Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Cross-modal Collaborative Representation Learning for Text-to-Image Person
Retrieval

Shuanglin Yan'!, Jun Liu?

, Neng Dong', Liyan Zhang>*

and Jinhui Tang'

'Nanjing University of Science and Technology
2Lancaster University
3Nanjing University of Aeronautics and Astronautics
{shuanglinyan, neng.dong, jinhuitang } @njust.edu.cn, j.liu81 @Ilancaster.ac.uk, zhangliyan @nuaa.edu.cn

Abstract

Text-to-image person retrieval (TIPR) aims to find
images of the same identity that match a given
text description. Current TIPR methods mainly
focus on mining the association between images
and texts, ignoring their potential complementar-
ity. Besides, existing matching losses treat all pos-
itive pairs from the same identity equally, lead-
ing to noisy correspondences. In this paper, we
propose CoRL: a cross-modal Collaborative Repre-
sentation Learning framework designed to improve
TIPR by effectively leveraging the complementar-
ity between modalities. The text typically contains
identity details with less noise, which helps distin-
guish visually similar pedestrians. This inspires us
to integrate it into the corresponding image to em-
phasize identity-related and modality-shared visual
information. However, corresponding text for each
image is not always available, especially during in-
ference. Accordingly, we introduce a Virtual-text
Embedding Synthesizer that generates high-quality
virtual-text features for cross-modal collaboration,
eliminating the need for actual texts. We then de-
sign a Cross-Modal Collaboration learning process,
incorporating a Cross-modal Relation Consistency
loss to promote interaction and fusion between im-
age and virtual-text features for mutual enhance-
ment. Additionally, an Identity-bounded Matching
loss is proposed to handle different types of image-
text pairs distinctly, leading to more accurate cross-
modal correspondences. Extensive experiments on
multiple benchmarks demonstrate the superiority
of CoRL over existing TIPR methods.

1 Introduction

Person re-identification (RelD) aims to retrieve a person-
of-interest across different camera networks. RelD mod-
els [Gong et al., 2022; Li et al., 2023b; Li et al., 2019a]
trained on extensive labeled cross-camera image pairs have
shown impressive retrieval capabilities. However, the close-
set assumption of paired cross-camera images severely limits
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Figure 1: (1) Examples of different types of image-text pairs.

Identity-bounded Matching (IBM) loss is designed to handle dif-
ferent types of image-text pairs distinctly by establishing different
similarity boundaries, leading to more accurate cross-modal corre-
spondences. (2) We propose a cross-modal collaborative represen-
tation learning framework that leverages the inter-modality comple-
mentarity to enhance image features without relying on actual texts.

the practical deployment of these models. Recently, Text-to-
image person retrieval (TIPR) [Li et al., 2017] has been pro-
posed to address situations where images are missing under
certain cameras. As a realistic extension to ReID, TIPR as-
sumes that text descriptions are available for the missing im-
ages, allowing the retrieval of target person images via these
descriptions. The model must accurately discover identity in-
formation and establish correspondences between images and
texts, making TIPR a challenging and meaningful task.
Previous TIPR methods [Chen et al, 2022; Yan et
al., 2023d] have relied on single-modal pre-trained mod-
els [Dosovitskiy et al., 2021; Devlin et al., 2019] as back-
bone networks, leveraging their robust initial representations
to facilitate fine-tuning on training data. However, these
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single-modal pre-trained models tend to overemphasize in-
formation from one modality, leading to significant modal-
ity gaps and alignment challenges. With the rise of vision-
language pre-training (VLP), some works [Yan et al., 2023c;
Jiang and Ye, 2023] have adopted VLP models as backbone
networks, allowing TIPR to benefit from rich multi-modal in-
formation. Although promising results have been achieved,
existing methods mainly focus on modeling the association
between images and texts, often overlooking their potential
complementarity. In reality, the text primarily contains pedes-
trian identity details with less noise. Even when pedestrians
are visually similar, their text descriptions are often distinct,
making text information more discriminative and robust. This
leads us to explore whether inter-modality complementary in-
formation can benefit the TIPR task. Inspired by this, we pro-
pose integrating text information into images to emphasize
discriminative and modality-shared identity details, aiding in
distinguishing fine-grained differences and enhancing robust-
ness to background noise. However, this approach requires
access to the corresponding text for each image, which is not
always available, especially during inference.

