Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

OS-GCL: A One-Shot Learner in Graph Contrastive Learning

Cheng Ji!, Chenrui He!, Qian Li?, Qingyun Sun', Xingcheng Fu? and Jianxin Li'*

ISKLCCSE, School of Computer Science and Engineering, Beihang University, China
2School of Computer Science, Beijing University of Posts and Telecommunications, China
3Key Lab of Education Blockchain and Intelligent Technology, Guangxi Normal University, China

jicheng@act.buaa.edu.cn, {hcr,sunqy,lijx } @buaa.edu.cn, li.qian@bupt.edu.cn, fuxc@gxnu.edu.cn

Abstract

Graph contrastive learning (GCL) enhances the self-
supervised learning capacity for graph representa-
tion learning. Nevertheless, the previous research
has neglected to consider one fundamental nature
of GCL - graph contrastive learning operates as
a one-shot learner, guided by the widely utilized
noise contrastive estimation (e.g., the InfoNCE loss).
Theoretically, to initially investigate the factors that
contribute to the one-shot learner essence, we an-
alyze the InfoNCE-based objective and derive its
equivalent form of the softmax-based cross-entropy
function. It is concluded that the InfoNCE-based
GCL is determined to be a (2n—1)-way 1-shot clas-
sifier (n is the number of nodes). In this particu-
lar context, each sample is indicative of a unique
ideational class, and each class has only one sample.
Consequently, the one-shot learning nature of GCL
leads to the issue of the limited self-supervised sig-
nal. To further address the above issue, we propose
a One-Shot Learner in Graph Contrastive Learning
(OS-GCL). Firstly, we estimate the potential prob-
ability distributions of the deterministic node fea-
tures and discrete graph topology. Secondly, we
develop a probabilistic message-passing mechanism
to propagate probability (of feature) on probability
(of topology). Thirdly, we propose the ProbNCE
loss functions to contrast distributions. Extensive
experimental results demonstrate the superiority of
OS-GCL. To the best of our knowledge, this is the
first study to examine the one-shot learning essence
and the limited self-supervised signal issue of GCL.

1 Introduction

Graph Contrastive Learning (GCL) has garnered significant
research attention [Jaiswal et al., 2020; Liu et al., 20211,
drawing inspiration from contrastive learning in computer
vision [He er al., 2020; Chen et al., 2020; Chuang et al., 2020;
Yeh et al., 2022] and natural language processing [Logeswaran
and Lee, 2018; Oord et al., 2018]. GCL aims to acquire the
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Figure 1: Graph Contrastive Learning comprises (a) random data
augmentation, (b) graph encoder, and (c) the NCE-based loss function.
In this paper, the objective is identified as a (d) one-shot learner,
where each sample is indicative of a unique ideational class (CI-
class), with each class containing only one sample. It is not advisable
to employ limited augmentation and deterministic embedding, as it
will result in limited self-supervised signal issues for each CI-class.

representations of graph data without relying on labeled infor-
mation and has demonstrated its superior effectiveness [Wu er
al., 2021; Zhu et al., 2021; Xie et al., 2022; Liu et al., 2022;
Ji et al., 2024]. The majority of GCL methods, which are
based on the noise contrastive estimation (NCE) principle,
typically contrast each sample with the others to detect dif-
ferences, considering the augmented sample as a positive in-
stance and all others as negatives [Velickovic et al., 2019;
Hassani and Khasahmadi, 2020; Zhu et al., 2020]. Neverthe-
less, the principle of GCL is identified as a one-shot learning
behavior in this paper and consequently introduces limited
self-supervised signal challenges to GCL.

An overlooked fundamental nature of GCL. Upon closer
examination of the optimization process of NCE-based graph
contrastive learning (e.g., InfoNCE [Oord et al., 2018)), it
becomes evident that GCL is essentially a (2n—1)-way 1-shot
learner (n is the number of nodes). As illustrated in Figure 1,
all other nodes are considered as classes (referred to as the
“contrastive ideational class, CI-class” in this paper), while
the target node is the sole sample in its class (i.e., the class
represented by the positive sample). Consequently, there are
2n—1 Cl-classes, with each class containing only one sample
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during training. It is important to note that the aforementioned
2n—1 Cl-classes represent the ideational classes within the
scope of GCL’s objective, rather than the classes involved in
downstream tasks, given the absence of label information dur-
ing the training phase of self-supervised GCL. That is, GCL
methods strive to be a theoretically one-shot learner. However,
previous studies often overlook the aforementioned fact, lead-
ing to reduced effectiveness as a result of the following limited
self-supervised signal challenges.

