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Abstract

Computerized Adaptive Testing (CAT) measures
student ability by iteratively selecting informative
questions, with core components being the Cogni-
tive Diagnosis Model (CDM) and selection strat-
egy. Current research focuses on optimizing the se-
lection strategy, assuming relatively accurate CDM
results. However, existing static CDMs struggle
with rapid and accurate diagnosis in the early stage
of CAT. To this end, this paper proposes a Fast
Adaptive Cognitive Diagnosis (FACD) framework,
which incorporates dynamic collaborative and per-
sonalized diagnosis modules. Specifically, the col-
laborative module in FACD uses a dynamic re-
sponse graph to quickly build student cognitive pro-
files, while the personalized module leverages each
student’s response sequence for robust and individ-
ualized diagnosis. Extensive experiments on real-
world datasets show that, compared with existing
static CDMs, FACD not only achieves superior pre-
diction performance across various selection strate-
gies with an improvement between roughly 5%-
10% in the early stage of CAT, but also maintains a
commendable inference speed.

1 Introduction

With the rise of online testing platforms, the demand for per-
sonalized assessments has surged. Standardized exams like
the GMAT and GRE have already used adaptive question se-
lection strategies to better assess students’ abilities. Com-
puterized Adaptive Testing (CAT) [Mills and Steffen, 2000;
Rudner, 2009; Liu er al., 2024] optimizes test efficiency
by tailoring questions to each student, reducing the number
of questions needed while still ensuring accurate ability as-
sessments. Unlike traditional tests, the Cognitive Diagnosis
Model (CDM) in CAT estimates a student’s current ability
based on their responses to the questions selected by the se-
lection strategy and provides feedback for further question se-
lection. Consequently, CDM [Liu, 2021; Wang et al., 2024;
Li er al., 2025] serves as a fundamental and decisive compo-
nent in CAT [Anderson et al., 2014].

*Corresponding Author.
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Figure 1: The motivation example. The accuracy of IRT and NCD

on each step of CAT with BECAT selection strategy in EDM-
Cup2023 dataset.

In recent decades, significant efforts have focused on de-
veloping CDMs, which model the interaction between stu-
dents and questions. Traditional CDMs [Embretson and
Reise, 2013; De La Torre, 2009; Sympson, 1978] rely on
expert-crafted interaction functions, while neural network-
based CDMs [Wang er al., 2020a; Wang et al., 2023a;
Ma et al., 2022; Li et al., 2022; Liu et al., 2023] use multi-
layer perceptrons to enhance generalization and interpretabil-
ity. Recently, the use of graph neural networks (GNNs) to
learn response relation graphs has gained attention, offer-
ing new insights for cognitive diagnosis [Qian er al., 2024;
Gao et al., 2021; Shen et al., 2024a; Wang et al., 2023b].

Although the aforementioned CDMs have made remark-
able progress, few studies focus on their adaptability to down-
stream tasks like CAT, which heavily relies on the assumption
of relatively accurate CDM’s outcomes. The goal of CAT is
to assess a student’s abilities with the fewest possible ques-
tions, posing a key challenge that CDM should be able to
dynamically model students’ abilities for rapid adaptation
during the early stage of CAT, however the early stage suf-
fers from limited data, which is not conducive to this rapid
and accurate adaptation. As shown in Figure 1, we com-
pare the performance of Item Response Theory (IRT) [Em-
bretson and Reise, 2013] and Neural Cognitive Diagnosis
Model (NCD) [Wang et al., 2020a] in real CAT tasks using
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BECAT [Zhuang et al., 2023] for selection. IRT’s simplicity
limits its adaptability, resulting in slow performance improve-
ments. Although NCD captures complex response patterns,
its reliance on sufficient data leads to poor early-stage per-
formance, conflicting with CAT’s goal of rapid and accurate
assessment.

To this end, this paper proposes a fast-adaptive cogni-
tive diagnosis framework for computerized adaptive testing
systems (FACD) to address the challenge mentioned above
and effectively enhance CDM’s adaptability especially dur-
ing the early stage of CAT. Specifically, for the overall dy-
namic structure modeling, a dynamic collaborative diagnosis
module are designed. Unlike traditional CDMs which rely on
static response logs, the proposed FACD framework dynami-
cally updates a response graph at each CAT stage to transfer
relevant student and concept information, enabling rapid con-
struction of the student’s cognitive profile. For modeling per-
sonal dynamic response sequences, we design a dynamic per-
sonalized diagnosis module that employs a Gated Recurrent
Unit (GRU) [Chung er al., 2014] to capture the relationships
in each student’s response sequence. A self-attention mech-
anism further highlights critical response features. The col-
laborative information and the personalized information are
then fused to model the ultimate representation and fed into
the subsequent interaction function. Extensive experiments
show that FACD improves early-stage performance in CAT
by about 5%-10% compared with traditional CDMs.

