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Abstract
This paper addresses the role engineering problem
for RESTful applications and proposes a role engi-
neering method based on multi-head attention and
Retrieval Augmented Generation called MA-RAG.
The method first performs fine-grained control flow
analysis on the system source code to extract per-
mission information of API handlers. Then, using
basic blocks as units, it employs pre-trained code
models to convert the source code into semantic
vectors, which are stored in the retrieval augmented
generation model. On this basis, a call chain struc-
ture tree is constructed with permissions as the cen-
ter, utilizing the multi-head attention mechanism to
aggregate semantic information of different code
granularities from bottom to top, with each atten-
tion head corresponding to a role engineering ob-
jective. Finally, the root vectors of each permission
tree are subjected to self-supervised clustering to
adaptively determine the number of roles and per-
form division. We evaluated MA-RAG on 284 real-
world software systems, and the results show that
compared with other methods, MA-RAG can sig-
nificantly save time overhead, reduce the number
of generated roles, lower the role permission over-
lap rate, and improve the interpretability score.

1 Introduction
With the rapid development and wide application of Web ser-
vices, how to ensure their security has become an urgent prob-
lem to be solved. Representational State Transfer (REST)
[Fielding, 2000] is the mainstream paradigm for Web service
interface design, and systems that follow REST principles are
also known as RESTful systems. In order to protect REST-
ful interfaces from unauthorized access, Role-Based Access
Control (RBAC) [Sandhu, 1998] is widely adopted. RBAC
introduces the intermediate layer of “roles”, associates per-
missions with roles, and then assigns roles to users. This
indirect authorization model significantly reduces the com-
plexity of permission management, especially when the sys-
tem involves hundreds or thousands of permissions and users

∗Corresponding author

[Coyne, 1996]. Role Engineering is the process of reason-
ably dividing user roles and assigning permissions for RBAC
systems, and is the key to RBAC implementation.

Traditional role engineering methods can be roughly di-
vided into top-down [Coyne, 1996] and bottom-up [Zhang et
al., 2007]. The former focuses on analyzing organizational
structures and business processes, defining job responsibili-
ties first, and then extracting roles and granting permissions.
This type of method is good at depicting role semantics but
often requires a lot of manual intervention and is difficult
to automate. The latter uses existing user-permission allo-
cation information in the system and employs data mining
techniques to infer potential roles. This type of method can
achieve a high degree of automation but largely depends on
the quality of existing permission data and is not suitable for
newly developed systems.

Recently, researchers have proposed some new role engi-
neering techniques, trying to make up for the shortcomings
of traditional methods. For example, Rashid et al. pro-
posed a secure cryptographic role engineering framework
[Rashid et al., 2021], Pilipchuk et al. attempted to automat-
ically extract access control requirements from BPMN mod-
els [Pilipchuk et al., 2021], and Chen et al. designed a hier-
archical assisted exploration model [Chen et al., 2022]. In
addition, Xia et al. introduced a spectral clustering-based
method [Xia et al., 2023], Abolfathi et al. proposed a scal-
able optimization mechanism [Abolfathi et al., 2021], and
Anderer et al. explored evolutionary algorithms and inter-
active paradigms [Anderer et al., 2022; Anderer et al., 2023].
Although these works optimize the role engineering process
from different perspectives, some common problems still ex-
ist: over-reliance on expert knowledge, historical permission
data, or additional materials; neglect of semantic information
inherent in the system’s code assets; lack of mechanisms to
balance different role engineering goals; sensitivity to man-
ual experience and parameter selection. So, in the absence
of sufficient manual user-permission historical data, how to
make the most of the inherent code assets of the Web system
to achieve fully automated role engineering? How to ensure
the quality and stability of role division in large-scale multi-
lingual projects? This is an urgent problem to be solved.

This paper proposes a fully automated role engineering
method based on multi-head attention and Retrieval Aug-
mented Generation—MA-RAG. It first performs fine-grained
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control flow analysis on the system source code to extract
permission information of API interfaces. Then, taking ba-
sic blocks as units, it uses pre-trained code models to convert
source code into semantic vectors and store them in the Re-
trieval Augmented Generation (RAG) model. On this basis,
MA-RAG constructs a call chain structure tree with permis-
sions as the center, and uses a multi-head attention mech-
anism to aggregate semantic information of different code
granularities from the bottom up, while optimizing for role
engineering goals such as functional completeness and least
privilege. Finally, it adopts self-supervised clustering and
contrastive learning to adaptively determine the optimal num-
ber of roles and perform division.