Given that there is only one sample in each Cl-class, the de-
terministic feature/embedding in latent space is unable to accu-
rately reflect the potential data distribution of the correspond-
ing Cl-class, that is, limited self-supervised signal problem.
(1) Limited sample and supervision for each CI-class. GCL
functions as a one-shot learner, with only one sample available
in each Cl-class. Previous studies have incorporated samples
as a deterministic vector [Hassani and Khasahmadi, 2020;
Zhu et al., 2020], leading to limitations in accurately estimat-
ing the feature distribution of each Cl-class. The data aug-
mentation technique utilized in GCL may offer an alternative
approach; however, the limited number of random augmen-
tations is insufficient to estimate the underlying probability
distributions in one-shot classification. (2) Hard connection
between different CI-classes. Different from contrastive
learning in other domains, GCL typically utilizes graph neural
networks (GNNs) to acquire the representations, following the
message-passing schema [Kipf and Welling, 2017]. As the
input topology is just one of the observable/observed possibil-
ities in the real world, the observed hard connection between
Cl-classes cannot represent the real relationship between the
potentially similar classes. Hence, it is essential to assess the
probability distribution of topology and leverage it to propa-
gate information within a profound sub-structure.

To further investigate and solve the aforementioned chal-
lenges, a theoretical analysis is undertaken to examine the
reasons behind GCL’s status as a one-shot learner and to offer
insights from the perspective of probability. Furthermore, we
propose a One-Shot Learner in Graph Contrastive Learning
(OS-GCL), leveraging graph probability distribution estima-
tion to enhance GCL through the lens of one-shot learning.
Specifically, OS-GCL estimates the probability distributions
pertaining to both node features and graph topology using
multidimensional Gaussian distribution and Bernoulli distri-
bution. Then, we propose a probabilistic message passing to
aggregate the probability distribution on the non-discretized
structure. Finally, we design the ProbNCE loss to contrast the
distributions of positive and estimated negative samples. The
primary contributions are summarized as follows:

* We identify that InfoNCE-based GCL is a 1-shot learner
from the perspective of objective. To the best of our knowl-
edge, this is the first to study 1-shot learning nature of GCL.

* Building upon the theoretical findings, we propose OS-GCL,
improving the efficacy of GCL through graph probability
distribution estimation using Gaussian and Bernoulli distri-
butions, probabilistic message passing, and ProbNCE loss
contrasting probability distributions.

* Extensive experiments demonstrate the superiority of OS-
GCL against state-of-the-art baselines.

ﬂ cross |/
softmax entropy

Figure 2: InfoNCE-based GCL is a (2n—1)-way 1-shot classifier
structured in the form of softmax-based cross-entropy.

(2n-1)-way 1-shot
classifier

2 Theoretical Analysis

This section begins with an overview of graph contrastive
learning, providing background information. We further iden-
tify that graph contrastive learning is essentially a form of
one-shot learning.

2.1 GCL under InfoNCE Principle

Consider a graph G = {V, £} with n nodes, where the set
of nodes V = {v;}!; and the set of edges £ C V x V.
Let A € {0,1}™*™ denote the adjacency matrix of G and
let X € R*d represent the initial feature of nodes, where d
signifies the input dimension of the feature.

Given a graph G = {V, £}, graph contrastive learning ini-
tially acquires two distinct views, {G*, G}, by employing
two different data augmentation techniques t,,,t, ~ 7. GCL
subsequently learns the embeddings of individual nodes by
employing a node encoder (e.g., a GCN [Kipf and Welling,
2017]) and feeding them into a noise contrastive estimation
loss function (e.g., InfoNCE loss [Oord er al., 2018]):

f(ui»vi)
f(wi,0i) + 305w, o) + 305 [, ) ’
ey

where u,v are the embeddings of nodes in the two aug-
mented views, f(-,-) = exp(sim(-,-)/7), sim(u;,v;) =
u; - v; /||wi]| - ||vs|| is the cosine similarity, and 7 is the tem-
perature hyperparameter.