The subsequent sections respectively recap the related
work, present the preliminaries, introduce the proposed
FACD, show the empirical analysis and conclude the paper.
We include a section on the statement on the ethical use of
data and informed consent of research subjects in Section 6.

2 Related Work
2.1 Computerized Adaptive Testing

CAT consists of two key components: a CDM and a se-
lection strategy. Traditionally, IRT [Embretson and Reise,
2013] and NCD [Wang er al., 2020a] are popular choices
for CDM in CAT. Nowadays, most of the researches focus
on the selection strategy in CAT. The most commonly used
approaches like Maximum Fisher Information (MFI) [Lord,
2012] and Kullback-Leibler Information (KLI) [Chang and
Ying, 1996] are typically tailored to specific CDMs, such as
IRT. To address this limitation, Model-agnostic algorithms
like MAAT [Bi et al., 2020] and BECAT [Zhuang er al.,
2023] are introduced, but they rely on accurate CDM diag-
nosis, which is challenging in the early stages of CAT. In-
accurate CDM results can mislead selection strategies, de-
laying the whole CAT process. Data-driven strategies like
BOBCAT [Ghosh and Lan, 2021] and NCAT [Zhuang et al.,
2022a] pretrain strategy models on large datasets, but still
struggle with the instability of early-stage CDM diagnosis.
Thus, a CDM tailored to CAT is essential for accurate and
timely early-stage diagnosis.

2.2 Cognitive Diagnosis

Traditional cognitive diagnosis infers students’ mastery lev-
els of concepts using models like IRT [Embretson and Reise,

2013], MIRT [Sympson, 1978], and DINA [De La Torre,
2009]. With deep learning advances, models using multi-
layer perceptrons (MLPs) like NCD [Wang et al., 2020al,
KSCD [Ma er al., 2022] and KaNCD [Wang et al., 2023a]
have successfully captured complex interactions. Other ap-
proaches to extracting rich information from response logs
include symbolic regression [Shen et al, 2024bl, graph
attention networks [Gao et al., 2021; Qian et al., 2024;
Shen et al., 2024a; Wang et al., 2023b] and Bayesian net-
works [Li et al., 2022]. Recently, several CDMs have been
developed to address cold-start issues in static CD, such as
TechCD [Gao et al., 2023] and ZeroCD [Gao et al., 2024],
which focus on cross-domain CD, and BetaCD [Bi et al.,
2023] and AGCDM [Pei et al., 2022], which tackle limited
interaction data for specific students in CD. While these is-
sues share some similarities with the cold-start problem in
the early stage of CAT, they are not directly applicable due to
dynamic context in CAT. Furthermore, few CDM studies fo-
cus on adapting to downstream tasks, and to our knowledge,
no CDM has been specifically designed for CAT’s unique re-
quirements, making such adaptation crucial.

3 Preliminaries

Cognitive Diagnosis Basis. Consider an educational sys-
tem with N students, M questions and K knowledge con-
cepts, which can be denoted as three sets: S = {s1,...,sn},
E = {ey,..,epm} and C = {cy,...,cx }. The relationship
between the questions and the knowledge concepts can be
recorded in a binary Q-matrix Q = {Q;},,, - Where Q;; €
{0,1} indicates whether the knowledge concept is involved
in the question or not. Each student in S will selectively
do some questions from the set E, generating response logs
that record their performance. These response logs are illus-
trated as triplets R = {(s,e,r)|[s € S,e € E,rs. € {0,1}}
with ;e = 1 meaning question e is correctly answered by
student s while ;. = 0 standing for the opposite. Based
on the messages above, cognitive diagnosis aims to infer
Mas € RY*E 3 matrix that indicates each student’s mas-
tery level across all knowledge concepts.

Computerized Adaptive Testing. In CAT, the selection
strategy and CDM alternate in a cyclical process. For the
CDM, let us define the CDM as M. And a student i’s ques-
tion set F; can be divided as candidate and evaluated ques-
tions set as C; and J;. Assuming at time step ¢ € [1, 7], stu-
dent ¢ has already answered a sequence of questions 2,1 ; =
{(61, 1) e (€1—1), r‘t_l‘)} selected from candidate set C;.
Then, the CDM M can estimates student i’s mastery level
at time ¢ based on the response sequence R;_1 ;, denoted as
J\/fast,l’i = M(R;_1;) € [0,1]. For the selection strategy,
let us define the selection policy as 7 which selects a question
e~ W(M as—1 ;) for student . Upon receiving student i’s
response 7 ;, the CDM is updated, resulting in a new mastery
level estimate M ast ;. And after updating, the performance
of the CDM is tested on the evaluated questions set JJ;. The
above process is repeated 7" steps. The goal of CAT is to let
the student estimated mastery level Masr ; close to the real
value Mas] with as few test steps 1" as possible.
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Problem Statement. Our paper primarily focuses on
building a fast-adaptive CDM module to help the CDM in
CAT systems estimate a student’s mastery level rapidly and
stably, bringing it closer to the real value as soon as possi-
ble. Specifically, our goal is to ensure that at the relatively