We conducted extensive experiments on 284 real-world
software systems containing tens of thousands to millions
of lines of code. The results show that compared with the
baseline methods, MA-RAG can reduce the number of roles
and permission overlap rate by up to 42.8% and 26.5% re-
spectively, improving system security. At the same time, it
also shows good interpretability and obtains an average de-
veloper interpretability score of 4.24 points (out of 5 points).
To the best of our knowledge, MA-RAG is the first fully au-
tomated role engineering method that combines fine-grained
code analysis, knowledge-enhanced learning, and unsuper-
vised role mining. Compared with existing works, its innova-
tions are:

• It introduces fine-grained control flow analysis and code
semantic representation learning, fully utilizes the inher-
ent code assets of software systems, and mines role se-
mantics from API interfaces from the bottom up, mini-
mizing the dependence on manual participation and do-
main knowledge.

• It designs a permission-centric multi-head attention ag-
gregation mechanism to fuse features of different tech-
nical perspectives and code granularities, while optimiz-
ing for multiple role engineering goals, achieving high-
quality and interpretable role division.

• It adopts a self-supervised clustering and contrastive
learning paradigm to adaptively determine the optimal
number of roles, balancing the cohesion of permis-
sions within roles and the differences between roles.
This not only avoids the dependence on historical user-
permission data, but also greatly reduces the sensitivity
to manual experience and parameter tuning.

The rest of this paper is organized as follows. Section
2 reviews related work. Section 3 introduces the MA-RAG
method in detail. Section 4 presents the experimental results.
Section 5 discusses limitations. Section 6 summarizes the pa-
per and proposes future work directions.

2 Related Work
Role Engineering, also known as Role Mining, can be divided
into top-down and bottom-up approaches according to the
construction method of RBAC systems. Top-down role engi-
neering first analyzes the customized functional requirements
of enterprises or organizations, and then creates correspond-
ing roles and permission assignments. Epstein et al. [Epstein

and Sandhu, 2001] introduced a three-layer model of tasks,
work patterns, and work to facilitate role-permission map-
ping, but the added layers are difficult for users to understand.
Neumann et al. [Neumann and Strembeck, 2002] defined an
ordered set of permissions as a scenario, and user subjects
must have all permissions to execute a specific scenario. In
general, top-down role engineering methods originate from
specific business requirements and heavily rely on domain
expert knowledge. Although they can ensure the alignment
of roles with business, the time consumption and implemen-
tation difficulty of manual analysis cannot be underestimated
for large-scale systems with complex logic.

Bottom-up role engineering, on the other hand, utilizes
existing user-permission mappings in the system, such as
Access Control Lists (ACLs), to automatically or semi-
automatically convert them into RBAC roles [Kuhlmann et
al., 2003]. Optimization-based methods such as [Vaidya et
al., 2008; Vaidya et al., 2007] transform the role engineering
problem into a matrix decomposition problem, define the ba-
sic Role Mining Problem (RMP) and the δ-approx RMP that
allows a certain degree of redundancy, and prove that they
are both NP-hard. For RMP, Zhang et al. [Zhang et al., 2007]
proposed a graph optimization-based method, but it overly
focuses on minimizing the number of roles and ignores other
factors. Abolfathi et al. [Abolfathi et al., 2021] introduced
a highly scalable and optimal method to solve the role engi-
neering problem, but it is still limited to historical permission
data. Although these bottom-up methods can achieve a high
degree of automation, they largely depend on the quality of
existing user-permission data. For newly developed systems,
their applicability is greatly discounted due to the lack of suf-
ficient historical data.