Note that different from graph-level graph contrastive learn-
ing, which can alter the number of nodes (e.g., subgraph sam-
pling), the data augmentation functions ¢ ~ 7 in node-level
GCL primarily consist of V-invariant augmentation.

L; =—log

Definition 1 (V-Invariant Augmentation). Given a graph
G = {V,&}, a V-invariant augmentation t : G(V,E) —
G'(V', E") preserves the identity of the nodes, i.e., v;=v.,i €
[1, n]. This means that it does not involve the deletion or addi-
tion of nodes but only modifies the features of the nodes and
the edges connecting them. A V-invariant augmentation is a
bijective function w.r.t., nodes.

The V-invariant augmentation is commonly utilized in
node-level GCL due to the node-level nature of downstream
tasks [Hassani and Khasahmadi, 2020; Zhu et al., 2020],
which necessitates GCL models to acquire embeddings for
all original nodes. The bijection property guarantees that the
identification of nodes in the augmented view remains, thereby
supporting the assertion of Proposition 1 in the next section.
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Figure 3: Effects of graph probability estimation from the perspective of one-shot learning essence of GCL.

2.2 GCLisa (2n—1)-Way 1-Shot Learner

Given the formulation of InfoNCE-based graph contrastive
learning (i.e., Eq.(1)), we can conclude the Proposition 1 by
reformulating Eq.(1) into the form of a one-shot classification.
The proof can be found in Appendix C.1.

Proposition 1 (GCL is a (2n —1)-Way 1-Shot Learner).
The InfoNCE-based graph contrastive learning method is a
(2n—1)-way 1-shot classifier structured in the form of softrmax-
based cross-entropy, given a graph G with n nodes, i.e., there
are 2n — 1 classes, each with only one sample. Let 0; = o], =
sim(wu;, v;)/7 be the predictive output and reformulate the
InfoNCE into a form of softmax-based function:

H(p(u;), q(u;)),

L; = —log softmax (o;

8 softmax (0:) 2)
where H (p(u;), q(u;)) is the cross-entropy between the pre-
dicted probability q(u;) based on softmax function and the

true label p(u;).

Proposition 1 shows that the graph contrastive learning
method based on InfoNCE is a softmax-based cross-entropy
classifier, where each sample, except the target node w;, is
considered a contrastive ideational class. From the proof, we
can give the definition of contrastive ideational class.

Definition 2 (Contrastive Ideational Class, CI-class). The
contrastive ideational class in graph contrastive learning is
the virtual class in the perspective of optimizing InfoNCE-
based GCL, represented by the other samples for each target
sample, where the positive sample is the only true Cl-class
while the other negatives are the false CI-class.

As shown in Figure 2, decoupling the InfoNCE objective,
the encoder along with the cosine similarity works as a clas-
sifier while the rest is a softmax-based cross-entory. In total,
there are |V*| + |VY| — 1 = 2n — 1 Cl-classes. Each node
is assigned to a single class, as the augmentation functions
do not alter the node from Definition 1, and each Cl-class

contains only one sample. That is, the InfoNCE-based GCL
method can be described as a (2n—1)-way 1-shot classifier.

Remark 1. It is important to note that the aforementioned
2n—1 Cl-classes represent the ideational classes within the
scope of GCL’s objective and are distinct from the actual
classes in the dataset for downstream tasks. These ideational
classes represent virtual categories from the perspective of
optimization derived from the InfoNCE.

2.3 Rethinking GCL from Probability Distribution

Drawing on the aforementioned theoretical findings, it has
been observed that graph contrastive learning aims to acquire
the representation of the node, which serves as the sole sample
in its CI-class. The challenge of graph contrastive learning
arises from the limited self-supervised signal. The scarcity
of deterministic embeddings, such as only 1 in GCL, is insuf-
ficient to capture the potential distribution of each Cl-class.
Thus, estimating the probability distributions is crucial.
Specifically, as shown in Figure 3, (a) the limited self-
supervised signal is attributed to having only 1 sample per
Cl-classes. The existing deterministic embedding cannot rep-
resent the feature distribution of each Cl-class, leading to a
hard classification decision. In contrast, (b) we aim to estimate
the probability distribution for each Cl-class, facilitating the
differentiation of distances. (c) Compared to the vanilla deter-
ministic embedding approach, feature probability estimation
can promote samples with the same label to be closer to each
other; conversely, it can push different labels farther away.
Similarly, (d) the hard connections between different CI-class
can result in less accurate message-passing. (e) OS-GCL can
propagate the probability of feature on the probability of topol-
ogy, thus (f) improving the embedding affinity within the
same label and enhancing the distinctiveness between differ-
ent labels. Please refer to Appendix H.3 for more detailed
experimental results about the embedding similarity.