Accordingly, we propose a cross-modal Collaborative
Representation Learning (CoRL) framework that leverages
the inter-modality complementary information to enhance
image features without relying on actual texts. Specifically,
we introduce a Virtual-text Embedding Synthesizer (VES),
which utilizes CLIP’s vision-language alignment capabilities
to produce high-quality virtual-text embeddings directly from
images, eliminating the need for actual texts. These generated
virtual-text embeddings can replace actual texts in subsequent
cross-modal collaboration. To ensure consistency, we align
the generated virtual-text embeddings with actual text embed-
dings at both the feature and semantic levels. To fully exploit
the complementarity between images and texts, we design a
dual-branch cross-modal collaboration learning process, in-
corporating a cross-modal relation consistency loss (CRCL).
The visual backbone branch focuses on generating image fea-
tures. The virtual-text branch uses VES to create virtual-text
embeddings from images, which are then fed into an Adapter
to produce virtual-text features adapted to the target domain.
The CRCL loss enforces that image and virtual-text features
maintain the same relationship with modality-specific proto-
types. This encourages information exchange and collabora-
tion between the two branches, allowing virtual textual infor-
mation to emphasize the discriminative and modality-shared
identity details in the images, thereby enhancing feature dis-
criminability and reducing modality gaps.

Cross-modal matching loss is essential for learning accu-
rate correspondences between modalities. However, existing
losses [Zhang and Lu, 2018; Ding et al., 2021; Jiang and Ye,
2023] treat all positive pairs from the same identity equally,
resulting in noisy correspondences. Typically, each batch
contains three types of image-text pairs: single-view strong
positive pairs, cross-view weak positive pairs, and negative
pairs, as illustrated in Figure 1. Due to significant appear-
ance differences under the same identity caused by view vari-
ations, cross-view weak positive pairs may suffer from noisy
correspondences. Consequently, the similarity between these
three types of image-text pairs should decrease progressively.

To address this, we propose an Identity-bounded Matching
(IBM) loss, which defines distinct similarity boundaries for
each category of image-text pairs, thereby leading to more
precise cross-modal correspondences.

Here are the main contributions of our paper: (1) We
propose a cross-modal collaborative representation learning
framework, which is the first to leverage the inter-modality
complementary information to improve the TIPR task with-
out relying on actual texts. (2) Identity-bounded match-
ing loss is proposed to learn precise cross-modal correspon-
dences. (3) Extensive experiments verify the effectiveness
of our method and achieve superior performance on multiple
benchmarks.

2 Related Work

2.1 Text-to-Image Person Retrieval

TIPR extends ReID [Gong er al., 2024; Dong et al., 2024a;
Dong et al., 2024b] to a more realistic scenario. The TIPR
model mainly contains two parts: the backbone network and
the feature alignment network [Tang et al., 2025]. A com-
mon practice is to use pre-trained backbones to leverage their
strong initial representation capabilities, facilitating effective
fine-tuning on TIPR data. Earlier methods [Shen et al., 2023;
Yan et al., 2023b] employed single-modal pre-trained models
such as ViT (pre-trained on ImageNet) and BERT. Recently,
the success of vision-language pre-trained models (VLPs) has
led to their widespread adoption in TIPR [Yan et al., 2023c;
Jiang and Ye, 2023], achieving promising results by exploit-
ing their rich multi-modal knowledge. Notably, some recent
works [Yang er al., 2023; Tan et al., 2024] have advanced
further by retraining VLPs specifically for TIPR using large-
scale datasets, yielding additional performance gains.

For feature alignment network, various strategies have
been proposed to align images and texts. Early meth-
ods [Li et al., 2017; Zhang and Lu, 2018] directly aligned
the global features of images and texts. To achieve fine-
grained correspondences, later methods [Chen er al., 2022;
Yan e al., 2023d] introduced feature aggregation schemes to
generate multiple local features, modeling fine-grained align-
ment through interaction or guidance between these local fea-
tures. However, this approach increases storage costs and in-
ference time, reducing practicality. To avoid explicitly gen-
erating local features, recent methods [Jiang and Ye, 2023;
Li er al,, 2023a] propose to inject fine-grained informa-
tion [Tang et al., 2023; Yan et al., 2023a] into global features
by designing auxiliary tasks (e.g., masked language/region
modeling) to model fine-grained matching.