early time step 7', the estimated mastery level M asrt; =
M(Rr_1;) is as close as possible to the real mastery level
Mas}. However, since we cannot directly observe Mas],
our goal shifts to estimate the distribution of the student’s ac-
tual responses 2. The closer the estimated response distri-
bution R ; is to the real response distribution R}, the better
the CDM’s performance. This difference is typically mea-
sured using Area Under the Curve (AUC), where a higher

AUC(R7.;, R}) indicates more accurate predictions from the
CDM.

4 Methodology

In this section, we provide the technical details of the pro-
posed FACD, depicted in Figure 2. We introduce two cru-
cial components: a dynamic collaborative diagnosis module
in Figure 2(a) and a dynamic personalized diagnosis module
in Figure 2(b). Following above, we will describe how to in-
tegrate these features into the interaction functions of various
CDMs in the ultimate inference module. Detailed compo-
nents of FACD are shown in Figure 2(c).

4.1 Dynamic Collaborative Diagnosis Module

Graph Construction. Firstly, we define the dynamic re-
sponse graph at time step ¢ for dynamic collaborative di-
agnosis module, denoted as G, = (V,&;). The node set
YV = S U E U C involves students, questions, and concepts
nodes respectively. )V remains unchanged during the CAT
process, with all nodes being defined initially. The edge set
& = E7° U E°° consists of two types of edges where £;° in-
volves the interactions between students set S and questions
set I (i.e., student s; complete the question e;) as well as
£°¢ involves the relationships between questions set £ and
concepts set C' (i.e., question e; is related to the concept
ci). Based on this, we can decompose the graph into two
subgraphs. The first subgraph is the student-question graph,
which is dynamic in nature. At each time step ¢, the edge
set is updated as £7¢ = £7°; U R;, where R, represents the
newly added interaction records of all students at time step .
The corresponding adjacency matrix Aj¢ € RISIXIEI can be
expressed as follows:

1 if(Si,Gj,Tij)Egtse,
0 otherwise.

Aj° = {xij}\S\X\E\ R { (D

The second subgraph is the question-concept graph, which
is a static graph. The edge set £°¢ can be directly derived
from the relationships between questions and concepts in
the Q-matrix. The corresponding matrix A°¢ e RIEIXICI
can be expressed as A®® = Q. Then we can construct
the final dynamic response graph G; which integrates the
above two subgraphs. And its corresponding matrix A; €

RUSIHIEHICHXSIHIEI+ICD can be expressed as follow:

O A* O
A=A O A« )
O A« O

where O means zero matrix. The graph G; dynamically cre-
ates connections between students and questions during ques-
tion selection in CAT and construct the relationship between
question and concept, which is fundamental to the subsequent
extraction of collaborative information.

Graph Convolution. In CDM, the fundamental data el-
ements comprise response logs and the Q-matrix. It is nec-
essary to systematically deconstruct these intricate logs into
their essential components: students, questions, and concepts.
To represent these entities, we employ trainable embeddings,
denoted as Z\") € RISIxd ZO) ¢ RIEIxd 70 ¢ RICIxd
where d indicates the dimension of the embeddings, as ini-
tial ID representation. And to facilitate subsequent convolu-
tion processes, we stack the aforementioned embeddings to
form Z(©) € RUSIHIEIHIC)*d 54 the initial dynamic collab-
orative representation at time step ¢ = 0 can be defined as

Z{") = Z(©). Given that the representation of students, ques-
tions, and knowledge concepts in CDM are relatively straight-
forward and consist solely of IDs. Inspired from [He et al.,
2020], we eliminate linear transformations and nonlinear acti-
vation functions, choosing instead to focus on the fundamen-
tal elements of graph convolutional networks (GCNs). There-
fore, the graph embedding propagation layer at time step ¢ is
formulated in the following matrix representation:

AR (D—%AtD—%) Sl 3)

where the degree matrix D is a diagonal matrix with size
(IS| + |E] +|C]) x (|| + |E| +|C]), and each entry D;;
indicates the number of non-zero entries in the i-th row vec-
tor of the adjacency matrix A;. By applying Eq. (3), we can
derive the convolution results Z{"*" € RUSIHEIFICDd from
the [-th layer of graph G; at time step ¢. The dynamic collab-

orative representation Z,E” € RUSIHIEIHIC)xd at time step
t is calculated through a mean pooling operation on the out-
comes from each layer of graph G; which can be expressed as
z;" = o oz

The graph convolution process aggregates outcomes from
neighbors which is crucial for extracting collaborative infor-
mation, as it enables us to identify patterns and relationships
that reflect the collective strengths and weaknesses on stu-
dent’s mastery level within their similar neighbors. This helps
us rapidly construct a profile for the student based on similar
student groups in the early stage of CAT.

