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Abstract

Pre-trained methods for multi-view chest X-ray im-
ages have demonstrated impressive performance in
chest disease diagnosis, but there are still some lim-
itations that need to be addressed. Firstly, many
pre-trained methods require full fine-tuning pre-
trained models to induce significant computational
resource usage and the prior knowledge destruc-
tion. Secondly, many pre-trained methods cannot
efficiently balance consistency and complementar-
ity among views, leading to information loss and
performance degradation. To tackle these issues,
we propose MCD-CLIP, a CLIP-based multi-view
chest disease diagnosis method. It uses visual
prompts and the Prompt-Aligner to align prompts
across views, along with the additional text repre-
sentation for efficient transfer. Moreover, we em-
ploy adapters to disentangle the image represen-
tation, maintaining consistency and complemen-
tarity from different views. Experimental results
on the chest X-ray dataset demonstrate that MCD-
CLIP achieves comparable or better performance
on a variety of tasks with 94.31% fewer tunable
parameters compared to state-of-the-art methods.
The source codes are released at https://github.com/
YuzunoKawori/MCD-CLIP.

1 Introduction
Multi-view (or multi-modality) chest X-ray images are
crucial in diagnosing chest disease, as they can capture
more comprehensive information compared to single-view
data [Raoof et al., 2012]. For instance, the lateral view of
a chest X-ray image reveals areas of lungs that are not visible
in the frontal view [Feigin, 2010]. Hence, recent deep learn-
ing methods for computer-aided diagnosis of chest disease
pay more attention on multi-view data [Qin et al., 2018].

Previous deep learning methods for chest disease diag-
nosis using multi-view data can be classified into two cate-
gories, i.e., traditional deep learning methods and pre-trained
methods. Traditional deep learning methods use deep neural

∗Corresponding Author

networks as feature encoders to extract features from multi-
view chest X-ray images. For instance, DualNet [Rubin et
al., 2018] trains a modified version of DenseNet-121 [Huang
et al., 2017] to extract features for each view independently,
and then concatenates features from different views. MVC-
NET [Zhu and Feng, 2021] incorporates a BPT-branch to
fuse features between two views during the feature extrac-
tion stage. However, traditional deep learning methods are
difficult to extract the intrinsic connection of features cross
different views, so that they cannot effectively utilize multi-
view information.

Recently, pre-trained methods increasingly leverage the at-
tention mechanism of transformer [Vaswani, 2017] to either
discover local correlations among views or capture view-
specific information. For instance, CVT [Van Tulder et al.,
2021] introduces attention blocks of the cross-view trans-
former to fuse feature maps generated by ResNet-18 [He et
al., 2016], thereby capturing local correlations across views.
MV-HFMD [Black and Souvenir, 2024] employs knowledge
mutual distillation to merge complementarity extracted by
transformer from different views. Chest X-ray images of-
ten have multiple views and are limited by the sample size,
which can lead to over-fitting. However, pre-trained models
can effectively mitigate over-fitting due to their strong gen-
eralization ability, which is why they are gaining increasing
attention in the field of chest disease diagnosis.

However, previous pre-trained methods still have limita-
tions that need to be addressed. Firstly, existing methods
generally use the full fine-tuning to adapt pre-trained mod-
els to downstream tasks for effectiveness. However, the full
fine-tuning paradigm often destroys the prior knowledge of
pre-trained models, as well as results in the degradation of
the model generalization ability. For instance, while CVT
excels at fusing information from different views during fea-
ture extraction, it is typically limited to dual-view data and
is difficult to extend to multiple views. Secondly, exist-
ing methods generally cannot efficiently balance consistency
and complementarity among views, despite their importance
for downstream tasks in various domains [Xie et al., 2020;
Wang et al., 2022; Mo et al., 2023]. As a result, this may
result in either performance degradation or lead to exces-
sive computational costs. For instance, MV-HFMD employs
transformers with unshared weights, increasing the model’s
computational burden and potentially introducing redundant
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Figure 1: The flowchart of the proposed MCD-CLIP, involving three modules, i.e., the Prompt Alignment (blue block), the Representation
Disentanglement (green block), and the Text Representation Enhancement (purple block). Specifically, given a multi-view image, MCD-
CLIP first obtains its token embedding using the CLIP tokenizer, then adds visual prompts for the first view. The Prompt Alignment is
further designed to obtain the visual prompts for the remaining views. Next, MCD-CLIP obtains the image representation using the frozen
pre-trained image encoder. The Representation Disentanglement disentangles the image representation for each view into the common image
and the private image representation. The common image representation is used as the final image representation, which is projected to the
same dimension as the final text representation via a Multi-Layer Perceptron (MLP). For the text modality, MCD-CLIP uses a fixed template
that is encoded into the text representation by the frozen pre-trained text encoder. Additionally, in the Text Representation Enhancement
module, it adds the common text representation with learnable parameters and the private text representation, which obtained from the private
image representation by RepreNet to the text representation as the final text representation. Finally, the similarities cross different views are
fused using weighted averaging to generate the final decision.