Despite these advancements, existing methods mainly em-
phasize image-text associations but overlook their comple-
mentarity. In this study, we explore inter-modality comple-
mentarity to enhance image features with text information.
Besides, existing matching losses treat image-text pairs of the
same identity equally. Although RaSa [Bai et al., 2023] in-
corporates a discriminator to differentiate between positive
pairs, it still relies on conventional matching losses, with the
discriminator serving only as a regularizer. In contrast, our
IBM loss directly addresses this issue by establishing distinct
boundaries for different types of image-text pairs.
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Figure 2: Overview of our CoRL. In the first stage, we introduce a Virtual-text Embedding Synthesizer to generate a virtual-text embedding
from each image. The generated virtual-text embedding is then used to replace actual text in modeling multi-modal complementarity with
the image. In the second stage, we propose a dual-branch Cross-Modal Collaboration learning process equipped with a Cross-modal Relation
Consistency Loss, which encourages the exchange of information and mutual enhancement between image and virtual-text features.

2.2 Vision-Language Pre-Training

Vision-language pre-training involves training large-scale
models on vast collections of image-text pairs, demonstrat-
ing exceptional capabilities in semantic understanding [Shen
and Tang, 2024; Shen et al., 2025], multi-modal alignment,
and generalization. It has been widely used in diverse down-
stream tasks. The primary objective of pre-training is to
achieve a deep understanding of both image and text se-
mantics and their correspondences. Some studies [Li et al.,
2019b; Li et al., 2021] focus on generating multi-modal rep-
resentations by encoding interactions between images and
texts with tasks such as mask language modeling and im-
age captioning. However, these methods typically neces-
sitate pairwise interactions for all image-text pairs, leading
to inefficiency during training and inference, thus limiting
their practicality in large-scale applications. Consequently,
some studies [Radford et al., 2021; Yao et al., 2022] integrate
contrastive representation learning into Vision-language pre-
training. These methods encode images and texts separately
into a joint space and learn modality-aligned representations
by contrasting positive and negative pairs, such as the well-
known CLIP [Radford et al., 2021], trained on 400 million
image-text pairs. The strong multi-modal alignment capabil-
ity of CLIP prompts us to introduce it into the TIPR task.

3 Methods

This section presents our proposed CoRL framework, with an
overview in Figure 2 and details in the following subsections.

3.1 Problem Formulation

The TIPR dataset contains image-text pairs of persons with
multiple identities, where each identity has multiple images
collected from different cameras with their annotated text de-
scriptions. The goal is to accurately identify images that be-
long to the same identity as a given text description. This re-
quires the TIPR model to extract identity-discriminative rep-
resentations and accurately establish cross-modal correspon-
dences. To achieve this, we first use a pre-trained CLIP as

the backbone to provide high-quality initialization and facil-
itate fine-tuning on the TIPR dataset. Next, we propose a
cross-modal collaborative representation learning framework
that leverages inter-modality complementary information to
enhance image features. Additionally, we design an identity-
bounded matching loss to fully leverage identity information
and precisely establish cross-modal correspondences.

3.2 Cross-modal Collaborative Representation
Learning

Current TIPR methods mainly emphasize image-text asso-
ciations but overlook their complementarity. Texts offer
the following advantages over images: texts primarily con-
tain pedestrian identity details with less noise. Even when
pedestrians are visually similar, their text descriptions are
often distinct, making text information more discriminative
and robust. Complementing images with textual information
enhances fine-grained discrimination and reduces modality
gaps. However, this requires access to corresponding text for
each image, which is not always available, especially dur-
ing inference. In this paper, we tackle two key challenges:
eliminating the dependency on actual text and effectively uti-
lizing text information to enhance image representations. To
achieve this, we propose a two-stage cross-modal collabora-
tive representation learning strategy. In the first stage, we
develop a Virtual-text Embedding Synthesizer (VES) to gen-
erate virtual-text embeddings directly from each image, elim-
inating the need for actual paired text. In the second stage, we
implement a dual-branch cross-modal collaboration learning
process to integrate the virtual-text information into images,
thereby enhancing image features.