Preprint — IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

(a.1) Feature Probability (b) Probabilistic Message Passing A
Estimation A
. / \Cf"'f? \_ LT TN > po(zi'|X, A)
s
an- - A pC) 0 p(x) w
H VAR ! o €u.€q
X; [ N o= i probabilistic
| topology
S e NS e b A
> > \
NG iti
One-shot Learning — l i po(zi|X, A) postive
Probability Estimation ,s’\\ E
Ve | ¥ji 0] v v
N G={xA — | & s ak Curo
/\ 777777 o " M " " N P > p9 (Zlilx’ A)
,,,,,, , propagate "probability” on "probability J
p(§) = {p(X), p(A)} !
(a.2) Topology Probability /-\r paramelenzaion /.\" () Probiiee Objectives
’ . . "-1 -------------- ;- -‘\ " ------------------ ~\ " ------------------ ~\
Estimation :. s _________. - i i /A\\_V____, P A E ] ,/A\',““’ P / . E
1 1 1
{\ pos. + Z neg. /= {\ pos. + X neg. ,: {\ pos.+E( /) ,:
Y Discrete==========-- > Continuous ========~ > Negative Estimated )
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contrasts the distributions with negative estimation.

3 Methodology

Considering that the principle of GCL ultimately involves a
form of (2n — 1)-way 1-shot learning rooted in prior theoreti-
cal discoveries, We therefore propose a One-Shot Learner in
Graph Contrastive Learning (OS-GCL), leveraging probabil-
ity estimation to address the lower efficacy resulting from the
limited training samples for each Cl-class in the optimization.

3.1 Feature and Topology Probability Estimation

In order to ease the limited self-supervised signal in one-shot
learning of GCL, we propose to estimate the potential fea-
ture and topology distribution from the limited training data
provided for each positive sample (i.e., CI-classes).

Feature Probability Estimation. To estimate the feature
probability distribution for each Cl-class, it is necessary to
identify an appropriate distribution that can accurately depict
the potential distribution of samples for each class while being
constrained to only utilizing the single provided sample (i.e.,
the target node 7). As indicated in previous studies [Kipf and
Welling, 2016], it is possible to utilize a Gaussian distribution
N(u, o) to model the initial distribution of the data, with
the input data being considered as samples drawn from this
distribution. Therefore, we propose to learn the potential
distributions p(x;) for each specified target node i € V by
employing the multidimensional Gaussian distribution:

p(x;) = N(pi, 05), where p; = f,(x;), 05 = fo(x;), (3)

where p; represents the estimated mean vector of the potential
distribution that generates x;, and o; denotes the variance

vector of the learned Gaussian distribution. The estimators f,
and f, are single-layer linear, responsible for the mean and
variance vectors.

Topology Probability Estimation. Unlike other forms of
data (e.g., images/sentences), in addition to feature probability,
graph data also includes the graph structure. The final em-
beddings incorporate topology features through the message-
passing of GNNs which utilize the edges to propagate the
neighborhood information. Each edge e;; in the graph topol-
ogy can be interpreted as a complete probability (i.e., A;; = 1)
of node 7 being connected to node j. However, the probabili-
ties associated with each edge of 0/1 € A are only reflected
by one single glance (i.e., the 1st order proximity), yet the
actual probabilities are concealed within the node feature and
sub-structures. Instead of a deterministic value, a probability
of whether linking is more consistent with the actual situa-
tion, particularly in a one-shot setting. Therefore, in order to
fully capture the probability distribution of graph data, we also
suggest employing the Bernoulli distribution to characterize
the probability of the topology, representing each edge as an
independent random variable from Bernoulli(-). Specifically,
the probability distribution of topology for each edge e;; can
be estimated with the probability parameter ¢;; € [0, 1]:

p(e;j) = Bernoulli(¢;;),
where P(eij = 1) = (bij and ]P’(eij = O) =1- ¢ij7
where the probability parameter ¢;; plays a crucial role in
estimating the probability distribution of the topology. Specifi-

cally, the notation Bernoulli(¢;;) indicates that node ¢ has a
probability of ¢;; of being connected to node j.