Graph Fusion. Given the inherent instability associated
with training dynamic graphs, we fuse both the dynamic col-
laborative representation Zi” € RUSIHIEIHICD*d of cyrrent
time step ¢ and the averaged dynamic collaborative represen-

.51 . .
tation Zi ) e RUSIHIBIHIOD %A from previous time steps 0 to
t—1 in constructing the ultimate dynamic collaborative repre-
sentation zﬁ” e RUSIHIEIHIC)*d  This approach mitigates
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Figure 2: The overall framework of our proposed FACD. (a) Dynamic collaborative diagnosis module. (b) Dynamic personalized diagnosis

module. (c) Detailed components of FACD.

the potential training instability arising from variations in the
dynamic graph, which can be expressed as follows:

= (1 =(1 1
7V =z +(1-nz, 7V = @

where 7, is the smoothing weight for the dynamic collabora-
tive features which can either be set using a predefined thresh-
old to determine the fusion ratio, or be adjusted adaptively
through a learning mechanism. We currently set 7: = 0.5.

4.2 Dynamic Personalized Diagnosis Module

For every student s;, we construct a dynamic personalized
representation at time step ¢ based on their response records
of the selected questions. To capture the sequential relation-
ships between questions chosen by the selection algorithm in
CAT for each student, we utilize the GRU network [Chung
et al., 2014]. The personalized question representation se-
quences L; , € R**? for student i at time step ¢ are defined
as follows:

Lt,Si = {hjysi}.?:l’ ht,Si N GRU<ZS3)’ ht*LSi) NG

where h; ;, € R1*4 denotes the hidden states of questions
selected at the time step ¢ in GRU. Then we utilize the multi-
head self-attention over the personalized question representa-
tion sequences L, ,, to extract the most critical response in-
formation of each student and get the dynamic personalized

representation Z,Ezs) € R of student s; at time step ¢:

L, . WL, , WK)T
Zfs),- L = softmax ( b h\(/dit W) L WY,
2 .

’ Zl(f?s)“H]WF + bFa

(6)
2 2 2
Zg,s)l = [Zg,s)i,l’ ZI(E.,5)1',27 ce

where W, WK WY € R are the trainable parame-
ter matrices for the query matrix, key matrix and value ma-
trix respectively, W¥ € R¥*¢ p¥ c R are the trainable pa-
rameters for the final linear transformation, d;, = % denotes
the dimension of each self-attention head, H stands for the
number of self-attention heads, and so ftmax(-) and [-] is the
row-wise softmax function and concatenation operation re-
spectively.

Compared to traditional CDMs that treat the student, ques-
tion and response records as discrete data points for training,
our dynamic personalized diagnosis module offers a sequen-
tial modeling of questions for each student. This approach
emphasizes the interrelationships among questions within the
CAT selection strategy while extracting pertinent response
information for each student using self-attention. Conse-
quently, it lays a foundation for personalized modeling and
enhances the robustness of CDMs in fast adaptation of CAT.

4.3 Inference Module

Representation Fusion. After obtaining the representations
from the dynamic collaborative diagnosis module and dy-
namic personalized diagnosis module, the fusion module uni-
formly models the ultimate fused representation for each stu-
dent s;, each question e; and each concept c;, at time step ¢.
Specifically, we can express this fusion process as follow:

Ht75i = ag,si Zg?) + a%,si Zl(hls)z + atQ,Sz‘ Zfs)b’

1
Ht,eJ = ag,ej Zgj)) + O‘%,ej nge)j’ (7)
Hi., = O‘?,c;c ZE? + a%,CA-,Zg,lC)M

where H; ,, € R™% H,. € R'"¢and H,, € R'*¢
denote the ultimate fused representation for each student s;,
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Datasets \ FrcSub EDMCup2023  NeurIPS2020
#Students 536 27,178 4918
#Questions 20 1,687 455
#Concepts 8 542 38
#Response Logs 10,720 413,021 494,316
Sparsity 1.000 0.009 0.221
Average Correct Rate | 0.533 0.575 0.546