Virtual-text Embedding Synthesizer. To eliminate re-
liance on actual paired text, we propose a Virtual-text Em-
bedding Synthesizer (VES) that generates a virtual-text em-
bedding directly from each image, as illustrated in Figure 2.
CLIP, trained on vast amounts of image-text data, can gen-
erate modality-aligned image-text features. We utilize its
alignment capabilities to convert images into text embed-
dings. VES functions as a CLIP-based encoder-decoder
model. Specifically, an image I; is first processed by CLIP’s
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visual encoder F, to produce an image embedding z, ;.
This embedding is then transformed into virtual-text tokens
through a fully connected layer. Finally, CLIP’s textual en-
coder E; decodes these virtual-text tokens to generate the
virtual-text embedding 2; ;.

This generated virtual-text embedding Z; ; can serve as a
substitute for the actual text embedding to enhance its image
feature, given that the virtual-text and actual-text embeddings
are consistent. To ensure this consistency, we introduce an
alignment loss L2}, gn that aligns the generated virtual-text
embedding with the actual text embedding z; ; at both feature
and semantic levels, inheriting the advantages of the actual
text 7T;.
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where z; ; denotes the actual text embedding of text T;, gener-
ated by CLIP’s visual encoder. || - ||? denotes the Lo distance,

and 7, denotes the temperature factor. To facilitate effective
conversion between images and virtual-text embeddings, we
impose a correlation loss £5!, to ensure that valuable image
information is retained as much as possible throughout the
conversion process.
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where [; represents the identity label of I;/T;. The overall
objective of our VES is calculated as: L/ g = L5, +L55,-
VES enables the generation of virtual-text embedding that is
aligned with the actual text for each image, eliminating the
need for actual text.

Cross-modal Collaboration. With the virtual-text em-
bedding, we design a dual-branch cross-modal collaboration
learning process to integrate it with the corresponding im-
age, thereby enhancing the image feature. Specifically, for an
image-text pair (I;, T;), the visual backbone branch generates
the image feature v; of image [;. Simultaneously, the virtual-
text branch first produces a virtual-text embedding Z; ; from
image I; using VES, which is then processed by an Adapter
g(-) to yield a virtual-text feature #; adapted to the target do-
main. Additionally, the text feature ¢; for text 7; is generated
via the textual backbone. We optimize the Adapter by align-
ing the virtual-text feature ¢; with the text feature ¢; through
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Where s¢(-) means stop- gradlent operator, which ensures that
only the Adapter is updated. With the image feature v; and
the virtual-text feature fi, we introduce a cross-modal rela-
tion consistency loss (CRCL). This loss enforces that the im-
age and virtual-text features share the same relationship with
modality-specific prototypes, promoting the two branches to
exchange information and cooperate with each other. For
each batch B, we cluster the image and text features based
on identity labels to obtain visual and textual prototypes, p,
and p;. We then compute the cosine similarity between the
image feature v; and the visual prototypes p, to determine
their relationship r7. Similarly, we calculate the relationship
7! between the virtual-text feature #; and these textual proto-
types p;. Thus, the CRCL is formulated as:

‘chCL 2|B| Z Dkl f||r )+Dkl(7av”r )) (7)

where Dy; is the Kullback-Leibler divergence. Mutual
knowledge distillation on instance-to-prototype relations be-
tween the visual embedding v; and virtual-text embedding 7;
allows them to exchange information and benefit from one an-
other. Incorporating virtual-text information emphasizes the
discriminative and modality-shared identity details in the im-
age I;, boosting the discriminability and robustness of the im-
age feature v;, making it easier to differentiate visually sim-
ilar pedestrians while effectively reducing the modality gap
between the image /; and the text 7T;.

3.3 Identity-bounded Matching

When a batch contains multiple image-text pairs of the same
identity, the model must perform pairwise matching between
all images and texts in the batch. Due to view variations,
significant differences among samples of the same identity
can lead to noisy matching of cross-view image-text pairs of
the same identity. Specifically, within the same identity, each
image and its corresponding text form a single-view strong
positive pair, while image-text pairs across different views
are considered as cross-view weak positive pairs. Image-
text pairs with different identities are categorized as negative
pairs. Existing matching losses often treat strong and weak
positive pairs equally, overlooking noisy correspondences of
weak positive pairs. To address the issue, we propose an
identity-bounded matching (IBM) loss to establish more pre-
cise cross-modal correspondences.