In recent years, researchers have attempted to optimize the
role engineering process from different perspectives. Rashid
et al. [Rashid et al., 2021] proposed a cryptographic frame-
work for secure role engineering mechanisms, but it is only
applicable to single permission organizations. Anderer et
al. [Anderer et al., 2021] introduced a benchmark library
for role engineering problems, but it lacks validation on
real systems. Pilipchuk et al. [Pilipchuk et al., 2021] pro-
posed automatically extracting access control requirements
from BPMN models, but it assumes that relevant models
are readily available. Chen et al. [Chen et al., 2022] de-
signed a hierarchical assisted exploration model, but did not
consider the semantic information of code assets. Xia et
al. [Xia et al., 2023] introduced a spectral clustering-based
method, but lacked a balance between different role engi-
neering goals. Abolfathi et al. [Abolfathi et al., 2021]
proposed a scalable method, but did not fully utilize inher-
ent system assets. Blundo et al. [Blundo et al., 2023] de-
veloped heuristic methods for constrained role engineering,
but they are sensitive to parameter selection. Crampton et
al. [Crampton et al., 2022] introduced the generalized noisy
role engineering problem, but did not consider the inter-
pretability of roles. Anderer et al. [Anderer et al., 2022;
Anderer et al., 2023] proposed evolutionary algorithms, but
the acquisition cost of expert knowledge is high. In addition,
existing methods have applied role engineering to fields such
as sentiment analysis [Du et al., 2022] and smart contracts
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[Liu et al., 2022], but there is little research targeting REST-
ful systems.

In summary, existing role engineering techniques still have
the following shortcomings: (1) Top-down methods rely on
expert knowledge and additional materials, making them dif-
ficult to automate; (2) Bottom-up methods are limited to his-
torical permission data and are difficult to apply to new sys-
tems; (3) They ignore the semantic information contained in
code assets; (4) They lack mechanisms to balance different
role engineering goals; (5) They are overly sensitive to man-
ual experience and parameter selection. To address these is-
sues, this paper proposes an innovative MA-RAG method.
Unlike traditional top-down paradigms, it starts from API
interfaces, utilizes fine-grained control flow analysis and se-
mantic representation learning, and mines role semantics hid-
den in inherent code assets of the system from the bottom
up, maximizing automation. At the same time, it adopts a
permission-centric multi-head attention aggregation mecha-
nism to integrate features of different technical perspectives
and code granularities, and introduces self-supervised cluster-
ing and contrastive learning paradigms to adaptively balance
multiple goals such as functional completeness and least priv-
ilege, ultimately achieving high-quality and interpretable role
division.

3 Methodology
The security of management permissions in cloud computing
is crucial, and role engineering is required to satisfy the prin-
ciple of least privilege [Saltzer and Schroeder, 1975]. The
goals of role engineering include: (1) controlling the number
of roles; (2) reducing the impact on management tasks; (3)
minimizing the overlap of permissions between roles. These
goals are often contradictory, and balancing them is a major
challenge. This paper proposes a Multi-head Attention based
Retrieval Augmented Generation (MA-RAG) technique. As
shown in Figure 1, we first perform fine-grained control flow
analysis on the front-end source code and DOM of the Web
application to establish a complete mapping from web page
content to front-end UI controls and then to back-end API
calls. Then, we combine large language models to extract
RESTful API permission lists from the back-end routing code
and utilize code control flow analysis to map permissions to
the back-end implementation. On this basis, we convert the
front-end and back-end code into semantic vectors and store
them in the Retrieval Augmented Generation (RAG) model
using basic blocks as units. RAG uses vector retrieval to
quickly find similar historical basic blocks, avoiding redun-
dant computation and supporting large-scale software system
analysis. Next, we construct a tree structure of the front-end
and back-end call chain with API permissions as the center,
and adaptively aggregate semantic information of different
granularities through a multi-head attention mechanism. Fi-
nally, the spectral clustering algorithm is used to divide the
permission vectors into roles, while considering multiple ob-
jectives such as minimizing the number of roles, maximiz-
ing coverage, minimizing overlap, and maximizing cohesion.
The core innovation of MA-RAG lies in its full utilization
of the semantic and structural features inherent in the soft-

ware system itself, achieving automated, fine-grained, and in-
terpretable role mining through advanced technologies such
as graph representation learning, attention mechanisms, and
contrastive learning.

3.1 Permission Extraction and Embedding
We first define permissions and basic blocks in Web ap-
plications. A permission is defined as a combination of a
path template and an action, denoted as permission ::=
(path template, action). path template represents the
URL path template, which can include wildcards or param-
eterized forms such as named variables; action is defined as
a standard HTTP method or a custom method. A basic block
is a maximum code sequence that satisfies: (1) it has only
one entry; (2) it has only one exit; (3) each statement in the
sequence is executed strictly in linear order. Formally, a code
block b is represented as a triple (Ib, Ob, Cb), where Ib is the
set of control flow edges entering the block, Ob is the set of
control flow edges leaving the block, and Cb is the sequence
of code statements constituting the block.