“
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3.2 Probabilistic Message Passing: Probability
Propagation on Probability

Furthermore, a novel graph encoder is developed to propagate
the distribution information of nodes p(x;) = N(u;, 0;) by
means of the edge probabilities p(e;;) = Bernoulli(¢;;).

Propagation Probability from Topology Distribution. We
propose a meticulously crafted learnable function that oper-
ates on both the node feature and sub-structures to derive the
probability parameter ¢;;. The distance between the feature
distribution of node i (i.e., Cl-class ¢) and node j (i.e., CI-
class j) can directly indicate the probability of the edge e;;.
Nevertheless, different from the deterministic embeddings,
the distance between two probability distributions is more
challenging to compute compared to the Euclidean distance
or cosine similarity used to measure the distance between
deterministic embeddings. One potential approach involves
directly utilizing the divergence value (e.g., KL-divergence or
JS-divergence) to quantify the distance between distributions.
However, the divergence does not function as a measurement
of distance, as it does not adhere to all properties of distance
(e.g., the symmetry or the triangle inequality). Moreover,
when the distributions of two nodes do not or little overlap
(e.g., negative samples), JS divergence is constant in this case,
and the KL divergence becomes meaningless. Therefore, we
propose to utilize the Wasserstein distance [Vallender, 1974]
to achieve the above aims, quantifying the disparity between
the feature distributions:

Wij = dij + Tr(Z) 4+ Te(Z;) — 2 Te((Z:25)Y?), 5

where W;; = W(p(x;)||p(x;)) and d;j = ||p; — ps]]*. In
addition to leveraging the Wasserstein distance of feature prob-
ability distribution, we further propose to learn the higher-
order proximities in graph data. Specifically, we propose to

use the higher-order transition probabilities A = Zle Al
where A denotes the adjacency matrix, and k represents the
hyperparameter used to regulate the maximum order of the
higher-order transition probabilities. A offers a purely struc-
tural approach to understanding the probability of linking.
When combined with a decreasing function of the Wasserstein
distance W(p(x;||x;)) (where a smaller Wasserstein distance
indicates a higher feature correlation), it constitutes the func-
tion of the probability parameter:

¢ij = a-Aij + (1 —a) - aW(p(aillz;))),  (6)

where « represents the weight coefficient used to control the
balance between feature distance and topology proximity, and
o(x) = exp(—) is the activation function. Note that the
higher-order transition probability A can be computed dur-
ing the preprocessing of the dataset and does not need to be
calculated at every iteration in the training process, thus not
increasing the computational complexity. For further details,
please refer to the experimental results of training time in
Appendix H.2.

The final step to obtain the probabilistic topology P;; is
to make it differentiable w.r.z. Bernoulli(¢;;), which is truth-
fully a binary specific case of categorical distribution. In this
paper, we adopt the Gumbel-softmax [Jang et al., 2017] to
estimate the non-differentiable probabilistic topology from

the Bernoulli distribution. Please refer to Appendix C.2 for a
detailed derivation. The final formulation of the probabilistic

topology is:
bij

o
P,; = Sigmoid | (1 log — 2 7
T (T P

where €;; ~ Uniform(0, 1) and 7 represents the temperature.
We filter out edges with smaller values. We use two encoders
(i.e., mean encoder and variance encoder) to obtain the dis-
tribution of embedding py(z; | X, A) = N(f1;, 6;), which is
based on the learned probabilistic topology. We next design
a distribution perturbation mechanism to create augmented
views of the embedding, rather than randomly augmenting the
input data. More details can be found in Appendix E.

3.3 ProbNCE Loss

As for the objective functions, we design two different ver-
sions, discrete ProbNCE and continuous ProobNCE.

