
θ∗T := argminθ ET (θ) and θ∗c := argminθc ÊDc (θc) . LetH
be a hypothesis space of VC dimension d. For any δ ∈ (0, 1),
with probability at least 1 − δ, the generalization gap of the
model θ̂ on the unseen testing domain T has the following
bound,

ET (θ̂)− ET (θ∗T ) ≤
∑
c

pc(
(
ÊDc(θ̂)− ÊDc (θ

∗
c )
)

(8)

+ Îc(θ̂) + dH∆H (Dc, T )

+O

(√
1

nc

(
log

1

δ
+ d log

nc

d

))
) + ∆.

The complete proof is provided in the supplementary ma-
terial. In this theorem, dH∆H (Dc, T ) represents the domain
divergence between source domain Dc and target domain T ,
while ∆ represents the optimal model’s residual error on both
D and T . The theorem establishes that the generalization gap
of the global model θ̂ on target domain T is upper-bounded
by two components: a weighted average term and the residual
error. The weighted average term incorporates each client’s
empirical risk, insight matrix, and domain divergence bounds.
Our proposed method aims to enhance the global model’s
generalization ability on T by explicitly minimizing the first
two bound terms. The final term, which emerges from con-
verting expected loss to empirical loss, is determined by the
dataset size

5 Experiments
5.1 Experimental Setup
Datasets. To evaluate our approach, we conducted exper-
iments in four datasets, RotatedMNIST [Ghifary et al.,
2015], is a MNIST dataset of 7000 samples by rotating it at
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angles of 0°, 15°, 30°, 45°, 60°, and 75°, resulting in six dif-
ferent domains. PACS [Li et al., 2017], has 9991 images
consisting of seven object categories in four domains (photo,
art, cartoon, and sketch). VLCS [Fang et al., 2013], has
10729 images consisting of five object categories in four do-
mains (Caltech101, LabelMe, SUN09, and VOC2007). Of-
ficeHome [Venkateswara et al., 2017], is an image recogni-
tion dataset that includes 15,588 images of 65 classes from
four different domains (art, clipart, product, and real-world).
These are commonly used in the literature for domain gener-
alization. We adhere to the experimental methodology out-
lined in FedIIR [Guo et al., 2023]. For all datasets, we per-
form “leave-one-domain-out” strategy [Gulrajani and Lopez-
Paz, 2020], where we choose one domain as the test domain,
train the model on all remaining domains, and evaluate it on
the chosen domain. Each source domain is treated as a client.
Following standard practice, we use 90% of available data as
training data and 10% as validation data.

Considering the FL setting, we explore two scenarios based
on the number of clients: the one-domain-one-client scenario
and the one-domain-multiple-clients scenario. In the one-
domain-one-client scenario, each training domain is treated
as an individual client. In the one-domain-multiple-clients
scenario, data from each training domain is randomly parti-
tioned into multiple subsets, with each client containing data
from one subset of a given training domain. The details of the
data partitioning are provided in the Appendix C.1.

Baselines. We consider 2 classic federated methods Fe-
dAvg [McMahan et al., 2017], FedProx [Li et al., 2020b],
and 4 state-of-the-art federated methods for domain general-
ization FedADG [Zhang et al., 2021], FedSR [Nguyen et al.,
2022], FedIIR [Guo et al., 2023] and FedLGF [Yan and Guo,
2025] as baselines.

Implementation. We design dataset-specific models for
each task. For the RotatedMNIST dataset, the feature en-
coder consists of four convolutional blocks, with ReLU ac-
tivation, group normalization, and average pooling, followed
by a linear classifier. During training, the batch size is 64.
For the VLCS and PACS datasets, ResNet-18 is used as the
feature encoder, while ResNet-50 is employed for the Office-
Home dataset. The classifiers for these three datasets consist
of two fully connected layers. During training, the batch size
is 32. For all datasets and scenarios, we set the communica-
tion rounds T to 100, with local iteration per round E=1 to
accommodate limited local computational resources. Local
models are updated using the SGD optimizer with a momen-
tum of 0.9. The best parameters reported in the original paper
were selected for the baseline, and the optimal hyperparame-
ters of FedDIM were found by grid search. Each experiment
was repeated 3 times and the average value was calculated.

5.2 Experimental Results
We evaluated all methods in two scenarios, where M de-
notes the total number of clients and C represents the number
of sampled clients. Table 1 reports the results for the one-
domain-one-client scenario, while Table 2 presents the results
for the one-domain-multi-client scenario. For clarity, detailed
results for specific domains are provided in the Appendix. C.

The experimental results demonstrate that, under the cross-

domain client setting, our proposed method consistently out-
performs other state-of-the-art baselines. In terms of aver-
age accuracy, we outperform the latest baseline FedLGF by
1.47% across all datasets. These observations validate the ef-
fectiveness of our method compared to existing baselines.