To extract API permissions, we comprehensively utilize
static control flow analysis and LLM techniques on front-end
code, DOM, and back-end code. For front-end code, we build
a control flow and data flow model based on the Program De-
pendence Graph (PDG) [Ferrante et al., 1987]. By analyz-
ing the PDG and DOM, a complete mapping from web page
content to back-end API calls is established. For back-end
routing code, we use large language models for analysis and
extract a list of RESTful APIs. Then, each basic block bi
is transformed into a semantic vector vi ∈ Rd. To balance
retrieval efficiency and clustering accuracy, a Retrieval Aug-
mented Generation (RAG) model is introduced to store and
reuse vectors. Given a new basic block vector vi, its similar-
ity with existing vectors vj is computed as:

sim(vi,vj) =
vT
i vj

∥vi∥∥vj∥
(1)

If the maximum similarity is ≥ θ (a preset threshold),
the corresponding vector is reused; otherwise, vi is added to
RAG.

3.2 Call Chain Construction and Aggregation
With API permissions as the center, we construct a tree struc-
ture of their call chains. As shown in Algorithm 1, starting
from the basic block implementing the permission, we recur-
sively traverse its callers and callees to build a complete call
chain.

In the constructed call chain tree, a multi-head attention
mechanism [Vaswani et al., 2017] is used to aggregate node
vector information from the bottom up. We set h = 4 atten-
tion heads, corresponding to the four role division objectives:
minimizing the number of roles, maximizing role coverage,
minimizing the overlap of permissions between roles, and
maximizing the cohesion of permissions within roles. For-
mally, for a non-leaf node vi, we obtain its child node vector
matrix Ci ∈ Rki×d and compute the multi-head attention
representation of vi:
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Figure 1: The MA-RAG approach.

Algorithm 1 Building the Call Chain Tree
Require: permission pi, set of basic block vectors V , call graph

G = (V,E)
Ensure: call chain tree Ti = (Vi, Ei)
1: Vi ← ∅, Ei ← ∅
2: Vi ← Vi ∪ {vi}
3: for all vj ∈ V s.t. (vj ,vi) ∈ E do
4: Vi, Ei ← BUILDCALLCHAIN(pi,vj , Vi, Ei)
5: end for
6: for all vk ∈ V s.t. (vi,vk) ∈ E do
7: Vi, Ei ← BUILDCALLCHAIN(pi,vk, Vi, Ei)
8: end for
9: REMOVECYCLES(Ti)

10: return Vi, Ei

head
(r)
i = softmax

(
Q

(r)
i K

(r)
i√

d

)
V

(r)
i , r = 1, . . . , h

(2)

v′
i = Concat(head(1)i , . . . , head

(h)
i )WO (3)

where Q
(r)
i ,K

(r)
i ,V

(r)
i are the products of projection ma-

trices and vi,Ci, and WO is a learnable output matrix. v′
i

is the new vector representation of vi after multi-head atten-
tion aggregation, which incorporates the semantics of child
nodes and adapts to multiple role division objectives. Let
L(r)(v′

i, R̂) denote the objective function corresponding to
the r-th attention head, where R̂ is the current role division,
then:

L(r)(v′
i, R̂) =


− log k̂, r = 1∑k̂

j=1 maxp∈r̂j sim(v′
i,v

′
p), r = 2

−
∑k̂

j=1

∑
p∈r̂j∧p ̸=pi

sim(v′
i,v

′
p), r = 3

maxp∈r̂(pi) sim(v′
i,v

′
p), r = 4

(4)
where k̂ is the current number of roles, and r̂(pi) repre-

sents the role to which pi currently belongs. Combining these
four objectives, the total weighted loss function is optimized
through end-to-end training.

3.3 Role Mining
Finally, self-supervised clustering is performed on the aggre-
gated permission vectors v′

i to divide them into roles. Con-

trastive learning is used to train an embedding space that max-
imizes the similarity of permissions within roles and min-
imizes the similarity of permissions between roles by con-
structing positive and negative sample pairs. The contrastive
loss for the t-th iteration is defined as:

L(t)
contrast = − log

exp(v
′(t−1)
i · v′(t−1)

j /τ)∑n
k=1 ⊮[y

(t−1)
i ̸=y

(t−1)
k

]
exp(v

′(t−1)
i · v′(t−1)

k /τ)

(5)
where y

(t−1)
i is the pseudo-label of pi in the (t − 1)-th

round, and τ is the temperature hyperparameter. By minimiz-
ing the contrastive loss, the permission embedding space and
role division are iteratively optimized until convergence. The
spectral clustering algorithm is used to adaptively determine
the optimal number of roles k∗:

k∗ = argmax
k

∑k
i=1 λi∑n
i=1 λi

− αk (6)

where λi is the eigenvalue of the permission similarity ma-
trix, and α is the balancing factor.
Role. A role is defined as a set of permissions, i.e., role ::=
{pi}. The set of permissions owned by the i-th role ri is
{pj |y(t)j = i}, where t is the number of iterations when the
algorithm converges.