Q Density 2.800 1.000 1.000

Table 1: Statistics of the three real-world datasets.

o

£}

each question e; and each ¢, at time step ¢ respectively. Z
Z;l)i and z{{j represent the initial ID representation, dy-

S
namic collaborative representation and dynamic personalized
representation as mentioned above. And «; is the normal-
ized weight of three kinds of representation. Taking oy s, as
example, we first calculate these weights as:
0 1 2 0 0
) Z( ) ,Z,E’S)i]ws + bs )

t,s;r “t,s;

al,, =20z 7P W 40! ®)

t,s;0 “t,s;0

20, 203, 22 W2 +

t,si) S,
where Wg € R3dx1 W; € R3dx1 Wg € R3dx1 bg c R,
bl € R, b? € R are trainable parameters with concatenation
[-] for three kinds of representation. After that, we normalize
the weights as follow:
exp (al .

pp—. 1 # ©

Z]:O eXp (at,si)

As for question and concept fused representations, the pro-
cess is similar to the student.

Interaction Function. Given input representation H; g,
thej, H,; ,, our model is capable of adapting to various
interaction functions present in existing CDMs to predict
the performance of students’ practicing questions, which can
be formulated as gij = M(¢S (Ht,si)v (bc (Ht,e_j )a ¢C(Ht,c)),
where M (-) can be the interaction functions in any kinds of
CDMs, and ¢(+) is the transformation layer which facilitate
the integration of representation with the majority of interac-
tion functions in existing CDMs and help transform the rep-
resentation’s dimensions to suit the feature space in specific
type of CDM. For simplicity, we use the linear transformation
in our framework.

Model Training. In the CD task, we primarily employ the
binary cross entropy loss function, which measures the differ-
ence between the model’s predicted outcomes and the actual
response scores within a mini-batch. And in CAT process,
the loss is calculated on each student’s response set R; of the
newly selected question set at time step ¢. The loss function
can be formulated as:

|Re

Lpce = —‘% Z

t y
| (,5,ri5) E Ry

ato,si = [Z

a?,si = [

[”‘ij log gl] + (1 - 7'2']') lOg(l — gz])} . (10)

S Experiments

5.1 Experimental Settings

Dataset Description. The experiments are conducted on
three real-world datasets, i.e., FrcSub [DeCarlo, 2011; Tat-

suoka, 1984], EDMCup2023 [Ethan Prihar, 2023] and
NeurIPS2020 [Wang et al., 2020b]. The details about
datasets source and data preprocessing are depicted in the
Appendix D.1. The Appendix A-D can be found in https:
/Igithub.com/BW297/FACD.

Evaluation Metrics. Evaluating the performance of CDM
in CAT systems is inherently difficult due to the challenges in
accurately assessing real students’ mastery level Mas*. To
tackle this issue, a common approach is to predict students’
response scores. We measure the model’s ability to predict
whether a student successfully solves an question compared
to the actual outcomes in the test set, utilizing standard clas-
sification metrics such as accuracy (ACC) and area under the
curve (AUC).

Implementation Details. For parameter initialization, we
employ Xavier [Glorot and Bengio, 2010], and for optimiza-
tion purposes, Adam [Kingma and Ba, 2015] is adopted. The
batch size is set within the range {32,64,128,256}. The
learning rate is chosen from {1e~2,3e 3, 5¢73,7e =3, 1e~2}.
The dimensions of the MLPs for all methods are consistent,
being 512 and 256. To ensure robustness and reproducibil-
ity, each experiment is repeated ten times. The source code
for our implementation can be found in https://github.com/
BW297/FACD. More details of the implementation can be
found in Appendix D.3.

5.2 Performance Comparison

To showcase the effectiveness of FACD, we integrate it with
both IRT [Embretson and Reise, 2013] and NCD [Wang et
al., 2020al, which are widely utilized in CAT researches [Bi
et al., 2020; Zhuang et al., 2022a; Zhuang et al., 2023], as dis-
cussed in the previous sections. The detailed introduction of
baselines used in experiments below is provided in Appendix
D.2.

Performance Comparison with Different CAT Selection
Strategies. To demonstrate the strong compatibility of our
method with various CAT selection strategies, we have cho-
sen a set of both classical and cutting-edge strategies as fol-
lows: Random, MAAT [Bi et al., 2020], BOBCAT [Ghosh
and Lan, 2021], NCAT [Zhuang et al., 2022b] and BE-
CAT [Zhuang et al., 2023].