To fully leverage identity information, we use a PK sam-
pling strategy to construct batch samples. For each batch,
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we randomly sample K identities and then randomly se-
lect P images for each identity, with each image annotated
with the corresponding text. Thus, each batch contains B
= PK images and their corresponding texts. This results in
PK strong positive pairs, K P(P — 1) weak positive pairs,
and P?K(K — 1) negative pairs. We compute the cosine
similarity for these image-text pairs, denoted as {s;”}I%,
{swPy PP Jang {s?}fle(K_l) respectively. To distin-
guish different image-text pairs, we propose an IBM loss that
enforces the condition: s°”>s"“?>s™. This can be expressed
equivalently as: s°P>q, s <, B<s"P<a. We further refor-
mulate this condition as follows:
(s°P — a)>0,—(s" — §)>0, (s“P — 8)>0, —(s*“P — a)>0
®)
where « and ( are the upper and lower bounds for s°7 and s™,
with a>f. We further implement IBM loss based on logistic
loss as follows:
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where 7,p,, Twp and 7, are the temperature factors. Besides,
we compute the cross entropy loss £;4 on image and text fea-
tures to classify them by identity. This loss forces the network
to focus on the identity information, enabling it to correctly
recognize pedestrians of the same identity while distinguish-
ing between those of different identities.

3.4 Optimization and Inference

The optimization of CoRL involves two stages. In the first
stage, we train a virtual-text embedding synthesizer, where
CLIP’s visual and textual encoders are frozen and only a fully
connected layer is optimized via £} ¢ to convert image em-
beddings to virtual-text tokens. We pre-extract and save fea-
tures from the dataset, allowing us to focus on optimizing this
layer, reducing computational cost. In the second stage, VES
is frozen, and the backbone network and Adapter are opti-
mized. The objective of the second stage is as follows:

52 52 52
L =Lipm + Lia + Logign + LERCL (10)

During inference, both visual and virtual-text features of
gallery images are extracted, and calculate their similarities

to the query text features. The final retrieval score is obtained
by summing these similarities without weighting.

4 Experiments

4.1 Experiment Settings

Datasets and Metrics: The evaluations are conducted on
three TIPR datasets. CUHK-PEDES [Li et al., 2017] has

40,206 images and 80,412 descriptions of 13,003 people.
Each image has 2 descriptions, averaging 23 words. The
dataset is split into 34,054 images for training, 3,078 for val-
idation, and 3,074 for testing. ICFG-PEDES [Ding et al.,
2021] consists of 54,522 image-text pairs of 4,102 persons,
with descriptions averaging 37 words. Training uses 34,674
pairs from 3,102 people, with the remaining 1,000 people re-
served for evaluation. RSTPReid [Zhu et al., 2021] includes
20,505 images of 4,101 people, each with 2 descriptions av-
eraging 23 words. Training includes 3,701 people, while val-
idation and testing include 200 people each. Performance is
evaluated using Rank-k accuracy (R@k, k=1, 5, 10).

Implementation Details: Images are resized to 384 x 128
and augmented with random horizontal flipping, cropping
with padding, and random erasing. The maximum length of
the text sequence is set to 77, and random masking is em-
ployed for text augmentation. We use CLIP-ViT-B/16 as the
backbone. Temperature factors are set to 7, = 0.02, 7, = 10,
Twp =9, and 7, = 40. Loss weight A; is 0.1, and the bound-
aries v and (3 in IBM loss are 0.6 and 0.4. Each mini-batch
comprises B = P x K images, , with P = 32 identities and
K = 4 images per identity. In the first stage, only a fully con-
nected layer is optimized for 60 epochs using a cosine learn-
ing rate schedule, starting at 1 x 10~%. In the second stage, we
fine-tune the visual/textual backbones with an initial learning
rate of 1 x 10~° and the Adapter with 5 x 107>, also using a
cosine schedule and trained for 60 epochs. Both stages adopt
the Adam optimizer with a linear warm-up over the first 5
epochs. Experiments are implemented using the PyTorch li-
brary on a single NVIDIA RTX 3090 (24GB) GPU.