In summary, the role division problem can be formalized
as Definition 5:
Role Division Problem. Given n API permissions
{p1, . . . , pn} and their vector representations {v′

1, . . . ,v
′
n},

the goal is to find a division R = {r1, . . . , rk∗} such that:

1.
⋃k∗

i=1 ri = {p1, . . . , pn}, i.e., all permissions are as-
signed to roles;

2. ri ∩ rj = ∅, ∀i ̸= j, i.e., there are no duplicate permis-
sions between roles;

3. − log k∗ +
∑k∗

i=1 F(ri) is maximized, where

F(ri) =
∑
p∈ri

max
q∈ri

sim(v′
p,v

′
q)−

∑
p∈ri

∑
q∈ri

sim(v′
p,v

′
q)

(7)
Intuitively, the goal is to minimize the number of roles,
maximize the similarity of permissions within roles, and
minimize the similarity of permissions between roles.
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Metric Mean Min Max Std.

LOC 386K 42K 1.7M 294K
#Classes 628 86 3022 487
#Methods 5743 593 31087 4625
#Permissions 214 36 785 132

Table 1: Statistics of the experimental datasets

The role division problem is an NP-hard problem [Aloise
et al., 2009]. The iterative optimization algorithm proposed
in this paper is an effective approximate solution method that
optimizes both the embedding space and role division, adap-
tively determines the optimal number of roles, and achieves a
balance between efficiency and accuracy.

4 Evaluation
To evaluate the effectiveness and efficiency of our proposed
MA-RAG role engineering method, we conducted extensive
experiments on 284 open-source software projects in the Web
domain. These systems come from multiple domains, includ-
ing e-commerce (28%), social networking (22%), enterprise
management (19%), financial services (15%), cloud plat-
forms (10%), etc., covering mainstream programming lan-
guages such as Java, Python, JavaScript, and mainstream de-
velopment frameworks such as Spring and Express. We used
stratified sampling to select 284 representative repositories
from GitHub as our dataset, based on dimensions such as
language, domain, and activity level. During the filtering pro-
cess, approximately 82% of candidate repositories were elim-
inated, mainly due to: (1) code size less than 10,000 lines
(27%); (2) lack of RESTful APIs (43%); (3) build failures or
compilation errors (12%).

4.1 Datasets and Metrics
Table 1 shows the statistical information of the dataset. As
can be seen, the dataset has good coverage and diversity
in terms of application domain, code size, complexity, etc.,
which can comprehensively evaluate the applicability and
generalization performance of role engineering methods.

We use the following metrics to evaluate the quality of role
engineering:

• Time overhead. The average execution time for each
method to complete role engineering (10 runs).

• Number of roles. The number of generated roles, mea-
suring the complexity of the simplified RBAC model.

• Role permission overlap rate. The proportion of dupli-
cate permissions contained in different roles, measuring
the independence and cohesion of role division.

• Interpretability of role engineering results. Software
engineers score from four dimensions of plausibility,
conciseness, consistency, and completeness (1-5 points),
with higher scores indicating stronger interpretability.

To ensure the credibility of subjective scoring, we invited
30 engineers to participate (8 junior, 15 intermediate, 7 se-
nior), with an average of 6 years of development experi-
ence and familiarity with RBAC. Each result is independently
scored by at least 2 people, and the average value is taken.