As shown in Table 2, it is evident that various CDMs
demonstrate strong adaptability when integrated with FACD
across all CAT selection strategies. Notably, during the initial
stages of question selection, such as after answering approxi-
mately five questions, our model exhibits fast adaptation, cre-
ating a significant performance gap compared to the original
CDMs. In later stages of question selection, the performance
improvement of our model becomes more incremental, as it
approaches the student’s true mastery level. This highlights
the model’s ability to converge within a limited number of
steps, providing precise feedback to CAT selection strategies
and supporting a more efficient reduction in the number of
questions selected.

Performance Comparison with Different Extraction
Modules in CDM. To compare different representation ex-
traction methods, we use BECAT as selection strategy and se-
lect several baselines for comparison with FACD as follows:
RCD [Gao et al., 2021] and ORCDF [Qian et al., 2024].
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Dataset | FrcSub | EDMCup2023 | NeurIPS2020
Metric | AUC (%)/ACC (%)
IRT NCD IRT NCD IRT NCD
Strategy | Step oL FA OL FA oL oL FA oL FA oL FA

Random 10

5 | 67.98/62.86 70.49%/64.89% | 72.02/59.76 86.73*/78.96* | 70.79/67.10 77.06%/72.08* | 73.49/61.59 76.33*%/70.81* | 65.45/61.15 72.04%/65.94* | 65.03/61.06 70.16%/64.60*
76.95/71.21 82.43%/74.54* | 78.05/66.07 89.35%/81.79* | 72.29/68.37 79.14%/73.40% | 75.64/67.84 79.61%/73.71* | 65.70/61.29 73.87*/67.38* | 67.88/62.96 72.95%/66.82*
15 | 84.13/77.67 88.02%/80.35* | 85.75/77.23  90.08%/82.55% | 73.22/69.10  80.51%/74.62* | 76.99/70.99 80.90%/74.66* | 65.89/61.45 74.73*/68.07* | 71.19/65.04 74.00%/67.67*

MAAT | 10

5 |69.22/61.99 73.77%/65.89* | 73.70/52.68 87.22%/78.79* | 71.45/67.80 77.35%/72.49% | 73.90/61.49 77.52*%/71.17* | 66.64/62.10 72.92%/66.77* | 65.42/61.24 70.41%/65.04*
78.19/71.82 86.85%/78.74* | 77.87/68.43 89.77%/81.07* | 73.04/69.96 80.30%/74.45% | 76.08/66.30 80.43%/74.41% | 66.94/62.29 74.68*/68.20* | 68.66/63.78 73.83%/67.63*
15 | 84.93/77.95 87.92%/79.89% | 86.20/78.66  89.82%/81.49* | 74.05/68.94 81.61%/75.62* | 77.26/70.72 81.68%/75.69* | 67.23/62.34 75.48*/68.89* | 71.58/65.74 74.96%/68.65*

BOBCAT | 10

5 | 73.84/67.21 74.97%/65.46* | 73.83/66.17 87.36%/78.00% | 71.58/67.68 77.79%/72.16* | 75.00/66.34 77.15%/71.03* | 66.77/62.11 72.18%/66.40* | 65.93/60.89 70.76%/65.20*
78.93/71.96  87.75%/80.78* | 78.67/68.83  90.19%/80.87* | 72.57/68.48 79.81%/73.76* | 76.81/69.19 79.43%/73.37* | 67.63/62.61 74.43*/67.98* | 68.52/63.67 73.47%/67.29*
15 | 82.11/74.60 89.82%/82.37* | 84.82/76.57 90.93%/82.50* | 73.70/69.37 81.92*%/75.94* | 78.47/69.32 81.24%/74.93% | 68.36/62.98 75.42*/68.83* | 71.44/65.89 74.64%/68.38*

NCAT 10

5 | 68.46/61.51 70.87%/63.78* | 73.21/52.68 87.19%/79.04* | 71.80/68.13 77.70%/72.60% | 74.40/62.59 76.35%/70.95* | 66.60/62.07 72.80%/66.76% | 65.95/60.82 70.61%/65.24*
78.55/72.42 88.12%/80.64* | 78.16/66.51 90.17%/82.81* | 73.48/69.25 80.11%/74.37* | 76.68/69.23 79.83%/74.09% | 66.95/62.23 74.72*/68.30* | 67.87/63.19 73.75%/67.76*
15 | 85.37/78.10  90.50%/82.64* | 84.74/76.00 90.87%/83.37* | 74.41/70.20 81.51%/75.46* | 78.07/71.58 81.40%/75.62* | 67.19/62.45 75.50*%/69.02* | 71.06/65.37 74.72%/68.65*