As the total number of clients increases, the performance
of all methods declines significantly in the one-domain-
multi-client scenario. In particular, FedADG and FedSR
exhibit the most noticeable performance drops, likely be-
cause the increased number of clients makes it difficult to
align the distributions across different source domains. To
further validate this hypothesis, we extended the number
of clients to 100, with the experimental results provided
in Table 3 of the Appendix. Under this setting, both FedADG
and FedSR perform worse than FedAvg. Additionally, when
client data volume is large, the performance of FedIIR also
drops significantly, potentially due to the reduced number of
samples per category for each client caused by the increased
number of clients. In contrast, our method exhibits the small-
est performance degradation, highlighting its effectiveness
and strong generalization capability in multi-client scenarios.

Loss surface visualization. We visualized the loss sur-
face in a one-domain-one-client scenario using the “art” test
domain in the PACS dataset, as shown in Figure 3. In the
visualization, we used the global model as the origin and la-
beled the local models. This approach is consistent with the
visualization technique in [Garipov et al., 2018]. It can be
observed that compared to FedAvg, our local models all con-
verge in the flat region of the loss surface, and in this way the
global model induced is more generalizable. In addition, we
find that the gap between the global and local models is much
smaller, suggesting that our approach has a clear advantage
in maintaining a consistent optimization objective across dif-
ferent domains.

Figure 3: Loss surfaces w.r.t. model parameters on the PACS dataset
with target domain “art”.

Visualization. To better demonstrate the effectiveness of
our method, we performed t-SNE [Van der Maaten and Hin-
ton, 2008] visualization of the features z on the PACS dataset,
as shown in Figure 4.

Compared to FedAvg, our method is clearer in clustering
classification. On the training domain, FedDIM presents a
clear block structure, indicating the effectiveness of the train-
ing process. When the model is generalized to the test domain
(dark red part), the clustering structure is still obvious. This
demonstrates the effectiveness of our method in generalizing
to unseen distributions.
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RotatedMNIST
(M=5, C=5)

PACS
(M=3, C=3)

VLCS
(M=3, C=3)

OfficeHome
(M=3, C=3) AverageMethods

ConvNet ResNet-18 ResNet-18 ResNet-50
FedAvg 94.77 ± 0.2 83.13 ± 0.1 75.38 ± 0.7 68.94 ± 0.1 80.56
FedProx 94.41 ± 0.3 83.32 ± 0.2 76.43 ± 1.2 68.04 ± 0.5 80.55
FedADG 94.96 ± 0.0 83.28 ± 0.4 77.53 ± 0.3 68.87 ± 0.4 81.16
FedSR 94.65 ± 0.4 83.65 ± 0.3 75.48 ± 0.7 69.25 ± 0.3 80.76
FedIIR 95.22 ± 0.3 83.87 ± 0.3 77.75 ± 0.8 69.52 ± 0.1 81.59

FedLGF 95.09 ± 0.2 84.20 ± 0.5 77.23 ± 1.1 69.33 ± 0.2 81.46
FedDIM 95.83 ± 0.2 84.57 ± 0.4 79.12 ± 0.8 71.12 ± 0.2 82.66

Table 1: Performance comparison (%) of all compared mehtods on RotatedMNIST, PACS, VLCS, and OfficeHome using leave-one-out
domain validation. Each training domain is considered as a client and all clients participate in each round of joint training.

RotatedMNIST
(M=50, C=10)

PACS
(M=30, C=10)

VLCS
(M=30, C=10)

OfficeHome
(M=30, C=10) AverageMethods

ConvNet ResNet-18 ResNet-18 ResNet-50
FedAvg 91.00 ± 0.4 76.82 ± 0.5 73.75 ± 0.9 67.59 ± 0.2 77.29
FedProx 91.11 ± 0.6 77.48 ± 0.7 74.18 ± 1.4 67.73 ± 0.7 77.63
FedADG 92.71 ± 0.3 77.89 ± 0.6 71.95 ± 1.7 67.23 ± 0.2 77.44
FedSR 92.44 ± 0.8 78.13 ± 0.5 73.33 ± 0.5 65.84 ± 0.6 77.43
FedIIR 93.28 ± 0.5 79.25 ± 0.5 75.12 ± 0.8 68.19 ± 0.3 78.96

FedLGF 92.84 ± 0.6 79.49 ± 0.6 75.79 ± 1.3 68.01 ± 0.4 79.03
FedDIM 93.86 ± 0.4 80.57 ± 0.5 77.12 ± 1.1 70.03 ± 0.5 80.40

Table 2: Performance comparison (%) of all compared mehtods on RotatedMNIST, PACS, VLCS, and OfficeHome using leave-one-out
domain validation. The total number of participating clients is more than the number of domains, sampling 10 clients per round for training.

FedAvg FedDIM

photo cartoon sketch art (test)

Figure 4: Visualization of t-SNE embedding for the PACS dataset
with “art” as the unseen target domain. Here, different colors repre-
sent different domain. The seven clusters denote the classes.

5.3 Ablation Study
To confirm the validity of our approach, we designed the fol-
lowing five variants for comparison to assess the independent
impact of each component.