Methods Time Cost (min)

CRE 47.8
Spectral 41.9
GNRM 45.0
Secrecy 38.9
ERM-ME 43.4
SPCon 40.9
MA-RAG 25.7

Table 2: Average time overhead of different role engineering meth-
ods

4.2 Performance
As baselines, we selected several representative methods in
the field of role engineering, including the CRE method pro-
posed by Rashid et al. [Rashid et al., 2021], the Spectral
method proposed by Xia et al. [Xia et al., 2023], the GNRM
method proposed by Crampton et al. [Crampton et al., 2022],
the Secrecy method proposed by Guo et al. [Guo and Tripuni-
tara, 2022], the ERM-ME method proposed by Du et al. [Du
et al., 2022], and the SPCon method proposed by Liu et al.
[Liu et al., 2022]. The CRE method can ensure the privacy
and role ownership of entities, but is only applicable to a sin-
gle permission organization. The Spectral method supports
more feature sets, such as permission weights, role hierar-
chies, and custom role numbers, but lacks a balance between
different role engineering objectives. The GNRM method
can produce “security-aware” or “usability-aware” solutions,
but does not consider the interpretability of roles. The Se-
crecy method evaluates the inherent attributes of access con-
trol policies from the perspective of confidentiality, but makes
overly optimistic assumptions about the underlying distribu-
tion of event pairs. The ERM-ME method detects emotional
roles in social networks by fusing the information contained
in different features, but does not deeply study the emotional
contagion mechanism of online social network users. The
SPCon method recovers possible access control models by
mining the past transactions of contracts, but has a certain
false positive rate.

Table 2 compares the average time overhead of differ-
ent methods on 284 datasets. It can be seen that MA-
RAG has the highest time efficiency, with an average time
of 25.7 minutes (a reduction of 46.2%), significantly faster
than the CRE method. Compared with the Spectral, GNRM,
Secrecy, ERM-ME, and SPCon methods, MA-RAG saves
38.7%, 42.9%, 33.9%, 40.8%, and 37.2% of time respec-
tively. This is mainly due to the self-supervised learning
paradigm adopted by MA-RAG, which does not require man-
ual participation and adaptively mines the associations be-
tween permissions through contrastive learning objectives,
greatly improving the efficiency of automated role engineer-
ing.

In terms of the objective quality of generated roles, as
shown in Table 3, MA-RAG achieves the best results in both
the number of roles and the permission overlap rate. The
number of roles generated by MA-RAG is significantly lower
than the baseline methods (reduced by 19.4% to 42.8%), with
an average of only 15.8 roles required to cover all permissions
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Methods #Roles (↓) Overlap (↓)

CRE 27.6 33.2%
Spectral 19.6 24.3%
GNRM 22.3 27.1%
Secrecy 21.8 29.4%
ERM-ME 23.5 30.8%
SPCon 20.3 25.7%
MA-RAG 15.8 6.7%

Table 3: Role quantity and overlap of different methods

Methods Java Python JavaScript C#

CRE 29.2 26.4 31.8 27.1
Spectral 20.7 18.2 23.6 19.8
GNRM 21.5 23.8 25.3 20.9
Secrecy 22.6 20.8 24.1 21.3
ERM-ME 21.8 26.2 24.5 22.7
SPCon 19.4 21.9 22.6 18.7
MA-RAG 14.2 17.1 16.8 14.7

Table 4: Role quantity comparison across programming languages

System Scale Time (min) Memory (GB)

100K LOC 12.5 3.2
200K LOC 27.8 5.7
500K LOC 52.4 10.3
1M LOC 118.6 18.9

Table 5: Scalability test of MA-RAG on large-scale systems in terms
of time and memory overhead

for each system. At the same time, the role permission over-
lap rate of MA-RAG is also significantly lower than other
methods (reduced by 17.6% to 26.5%), approaching the ideal
state. This indicates that MA-RAG can better distinguish role
differences, aggregate related permissions, and form role di-
visions with clear boundaries.

We further examined the role engineering effects under dif-
ferent languages and frameworks. As shown in Table 4, MA-
RAG achieves the optimal number of roles in all mainstream
languages, with small differences between languages (vari-
ance of only 1.6), which is lower than other cross-language
methods (CRE has a variance of up to 4.4). Taking Java as
an example, the average number of roles generated by MA-
RAG is 14.2, significantly better than other methods. This
set of experiments verifies the adaptability and robustness of
MA-RAG in processing multi-language and multi-framework
software systems.

To evaluate the scalability of MA-RAG on large-scale sys-
tems, we selected several open-source projects with hundreds
of thousands of lines of code and recorded the time and space
overhead of MA-RAG in processing them. As shown in Table
5, as the system code size grows, the time and space overhead
of MA-RAG shows a near-linear growth trend. This is mainly
due to the semantic compression and retrieval strategy based
on RAG adopted by MA-RAG, which effectively controls the
scale of the computation graph.