4.2 Comparisons with State-of-the-art Models

Table 1 compares our CoRL with current state-of-the-art
methods across three TIPR benchmarks: CUHK-PEDES,
ICFG-PEDES, and RSTPReid. Our CoRL achieves lead-
ing performance on these benchmarks, underscoring its ef-
fectiveness and advantages. On the CUHK-PEDES dataset,
CoRL achieves an R@1 accuracy of 78.15%, surpassing the
second-best AUL method by 0.92%. For the ICFG-PEDES
dataset, our CoRL sets a new state-of-the-art with R@1 and
R@5 accuracies of 69.50% and 85.63%, respectively. On
the RSTPReid dataset, CoRL delivers impressive results with
69.10%, 87.30%, and 92.90% on R@1, R@5, and R@10.
These results highlight the robustness and versatility of CoRL
across different scenarios. The superior performance of our
method is attributed to its innovative approach in leveraging
cross-modal complementarity and establishing precise cross-
modal correspondences. CoRL effectively integrates tex-
tual information into images to enhance their discriminability
and bridge the modality gap, and employs identity-bounded
matching loss to address noisy correspondences among dif-
ferent types of image-text pairs.

4.3 Ablation Studies and Analysis

Effectiveness of different components: We conduct an ab-
lation study to assess the effectiveness of various compo-
nents on CUHK-PEDES in Table 2. 0# represents the result
of Baseline, which involves only the backbone network and
is trained using SDM and cross-entropy losses. 5# denotes
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Methods Reference CUHK-PEDES ICFG-PEDES RSTPReid
R@l R@5 R@10 | R@l R@5 R@I0 | R@l R@5 R@I10
CFine [Yan e al., 2023c] TIP°23 69.57 8593 91.15 | 60.83 76.55 8242 | 50.55 7250 81.60
VGSG [He et al., 2023] TIP’23 71.38 86.75 91.86 | 63.05 7843 84.36 - - -
IRRA [Jiang and Ye, 2023] CVPR’23 | 7338 8993 9371 | 63.46 80.25 85.82 | 60.20 8130 88.20
TCB [Zang er al., 2023] MM’23 7445 90.07 94.66 | 61.60 7633 8190 | 65.80 82.85 88.20
DCEL [Li er al., 2023a] MM’23 75.02 90.89 9452 | 64.88 81.34 86.72 | 61.35 8395 9045
RaSa [Bai er al., 2023] 1JCAI'23 76.51 90.29 9425 | 6528 8040 85.12 | 66.90 86.50 91.35
CFAM [Zuo et al., 2024] CVPR’24 | 72.87 88.61 9287 | 62.17 79.57 8532 | 5940 8135 88.50
MACEF [Sun et al., 2024] 1ICV’24 73.33 8857 93.02 | 6295 7993 85.04 - - -
TBPS-CLIP [Cao et al., 2024] AAAT24 | 7354 88.19 9235 | 65.05 8034 8547 | 6195 83.55 88.75
SAMC [Lu et al., 2024] TIFS 24 74.03 89.18 9331 | 63.68 79.69 8521 | 60.80 82.35 89.00
UMSA [Zhao ef al., 2024b] AAAT24 | 7425 89.83 9358 | 65.62 80.54 85.83 | 63.40 83.30 90.30
LSPM [Li et al., 2024a] TMM’24 7438 89.51 9342 | 6440 79.96 8541 - - -
IRLT [Liu ef al., 2024] AAAT24 | 7446 90.19 94.01 | 64.72 8135 8631 | 6149 8226 89.23
DCGA [Zhao et al., 2024a] ICASSP’24 | 7454 90.22 95.10 | 66.56 85.04 8698 | 60.49 80.60 89.32
MDRL [Yang er al., 2024] AAAT24 | 7456 9256 96.30 | 65.88 85.25 90.38 - - -
Propot [Yan et al., 2024] MM’24 74.89 8990 94.17 | 65.12 81.57 8697 | 61.87 83.63 89.70
DP [Song et al., 2024] AAAT24 | 7566 90.59 94.07 | 65.61 81.73 86.95 | 6248 83.77 89.93
RDE [Qin er al., 2024] CVPR’24 | 7594 90.63 94.04 | 67.60 8247 87.17 | 65.00 8475 90.60
FSRL [Wang et al., 2024] ICMR’24 | 74.86 89.97 94.14 | 6493 80.71 86.19 | 60.65 83.05 89.60
APTM [Yang et al., 2023] MM’23 76.17 89.47 93,57 | 68.22 82.87 87.50 | 66.45 85.60 90.60
MLLM [Tan et al., 2024] CVPR’24 | 76.82 91.16 9446 | 67.05 82.16 87.33 | 6850 &7.15 92.10
AUL [Li et al., 2024b] AAAT24 | 7723 9043 9441 | 69.16 8332 8837 | 71.65 87.55 92.05
CoRL (Ours) | ICAr25 [7815 9216 9557 | 69.50 85.63 88.86 [ 69.10 87.30 92.90