Discrete ProbNCE (ProbNCE-D). One can easily obtain
two deterministic embeddings from the original embeddings
po(zi | X, A) without introducing distribution perturbation.
Then, reparameterization tricks [Kipf and Welling, 2016] can
be used to generate the positive and negative samples. Then we
can use the original InfoNCE loss in Eq.(1) as the objectives.
Continuous ProbNCE (ProbNCE-C). Beyond the discrete
ProbNCE, we further propose the continuous ProbNCE func-
tion. Since the cosine similarity in the original InfoNCE is
used to measure the distance between deterministic represen-
tations, we can use the Wasserstein distance to measure the
difference between distributions, similar to Eq.(5) used in
probabilistic message-passing and formulate it as follows:

F(p}[lpy)
pllpy) 4+ > Flpillpy) + >0 F@oillpy)’
k#i k#i
®)

1

Ei:—log}_(

where 7(-[| -) = exp(D(- || -)/72), D(-[[-) =
and p¥ = pp(z¥|x;, A) for simplicity.

Optimization with Negative Distribution Estimation. We
can reformulate the InfoNCE loss as mathematical expecta-

tions:
f(uiwi)
flug,vi)+n E [f(uiaUk)]"i‘n'kﬂi[f(uiyuk)]7

ki

&)
where 7 = n — 1 in this paper, denoting the ratio of negative
samples to the positive (i.e., 21 : 1). Then we can estimate the
exceptions using the probability distribution of all negatives.

po(2 " | X, A) = N(E (ju + €/"), E (6 +€2/)),
k#i k#i
(10)

L;=—log

where pg(2/"°%"/" | X, A) are the estimated negative distribu-
tions of target node 7. Then the loss is formed as:

F(pi[lpy)
Pl pf)+n - Fi |l pi") +n - F(py IIP?’(“l)l’)

£i:—10gF(

m

where p"" = pg(z;"“"" | X, A) for simplicity. Please refer to

the Appendix B.2 for the complexity analysis.
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Methods Input Cora CiteSeer PubMed Photo CS Physics
Supervised GCN [Kipf and Welling, 2017]  X,A)Y  82.5+04 71.2+03 79.2+03 924402 93.0+0.3 95.7+0.2
Supervised GAT [Velickovié et al., 2018] X,AY 83.0+0.7 725407 79.04£03 92.6+04 92.3+£02 95.540.2
UaGGP [Liu et al., 2020] X,AY 82.7 70.7 76.7 - - -
Raw Features X 479404 493402 69.1£03  78.54+0.0 90.440.0 93.6+0.0
Linear CCA X 589+1.5 275413 758404 86.9+0.7 93.1£02  95.0+0.2
DeepWalk [Perozzi et al., 2014] A 70.7+£0.6 514405 743409 89.4+0.1 84.6+02 91.840.2
VGAE [Kipf and Welling, 2016] XA 715404  65.8404 72.1405 91.6+£0.1 90.0+0.7 94.9+0.1
DGI [Velickovic et al., 2019] XA 82.2+0.6 712405 84.04£03 91.6+02 91.740.1 94.4+0.2
GRACE [Zhu et al., 2020] XA 81.5£0.3 71.6+02 80.5+03 922402 92.840.1 95.0+0.1
InfoGCL [Xu et al., 2021] XA 83.5+0.3 73.5+04 79.1£0.2 - - -
MVGRL [Hassani and Khasahmadi, 2020] XA 83.1+0.1  73.3+03  80.24+0.1 91.7+0.1  92.34+0.1  95.3+£0.1
BGRL [Thakoor et al., 2021] X,A 81.7+05 72.1+05 80.24+04  92.6+03  93.0+£0.2 -
CCA-SSG [Zhang et al., 2021] X,A 83.6+03 72.7404 80.94+02 93.240.1 93.14£02  95.340.1
BGCL [Hasanzadeh et al., 2021] XA 83.840.3  72.7+03 - 92.5+40.2 - -
SpCo [Zhang et al., 2023] XA 82.3+04 70.94+0.2 81.3£04 - - -
GRADE [Wang et al., 2022] XA 83.3+0.5 682406 81.540.5 92.6+03 93.240.3 -
GraphACL [Xiao e al., 2023] XA 84.2+0.3 73.6+0.2 82.240.1  93.3+0.1 - -
OS-GCL (Ours) X, A 84.7+0.5 74.1+0.6 84.3+0.2 92.8+03 93.4+04 95.8+0.1