Methods Plausib. Conc. Cons. Compl. Overall
CRE 3.26 3.11 3.33 2.91 3.15
Spectral 3.58 3.37 3.46 3.19 3.40
GNRM 3.45 3.08 3.39 3.27 3.30
Secrecy 3.71 3.24 3.51 3.42 3.47
ERM-ME 3.53 3.16 3.42 3.35 3.37
SPCon 3.64 3.29 3.38 3.56 3.47
MA-RAG 4.41 4.16 4.22 4.18 4.24

Table 6: Interpretability scores of different methods in four dimen-
sions: plausibility, conciseness, consistency, and completeness

4.3 Interpretability
To quantitatively evaluate the interpretability of role division,
we designed scoring criteria from four dimensions: plausibil-
ity, conciseness, consistency, and completeness (1-5 points,
with higher scores indicating stronger interpretability). We
invited 30 software engineers to read the role sets generated
by each method and independently complete the scoring. To
avoid subjective bias, we took control measures: randomly
assigning evaluation methods to ensure even distribution; at
least 3 people cross-scoring each result and taking the av-
erage value; unified training of background knowledge and
standards before scoring, and providing guidance and Q&A
during scoring. The final score of each method is the aver-
age and standard deviation of all participants. The results are
shown in Table 6. MA-RAG achieves the highest scores in
all four interpretability dimensions, with the total score sig-
nificantly higher than other methods. MA-RAG has a par-
ticularly obvious advantage in plausibility and consistency.
The interviewees generally believed that the roles generated
by MA-RAG are semantically closer to real-world business
scenarios and organizational structures, and the permission
assignments are more reasonable.

4.4 Case Study
To intuitively demonstrate the interpretability of MA-RAG’s
role division, we conducted a case study using OpenStack
[OpenStack, 2024] as an example. OpenStack is a widely
used open-source cloud computing management platform, in-
cluding more than a dozen core services such as Nova (com-
pute), Neutron (networking), Cinder (block storage), Swift
(object storage), Keystone (authentication), Glance (image),
and Horizon (Web UI). As shown in Table 7, MA-RAG au-
tomatically discovered the role hierarchy in OpenStack. At
the top layer, MA-RAG identified the “Admin” role, which
has full control permissions for all services, such as creat-
ing/deleting cloud instances, configuring networks, managing
images, etc. In the next layer, MA-RAG generated multiple
fine-grained management roles based on the functions of the
services, such as “Compute Admin”, “Network Admin”, etc.
These roles can only manage resources of the corresponding
services. For example, “Compute Admin” can adjust the con-
figuration and scheduling policies of cloud instances, but can-
not modify the network topology. MA-RAG also mined some
specialized roles within services, such as “Image Creator” be-
ing responsible for image upload and metadata management,
and “Stack Owner” being responsible for the creation and de-
ployment of Heat orchestration templates.

It is worth mentioning that MA-RAG also discovered some
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Role Related Services

Admin All services
Compute Admin Nova
Network Admin Neutron
Storage Admin Cinder, Swift
Image Creator Glance
Stack Owner Heat
Cloud Auditor Nova, Neutron, Cinder, Swift, Keystone

Table 7: Example of role hierarchy and service coverage mined by
MA-RAG in OpenStack

unique cross-service roles, such as “Cloud Auditor”. This
role cannot modify cloud resources, but can access logs and
metadata of multiple services such as Nova, Neutron, Cinder,
Swift, and Keystone for auditing and compliance checking.
This is thanks to the multi-head attention mechanism of MA-
RAG, which can capture the similarity of different services in
log format and metadata patterns, and thus infer the cross-
service read-only permission pattern. Traditional methods
have difficulty discovering such hidden associations. These
results show that MA-RAG can automatically infer reason-
able and clear role division schemes based on the actual ar-
chitecture and business semantics of the system.