• W/λ = 0: The method degenerates to FedAvg.
• W/m = 0: The insight matrix I is generated and fixed

for the initial pre-trained model.
• W/m = 1: The insight matrix I is dynamically updated

by the current round.
• W/Fea: We replaced 2nd term of Eq. (7) using feature-

invariance as Lim = 1
B

∑
k

∑
{n|yi=k} ∥zi − z̄k∥2.

feature-invariance: focusing on the consistent expression of the
features in the middle layer of the model.

• W/Log: We replaced 2nd term of Eq. (7) using logit-
invariance as Lim = 1

B

∑
k

∑
{n|yi=k} ∥oi − ōk∥2.

Table 3 presents the experimental results of our differ-
ent variants. It can be observed that the performance at
W/m = 0 surpasses other variants, indicating that lever-
aging the insight matrix directly from the pre-trained model
facilitates invariant decision-making. While W/m = 1 is
outperformed by our momentum updating strategy due to the
limited number of samples in a single batch, which cannot
adequately consider all samples in the same class. Therefore,
we design a scheme for dynamic updating based on historical
information.

Moreover, it can be observed that both variants W/Fea and
W/Log outperform the case where λ = 0. This is because the
invariance constraint we adopt helps the model achieve better
generalization and robustness to some extent. However, it is
worth noting that this constraint may amplify the influence of
irrelevant features, which have large values but correspond to
small weights in the decision-making process, thus weaken-
ing the overall classification performance. Furthermore, fo-
cusing solely on logical invariance does not account for the
varying contributions of individual features to the final deci-
sion. This can lead to small contributions being boosted to
ensure that the summation equals the mean value, causing the
model to emphasize irrelevant features and further degrading
performance.

logit-invariance: focuing on the stability of the model’s pre-
dicted probability, which is the behavior of the output layer.
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Figure 5: The accuracy convergence curves for the validation and test sets in one-domain-multiple-clients scenario. There are 50 clients for
Rotated MNIST and 30 clients for the other datasets, and 10 clients are sampled in each round for training. Where the test domains of datasets
Rotated MNIST, PACS, VLCS, and OfficeHome are ‘0°’, ‘art’, ‘VOC2007’, and ‘art’.

Invariance Test datasets
Methods

F O I M P V H Avg.
W/λ=0 - - ✓ 91.00 76.82 73.75 67.59 77.29
W/m=0 - - ✓ 93.79 79.33 76.92 68.16 79.55
W/m=1 - - ✓ 92.26 78.62 76.94 69.13 79.24
W/Fea ✓ - - 93.84 78.23 76.82 68.96 79.46
W/Log - ✓ - 92.26 77.71 75.16 68.6 78.43

FedDIM - - ✓ 93.86 80.57 77.12 70.03 80.40

Table 3: Ablation study on four datasets. We abbreviated the sym-
bols. Under Invariance content, F stands for feature, O stands for
logical value, and I stands for our Insight Matrix. Under the test
dataset content, M stands for Rotated Mnist, P stands for PACS, V
stands for VLCS, and H stands for OfficeHome.

5.4 Visualization of the Convergence Process
We present the convergence behavior of different methods in
a one-domain multiple-client scenario. The learning rate for
all methods is fixed to the same value. We report the ac-
curacy of each method on both the validation and test sets,
as shown in Figure 5. From the figure, it is evident that all
methods demonstrate stable convergence on the validation
set, with our algorithm achieving relatively superior perfor-
mance across various datasets, particularly on the VLCS and
OfficeHome datasets. Moreover, although the performance of
different methods on the test set exhibits varying degrees of
fluctuation, overall, the test accuracy of all methods stabilizes
in the later stages of training, indicating good convergence
behavior of the models on the test set.

5.5 Parameter Sensitivity Analysis
We investigated the effects of momentum coefficient and the
loss trade-off parameter in a one-domain-multi-client sce-
nario. We evaluated the sensitivity of the model using four
datasets in the range λ ∈ {0.0001, 0.001, 0.01, 0.1, 1} and
m ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, as shown in Figure 6. The

results show that FedDIM performs consistently when λ ∈
{0.0001, 0.001, 0.01, 0.1}, but performance degrades signifi-
cantly at λ = 1. Furthermore, models with static momentum
(m = 0 or m = 1) perform worse than those with dynamic
momentum updates, highlighting the importance of momen-
tum in improving generalization.

(a) Trade-off parameter λ (b) Momentum coefficient m

Figure 6: Average test accuracy (%) for various values of the hyper-
parameter λ and m, with one-domain-multi-client setting.

6 Conclusion
We study OOD generalization in federated learning through a
novel perspective of fine-grained invariant relationship learn-
ing, which captures subtle yet crucial patterns across dis-
tributed domains. We propose FedDIM, a simple yet ef-
fective method that enhances OOD generalization by lever-
aging insight matrices to distill domain-invariant relation-
ship from heterogeneous client data. Our theoretical analy-
sis shows that FedDIM can effectively generalize to unseen
domains by maintaining consistent relationships across dif-
ferent distributions, while empirical results demonstrate state-
of-the-art performance on standard federated domain general-
ization benchmarks, including RotatedMNIST, PACS, VLCS
and OfficeHome datasets.
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