Table 1: Performance comparison with state-of-the-art methods on three TIPR benchmarks. The first part lists non-pretrained methods, while
the following section presents pretrained methods. R@1, R@5, and R@10 are listed.

No. | IBM VES CMC Pre | R@l R@5 R@I10
O# 70.63  87.67 92.27
1# v 74.66 89.46  93.47
2# v 73.58 89.08 93.29
3# v v 74.24  89.70  93.54
4# v v v 7548 9045 94.22
S# v | 7502 9021 9392
6# v v | 7732 9176 9481
TH# v v | 7589 9033 94.04
8# v v v | 76.41 90.77 9451
O# v v v v | 7815 9216  95.57

Table 2: Effectiveness of different components on CUHK-PEDES.

Baseline with additional pre-training (Pre) on LUPerson-
MLLM [Tan et al., 2024]. The SDM [Jiang and Ye, 2023]
loss treats image-text pairs of the same identity equally, lead-
ing to noisy correspondences and poor performance. Com-
paring 1# (6#) and 0# (5#), our IBM loss creates distinct
boundaries for differentiating various categories of image-
text pairs and establishes more precise cross-modal corre-
spondences, achieving a 4.03% (2.30%) R@1 improvement.
Comparing 2# (7#) and O# (5#), VES generates a virtual-text
feature for each image to enhance its image feature, result-
ing in a 2.95% (0.87%) R@1 improvement. Besides, CMC
facilitates information exchange between image and virtual-
text features, allowing them to benefit from each other and
resulting in an additional 0.66% (0.52%) improvement. The
combination of these components achieves an R@1 accuracy
of 75.48% (78.15%), surpassing all methods listed in Table 1
across various settings. These results underscore the positive

sl £l 3 T Rel R@5 R@I0
v 73.31 8931 93.29
v 73.18 89.39  93.58

v v 7345 8946  93.50
v v | 7378 8943 93.44
v v | 73.64 8938 93.36

v v v | 7424 8970  93.54

Table 3: Effectiveness of different losses in VES on CUHK-PEDES.

contributions of each component to the overall performance.

Effectiveness of different losses in VES. Table 3 summa-
rizes the impact of different losses in VES, leading to the fol-
lowing conclusions: (1) £5!,, and L5, jointly align virtual
and actual text embeddings at both feature and semantic lev-
els, which is crucial for ensuring that VES generates virtual-
text embeddings aligned with actual text. (2) The introduc-
tion of L5l evidently improves performance, highlighting
its importance in preserving information during conversion.
(3) combining all losses effectively ensures the generation of

high-quality virtual-text embeddings.

Impact of boundaries o and 3 in IBM: Figure 3 illus-
trates the effects of « and S. « defines the boundary between
strong and weak positive pairs. A large o may cause the
model to ignore weak positives, while a small o may dis-
rupt the cross-view matching for weak positive pairs. We
set « = 0.6. [ denotes the boundary between weak posi-
tive and negative pairs. An improper 3 can introduce noisy
correspondences—too large makes the model overly tolerant
to negatives, while too small blurs the distinction with weak
positives. We set 5 = 0.4 to balance these trade-offs.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

75 75
74.5 74.5
73.5 73.5

73

R@1 (%)
R@1 (%)

73
72.5 72.5

Query

There is a male and female
walking down path interlocking
arms. Both wearing foot wear
blue in color while the female is
dressed in white dress, male is
dressed in grey shirt and shorts.