4.5 Ablation Study
To evaluate the effectiveness of each key technique in MA-
RAG, we designed a series of ablation experiments. As
shown in Table 8, removing any technical component usually
leads to a decrease in the quality of role division, indicating
that they are crucial to the performance of MA-RAG. Specif-
ically:
w/o FGCF. After removing fine-grained control flow anal-
ysis, MA-RAG cannot accurately extract the calling relation-
ships between APIs, and the role cohesion decreases, result-
ing in a 15.8% increase in the number of roles and a 10.3%
increase in permission overlap.
w/o MVA. After removing the multi-view attention mech-
anism, the features of different technical views (such as data
flow and control flow) cannot be effectively fused, making it
difficult to capture subtle semantic differences between roles,
and the interpretability score decreases.
w/o CL. After removing contrastive learning, the learning
objective of the role embedding space is unclear, the differen-
tiation between roles decreases, and the overlap rate increases
by 4.7%.
w/o PCM. After removing the pre-trained code model, the
robustness becomes worse, and the adaptability to different
languages and frameworks decreases, and the number of roles
increases by 5.1%.
w/o RAGC. After removing RAG compression, there are
too many redundant vectors, and the clustering effect be-
comes worse.
w/o SSC. After removing self-supervised clustering, the
number of clusters needs to be set manually, hyperparame-
ter tuning is difficult, the effect is unstable, and the number of
roles increases.

Methods #Roles (↓) Overlap (↓) Interpret. (↑)

MA-RAG 15.8 6.7% 4.24
w/o FGCF 18.3 17.0% 3.96
w/o MVA 16.4 8.6% 3.79
w/o CL 16.9 11.4% 3.88
w/o PCM 16.6 7.2% 4.06
w/o RAGC 16.1 6.9% 4.25
w/o SSC 17.1 7.6% 4.17

Table 8: Ablation study of MA-RAG

In addition, we also examined the impact of different hy-
perparameters (learning rate, batch size, number of iterations,
etc.) on the performance of MA-RAG. The results show that
MA-RAG has low sensitivity to hyperparameters, and when
the values of hyperparameters are changed within a relatively
large range, its performance fluctuations are all within 5%.

5 Discussion
Although MA-RAG has achieved significant performance im-
provements in role engineering tasks of large-scale software
systems, there are still some limitations. Firstly, there is
further room for optimization in the expressiveness of the
roles generated by MA-RAG. Currently, MA-RAG focuses
on mining the permission associations at the API level, and
the modeling of higher-level business concepts and semantic
information is not sufficient. This may lead to a semantic gap
between the generated roles and real-world business roles. In
the future, we will explore the integration of external knowl-
edge bases, domain ontologies and other prior information
to enhance the business interpretability of role division. Sec-
ondly, when constructing the call chain tree, MA-RAG adopts
a multi-head attention mechanism to aggregate semantic in-
formation of different granularities. However, the number of
attention heads and the corresponding role engineering ob-
jectives need to be set according to the characteristics of the
system, which still requires some manual experience. Our
ablation experiments show that on average, for each attention
head removed, the score of role interpretability will decrease
to a certain extent.

6 Conclusion
This paper proposes a novel automated method MA-RAG for
role engineering in RESTful systems. The method leverages
fine-grained control flow analysis and semantic representa-
tion learning to fully mine the inherent code assets of the
system. Combined with permission-centric call chain mod-
eling and multi-head attention aggregation mechanism, it op-
timizes objectives such as functional completeness and least
privilege. Through self-supervised clustering and contrastive
learning, it achieves high-quality and interpretable role di-
vision. Large-scale experiments confirm the advantages of
MA-RAG in terms of efficiency, quality, and generalizabil-
ity. In the future, we plan to extend MA-RAG to new sce-
narios such as microservices and serverless, and improve its
adaptability under different programming languages and sys-
tem frameworks.
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Ethical Impact
As an automated role engineering method, the ethical im-
pact of MA-RAG is mainly reflected in the following aspects.
Firstly, by improving the accuracy and efficiency of role di-
vision, MA-RAG helps software systems adhere to the prin-
ciple of least privilege, thereby reducing security risks such
as privilege abuse and data leakage, and protecting users’ pri-
vacy and digital rights. Secondly, the code analysis, embed-
ding and other techniques employed by MA-RAG are per-
formed on the codebase of software systems and do not di-
rectly touch real user data, thus exhibiting good ethical com-
pliance in data usage. Furthermore, the process of role gen-
eration by MA-RAG is auditable and interpretable, allowing
administrators to manually adjust the role division results ac-
cording to their needs, ensuring that they meet the organiza-
tion’s ethical policies and legal regulations. In general, as an
emerging technology, the full potential of MA-RAG and the
unification of its technological value and ethical value still
rely on the joint efforts of academia, industry, and regulatory
authorities.
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