BECAT | 10

5 | 70.87/63.29 71.62%/65.07* | 72.92/52.68 85.97*/73.17* | 71.82/68.03 77.18%/72.67* | 74.45/62.58 77.48%/72.39* | 66.40/62.17 72.48%/66.52*% | 65.22/61.72 70.64%/64.90*
79.11/71.97  88.03%/80.64* | 77.98/67.33 89.77%/81.61* | 73.18/69.06 81.03%/75.27* | 76.67/68.06 80.08%/74.45% | 66.63/62.27 74.56*/68.08* | 67.96/63.13 73.46%/67.39*
15 | 84.85/78.21 90.42%/82.58% | 85.66/79.94 90.49%/81.91* | 74.12/69.96 82.49%/76.45* | 78.14/71.30 81.44%/75.35% | 66.77/62.28 75.43*/68.86* | 72.06/65.34 74.63%/68.32*

Table 2: Overall performance with different CAT selection strategies. “OL” stands for “original”, referring to the original method, and “FA”
denotes the proposed FACD enhancement applied to the original method. Other details are as same as Table 3.

Dataset | FrcSub ‘ EDMCup2023 ‘ NeurIPS2020
F | IRT \ NCD \ IRT \ NCD \ IRT \ NCD
Metric | AUC (%)
Sep | 5 0 15 | s 10 5 | 5 10 | s 10 5 | s 0 15 | s 10 15

OR 69.09 7798 89.76 | 76.80 85.85 89.62 | 74.64 78.70 79.96
RCD 66.84 7559 86.83 | 73.52 80.17 86.64 | 75.70 80.01 82.07
FA 71.62*% 88.03*% 90.42 | 85.97* 89.78*% 90.49% | 77.18 81.03 82.49

7451 7649 7818 | 69.15 7093 7230 | 68.05 69.77 72.18

7297  76.19  78.19 | 70.54 7383 74.66 | 66.81 6833  70.69
76.95% 80.53* 82.01% | 72.48 7457 7543 | 70.64* 73.46% 74.63*

Metric |

ACC (%)

Sep | 5 10 5| s 10 15 | 5 10

| 5 10 15 | 5 10 15 | s 10 15

OR 62.59 6871 7859 | 66.73 7530 79.12 | 69.85 72.64 73.57

RCD 60.94  71.07 82.02 | 63.90 7043  75.69 | 70.60 73.62 75.75
FA 65.07* 80.14* 82.58 | 73.17* 81.61* 8191 | 72.67 7527 76.45

69.34  71.11  71.70 | 62.34 6448 65.60 | 63.27 63.87 165.76
68.44  70.78  71.77 | 6491 6749 68.10 | 6226 63.31  64.60
70.62*% 74.35% 75.41% | 66.52* 68.08 68.86% | 64.90% 67.39% 68.32*%

Table 3: Overall performance with extraction modules in IRT and NCD using BECAT. “FA” denotes the proposed FACD. “OR” denotes
ORCDFE. “IF” denotes interaction function. In each column, an entry with the best mean value is marked in bold and underline for the runner-
up. The standard deviation is not shown in the table since it is very low (less than 0.05). If the mean value of the best model significantly
differs from the runner-up, passing a ¢-test with a significance level of 0.05, then we denote it with “*” at the corresponding position.

As shown in Table 3, our FACD consistently outperforms
RCD and ORCDF in CAT system and demonstrates relatively
stable results across different CDMs. This is primarily be-
cause RCD and ORCDF lack stability research for dynamic
graph modules. Furthermore, they fail to effectively model
the personalized sequence of questions for each student and
thus do not assess the importance of student response infor-
mation, making them sensitive to noise, such as low-quality
response data, which reduces their robustness. It can be ob-
served that FACD not only ensures strong performance and
robustness but also effectively mitigates BECAT’s cold start
issue as mentioned in original paper [Zhuang er al., 2023].
We also provide further comparison with traditional classical
GNN frameworks in Appendix D.5.

5.3 Ablation Study

To showcase the contributions of each component in FACD,
we conduct an ablation study on FACD in dataset EDM-
Cup2023, which is divided into the following three versions.
“FA-C” and “FA-P” means removing dynamic collaborative
diagnosis module and dynamic personalized diagnosis mod-
ule, respectively. “OL” means the base CDMs. As shown
in Table 4, the proposed method outperforms the other two
ablated versions, indicating that each component contributes
significantly to different stages of CAT, resulting in the over-

Dataset | EDMCup2023

IRT NCD
Strategy | Step | OL  FA-C FA-P  FA OL FAC FAP FA

5 | 7079 7562 7543 77.06 | 1350 7476 7575 76.34
Random | 10 | 7230 7758 7701 79.14 | 7565 7801 79.15 79.62
15 | 7323 7878 7931 80.51 | 77.00 80.63 80.68 80.91