Top-10 Retrieval Results

72 72
0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 03 04 0.5 0.6

Figure 3: Effects of boundaries « (left) and 5 (right) of IBM loss on
CUHK-PEDES.

Method R@l R@5 R@I10
SDM 70.63 87.67 92.27
IBM* 73.03 8775 92.66

IBM (Ours) | 74.66 89.46  93.47

Table 4: Effectiveness of IBM on CUHK-PEDES.

Effectiveness of IBM. As shown in Table 4, the SDM loss
treats strong and weak positive pairs equally, and its perfor-
mance heavily relies on the number of negative pairs within
a batch. When using the PK sampling strategy to construct
batches, performance deteriorates significantly due to the re-
duced number of negative pairs. We modified IBM by re-
moving the middle two lines of Equation 9 (IBM*) to treat
strong and weak positive pairs equally, which led to a notable
performance drop (-1.63%). This indicates the importance
of distinguishing between strong and weak positive pairs for
learning accurate cross-modal correspondence. Despite this
drop, IBM* still outperforms SDM significantly and is less
affected by the number of negative pairs. Our IBM loss of-
fers greater robustness for cross-modal retrieval tasks.

Computational Complexity: We compare the computa-
tional cost and inference time of CoRL with classic meth-
ods in Table 5. TIPCB and CFine build fine-grained corre-
spondences by learning local features, reducing retrieval ef-
ficiency due to pairwise similarity calculations. IRRA and
Propot enhance global features with auxiliary fine-grained
tasks, improving retrieval efficiency but increasing parame-
ters and storage. In contrast, CoRL avoids fine-grained tasks,
reducing parameters. The virtual-text feature in CoRL adds
minimal inference time, balancing accuracy and efficiency.

Qualitative Results: We qualitatively assess the effective-
ness of our CoRL in Figure 4, showcasing the Top-10 re-
trieved images for each query text using both Baseline and
CoRL. The comparison reveals that our CoRL outperforms
Baseline even in cases where Baseline fails, ensuring that im-

Method Parms FLOPs Time | R@1

Baseline 155.26  20.27 18.7s | 70.63

TIPCB [Chen et al.,2022] | 184.75 43.86 25.1s | 64.26
CFine [Yan et al., 2023c] 204.74  27.69 37.2s | 69.57
IRRA [Jiang and Ye, 2023] | 194.54  26.36 18.7s | 73.38
Propot [Yan et al., 2024] | 24591  37.35  18.7s | 74.89
CoRL (Ours) 155.66  37.60 20.8s | 78.15

Table 5: Computational complexity comparison with several state-
of-the-art methods on CUHK-PEDES.

This elderly gentleman has
white hair. He wears a short-
sleeved shirt of light-colored
plaid. His pants and shoes are
black. A black and white jacket
is held at his side by one hand.

The woman is wearing a white
vest over a grey and black dress
with pointed shoes and white
socks.

Small framed woman wearing
white top, white cardigan and
long grey skirt is hurrying
along.

Figure 4: Retrieval results of Baseline (the 1st row) and CoRL (the
2nd row) on CUHK-PEDES. The matched and mismatched person
images are marked with green and red rectangles, respectively.

ages with the same identity as the given query text are ranked
highly. This success is attributed to our method’s ability to
effectively exploit cross-modal complementarity to learn dis-
criminative and modality-shared feature representations, and
establish precise cross-modal correspondences.

5 Conclusion

In this paper, we propose leveraging multi-modal comple-
mentarity to improve the TIPR task. Specifically, we in-
troduce a virtual-text embedding synthesizer that generates
high-quality virtual-text embeddings aligned with actual text
from images. These virtual-text embeddings replace actual
texts, allowing us to explore multimodal complementarity
with images and eliminating the dependency on actual texts.
Meanwhile, we design a dual-branch cross-modal collabora-
tive learning process equipped with a cross-modal relation
consistency loss, which enforces the exchange of informa-
tion and mutual enhancement between image and virtual-text
features, resulting in more discriminative and robust image
features for retrieval. Additionally, we propose an identity-
bounded matching loss to distinguish between different types
of image-text pairs, establishing more accurate cross-modal
correspondences. The superior performance of CoRL across
multiple TIPR benchmarks underscores its effectiveness.
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