Table 1: Test accuracy (%=standard deviation) of node classification task.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate OS-GCL! on seven node classifica-
tion benchmarks: (1) Citation networks [Kipf and Welling,
2017]: Cora, CiteSeer, and PubMed. (2) Co-purchase net-
works [Shchur ef al., 2018]: Amazon Photo. (3) Co-author
networks [Shchur et al., 2018]: Coauthor CS and Coauthor
Physics. (4) Large dataset [Hu ef al., 2020]: ogbn-arXiv.

Baselines. We evaluate OS-GCL in comparison with the
following baselines: GCN [Kipf and Welling, 20171,
GAT [Veli¢kovic et al., 2018], UaGGP [Liu et al., 2020], Deep-
Walk [Perozzi et al., 2014], VGAE [Kipf and Welling, 2016],
DGI [Velickovic et al., 20191, GRACE [Zhu et al., 2020], In-
foGCL [Xu et al., 2021], MVGRL [Hassani and Khasahmadi,
2020], BGRL [Thakoor er al., 2021], SpCo [Zhang et al.,
2023], CCA-SSG [Zhang et al., 2021], BGCL [Hasanzadeh et
al., 2021], GRADE [Wang et al., 2022], and GraphACL [Xiao
et al., 2023]. Details are listed in Appendix F.

4.2 Main Results

From Table 1, it is evident that OS-GCL outperforms the cur-
rent state-of-the-art graph representation learning and graph
contrastive learning. Compared to GRACE, which could
be considered the foundation of our approach, the enhance-
ment reaches up to 3.8%. In addition, when compared to
the baselines employing robust data augmentation methods
(e.g., GRADE), OS-GCL contains 2.1% improvements on
average which are contributed to the incorporation of dis-
tribution estimation techniques, including the Gaussian and
Bernoulli distributions, as well as distribution perturbation, all
achieved without the necessity of random augmentations. In

'The code and appendix are available at https:/github.com/
RingBDStack/OS-GCL.

comparison to the baselines that also enhance the loss function
(e.g., CCA-SSG), OS-GCL continues to demonstrate superior
performance, up to 3.4% improvement. Please refer to the ab-
lation study in the following section for a more comprehensive
analysis of each main component of OS-GCL. Furthermore,
OS-GCL outperforms methods that focus on distribution esti-
mation (e.g., BGCL) with an improvement up to 1.4%. This
indicates that the proposed probabilistic message-passing and
ProbNCE loss offer greater benefits to performance.

Large-Scale Dataset. We also evaluate OS-GCL on one
large-scale graph dataset, ogbn-arXiv [Hu et al., 2020]. The
proposed OS-GCL still achieves competitive performance on
both the validation and test sets, showing the scalability of
OS-GCL. Please refer to Appendix H.1 for more results.

4.3 Ablation Study

Effect of Probability Estimation. From Table 2, it is no-
ticed that the performance decreases without probability esti-
mation, which reflects that the probability learning of graph
data can help GCL from its one-shot learning essence. Specif-
ically, when removing feature probability estimations, the
performance slightly decreases because this variant still suf-
fers from the limited samples for each Cl-class in the one-shot
learning essence of GCL. Similarly, the topology probability
estimation improves the effectiveness due to capturing the
possibilities of node interactions.

Effect of Probabilistic Message-Passing. It is demonstrated
that the proposed probabilistic message-passing is crucial to
the performance of OS-GCL from Table 2. Note that the
impact of topology proximity is very severe (even less than
GRACE) since the structure information is important to the
graph. Furthermore, the performance drops 2.4% after remov-
ing the higher order, and the distribution perturbation on the
embedding is more suitable for the proposed OS-GCL frame-
work than the random augmentation.
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Variants Cora CiteSeer PubMed Photo CS Physics