5 7145 76.67 7561 7136 | 7391 7502 76.54 77.53
MAAT 10 | 73.04 79.50 77.63 80.31 | 76.08 78.75 79.74 80.44
15 | 7406 80.40 79.23 81.61 | 77.26 80.96 80.70 81.69

5 | 7180 7647 7585 7171 | 7441 7514 7555 17636
NCAT | 10 | 7348 7931 7921 8011 | 76.69 78.63 79.29 79.83
15 | 7442 8091 79.84 8152 | 78.08 80.92 80.67 8141

5 71.83 7722 7659 7748 | 7446 7557 7570 76.95
BECAT | 10 | 73.18 79.70 79.01 80.09 | 76.68 78.42 79.36 80.53
15 | 7412 81.06 80.05 81.45 | 78.15 80.58 81.29 82.01

Table 4: Overall performance of ablation study in EDMCup2023
dataset. Details are as same as Table 3.

all effectiveness of the model. Early performance relies on the
dynamic collaborative diagnosis, while later stability comes
from the dynamic personalized diagnosis.

5.4 In-Depth Analysis of FACD’s Advantages

Inference Time Comparison. We compare the inference
speeds of different extraction modules and the original CDMs
on the EDMCup2023 dataset, specifically the average CPU
time per round spent on training and inference after the CAT
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Figure 4: Pretraining ratio analysis.

system selects a question for each student. As shown in Fig-
ure 3, RCD, using complex graph aggregation functions, has
slower inference speeds and higher resource consumption.
Both FACD and ORCDF, using lighter aggregation methods
similar to LightGCN [He et al., 2020], are faster, but OR-
CDF incurs additional costs due to its more complex response
graph. Our method achieves high-quality cognitive diagnosis
with limited computational resources, making it well-suited
for modern online education platforms. Detailed time and
space complexity analysis is provided in Appendix B.2.

Generalization Analysis on Pretrain Ratio. We eval-
uate the performance of the original CDMs on the EDM-
Cup2023 dataset with FACD integration at different pretrain
ratios p; = {0.0,0.1,0.2,0.3}, which represent the portion
of the dataset used for pretraining before the CAT process.
As shown in Figure 4, the original CDMs show performance
drops with smaller pretrain ratios and require more steps in
the CAT process. However, after integrating FACD, models
quickly improve their performance in subsequent question se-
lection steps, helping CDMs better align with students’ real
mastery levels.

NCD, Step=1 NCD, Step =5 NCD, Step =10

FA-NCD, Step = 1 FA-NCD, Step = 5 FA‘NCIID(; Step =

Figure 5: t-SNE scatter plots for the distribution shift of students’
Mas on NCD and FA-NCD.

The Distribution Shift of Students’ M as. Students can
naturally be grouped based on their performance, such as
high or low correct response rates, reflecting differences in
their mastery level. To visualize this, we use t-SNE [Van der
Maaten and Hinton, 2008] to project Mas onto a two-
dimensional plane (the 2D axes in t-SNE are for visualization
only and hold no specific meaning), shading the scatter plot
based on correct rates, where darker shades indicate higher
correct rates. In Figure 5, the student representations learned
by NCD with FACD on the Neur[PS2020 dataset exhibit clear
clustering by the fifth step, becoming more distinct by the
tenth step. In contrast, the standard NCD model shows no
clear clustering at the fifth step, only displaying faint group-
ings by the tenth step. This demonstrates FACD’s rapid adapt-
ability in both representation learning and interpretability.
Besides the visualization to show our model’s interpretabil-
ity, we also provide further comparison on the quantifiable
interpretability metrics, such as DOA, in Appendix D.4.

5.5 Hyperparameter Analysis

We study the impact of the hyperparameters on the dynamic
graph layer, GRU Layer, embedding dimension and graph
mask ratio on the EDMcup2023 dataset. Specially, the model
achieves optimal performance when the number of graph lay-
ers is set at 1 and 2, the number of GRU layers is set to 3,
the embedding dimension is set to 32 or 64 and the graph
mask ratio is set to 0.1 and 0.2. The detailed hyperparameter
analysis and figure is provided in Appendix D.6.

6 Conclusion

In this paper, we propose a fast adaptive cognitive diagnosis
framework called FACD for computerized adaptive testing.
FACD focuses mainly on addressing the slow improvement
issue of CDM in the early stage of CAT. Two dynamic diag-
nosis modules are introduced to capture collaborative infor-
mation from similar students and critical information from
individual response sequences, achieving fast adaptability.
FACD still has some limitations, e.g., a lack of sufficient theo-
retical analysis to ensure effective alignment with CAT ques-
tion selection strategies. Thus, future research could focus on
strengthening the theoretical basis to enhance the interaction
between CD and CAT.
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