OS-GCL (Ours) 84.7+£0.5 74.1+0.6 84.3£0.2 92.8+0.3 93.4+04 95.8+0.1
w/o Feature probability estimation 84.0+0.2 724403 829+0.1 92.3+£05 92.9+02 95.5+0.1
w/o Topology probability estimation 83.2+04 71.2+0.6 83.24+02 92.3+0.3 93.0£0.1 95.440.2
w/o probability estimation (Both) 81.9+04 712405 80.6+04 92.2+0.2 92.9£0.0 95.340.1
w/o Feature in Probabilistic Message-Passing 83.0£0.5 72.6+05 83.2+0.1 91.9+04 93.0£0.1 95.4£0.2
w/o Topology in Probabilistic Message-Passing 77.54£0.5 60.5+£09 77.2+0.2 88.4+04 90.6+02 95.3+0.1
w/o Higher Order in Probabilistic Message-Passing  83.840.9 72.5+0.5 82.0£0.1 92.44+02 929402 95.610.1
w/o distribution perturbation 81.9£0.5 72.240.5 812402 91.5£04 92.5£0.2 95.3£0.2
repl. KL Divergence 84.4+0.1 73.2+0.2 83.1+03 90.8+£04 92.940.2 95.440.1
repl. JS Divergence 83.1£0.1 729403 84.0+£02 90.1£0.2 92.8+£0.3 95.3£0.3
w/o ProbNCE-C 83.3£0.6 72.24+0.5 83.7+£0.1 922403 92.8£0.1 95.3%0.1
w/o Wassertein Distance in ProbNCE-C 83.1£0.7 72.1+0.8 83.8+£03 92.1£04 92.7£0.2 95.440.2
w/o Negative Estimation in ProbNCE-C 84.1+0.5 71.5+£0.8 82.44+02 91.8+£0.3 929402 95.240.2

Table 2: Test accuracy (%=standard deviation) of ablation study of OS-GCL.
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Figure 5: Sensitivity of the trade-off weight a.
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Figure 6: Sensitivity of the number of orders k.

Effect of ProbNCE. In OS-GCL, we design three types of
ProbNCE loss functions. Among them, the continuous version
with negative estimation beats the others. This suggests that
sampling a deterministic one from the probabilistic embedding
is not helpful and directly contrasting the distance contains
high efficacy. Furthermore, without the negative estimation,
the performance also decreases because contrasting a large
number of negative distributions may cause the opposite effect
(e.g., model confusion). In addition, negative estimation also
improves the efficiency of the model.

4.4 Hyperparameter Sensitivity

Feature-Topology Trade-Off Weight a. The proposed
probabilistic message-passing is controlled by the feature-
topology trade-off hyperparameter v in Eq.(6). From Figure 5,
we found that only feature distance (i.e., & = 0) or only
topology proximity (i.e., « = 1) cannot achieve the best per-
formance. Furthermore, with less topology information (i.e., a
small value of «), the efficacy drops severely, even worse than
GRACE, demonstrating the importance of structural informa-
tion for graph probability estimation.

Figure 7: Runtime analysis of OS-GCL.

Number of Orders k. In Figure 6, it is noticed that a proper
large value of k (3 ~ 5 practically) is beneficial to the perfor-
mance. That is, only the initial structure is not enough to learn
the probability distribution of topology, yet a larger number of
k may damage the effectiveness due to the over-smoothing.

4.5 Training Time Analysis

To investigate the runtime of OS-GCL, we provide the whole
time cost of OS-GCL in Figure 7. We have the following
observations: OS-GCL contains the competitive time cost,
even compared to the vanilla GRACE. The proposed distribu-
tion perturbation in message-passing and negative estimation
in ProbNCE loss makes a large contribution to the time cost
reduction. The distribution perturbation avoids the double
forward computational cost of GNNs. In addition, negative
estimation in ProbNCE reduces the computation of negative
scores. We evaluate the time cost of .4 in Appendix H.2 which
is appropriate compared to the whole training.

5 Conclusion

In this paper, we point out a fundamental nature of graph con-
trastive learning that GCL is essentially a one-shot learner and
thus faces the limited self-supervised signal issue. We further
propose a one-shot learning in graph contrastive learning (OS-
GCL) leveraging the probability distribution estimation, prob-
abilistic message passing, and ProbNCE loss. OS-GCL lever-
ages the Gaussian distribution and Bernoulli distribution to
learn the probability of feature and topology. The experimental
results demonstrate the superior efficacy of OS-GCL.
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