information.
To address the above issues, in this paper, we propose

a new method with the Prompt Alignment, the Representa-
tion Disentanglement, and the Text Representation Enhance-
ment for Multi-view Chest Disease Diagnosis with the pre-
trained CLIP (MCD-CLIP for short), as shown in Figure
1. Specifically, in the Prompt Alignment, we first introduce
visual prompts to adapt pre-trained models to medical im-
age domain. After that, we investigate the Prompt-Aligner
to align visual prompts of different views. As a result, the
Prompt Alignment efficiently tunes prompts with few param-
eters maintaining prompts consistency across views, thus ex-
ploring the first issue of previous methods. In the Representa-
tion Disentanglement, we design the common adapter and the
private adapter to disentangle the image representation from
the frozen pre-trained image encoder into the common im-
age representation and the private image representation. As a
result, the Representation Disentanglement efficiently main-
tains consistency cross views and complementarity in each
view, thus exploring the second issue of previous methods.
In the Text Representation Enhancement, we further add the
additional text representation to enhance the expressiveness
of the text representation. As a result, the Text Represen-
tation Enhancement efficiently adapts CLIP [Radford et al.,
2021] to multi-view chest X-ray images. Compared to pre-
vious methods, the main contributions of our method can be
summarized as:

• We propose a new multi-view efficient transfer method,
which can be adapted to the diagnosis of chest disease
by training only a small number of parameters while im-
proving the expressiveness of the text representation by

adding the additional text representation.

• We propose a new fusion method to efficiently extract
the representation of multi-view data by preserving both
consistency and complementarity across views.

• We demonstrate the effectiveness of our method on the
large public dataset with five scenarios applied to the
sample labels. We are the first work to conduct all sce-
narios applied to the sample labels in one framework on
multi-view chest disease diagnosis.

2 Method
2.1 Motivation
Existing pre-trained methods generally adapt to multi-view
chest disease diagnosis by modifying pre-trained parameters
in a full fine-tuning strategy [Van Tulder et al., 2021]. How-
ever, the full fine-tuning strategy updates all parameters of
pre-trained models, which requires a lot of matrix computa-
tions and backpropagation steps, leading to expensive com-
putational resources. Moreover, the full fine-tuning strategy
destroys the prior knowledge in pre-trained models and may
cause over-fitting to task-specific data, leading to suboptimal
generalization ability of pre-trained models. Therefore, it is
necessary to adopt efficient transfer learning to maintain good
generalization performance of pre-trained models.

In addition, chest X-ray images usually contain multiple
views, describing the specific lesion area from different view-
points. Therefore, different views contain consistency of the
lesion area, accurately describing the lesion area [Hashir et
al., 2020]. Moreover, each view contains complementarity
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to other views, providing a more comprehensive description
of the lesion area [Ittyachen et al., 2017]. To obtain con-
sistency or complementarity from multiple views, existing
methods for multi-view chest disease diagnosis usually use
middle, late, and hybrid fusion mechanisms [Black and Sou-
venir, 2024]. However, all of these mechanisms cannot effi-
ciently and effectively balance consistency and complemen-
tarity among views well. Specifically, the middle and late fu-
sion can maintain either consistency or complementarity only,
leading to a decline in another. In addition, the hybrid fusion
balances consistency and complementarity among different
views, but it incurs the cost of computing resources. There-
fore, it is necessary to efficiently consider both consistency
and complementarity among views.

Based on the above analysis, it is intuitive to tune pre-
trained models as well as capture consistency and comple-
mentarity in an efficient and effective way. Therefore, there
are two questions to be answered. First, how to achieve multi-
view disease diagnosis by tune few parameters to improve the
model efficiency? Second, how to simultaneously maintain
consistency and complementarity efficiently and effectively,
under their conflict nature?

However, existing methods rarely consider these issues
comprehensively. Recently, surprising progress has been
made in efficient transfer learning based on CLIP [Rad-
ford et al., 2021], migrating pre-trained models to down-
stream tasks with few tunable parameters [Zhou et al., 2022a;
Zhou et al., 2022b; Ghosal et al., 2024; Gao et al., 2024a;
Chen et al., 2024; Zhang et al., 2022]. Unfortunately, due
to the multi-view nature of X-ray chest images, direct ap-
plication of these methods for single-view data may result
in poor performance degradation. In addition, many medi-
cal applications, such as synthesis [Ben-Cohen et al., 2019],
cross modality segmentation [Yang et al., 2019], and gen-
erating rib-suppressed chest X-ray [Han et al., 2022], adopt
the concept of representation disentanglement to extract dis-
tinct types of representation, thereby enhancing performance.
However, they may not be suitable for chest disease diag-
nosis. These applications are limited by performance of en-
coders and do not achieve semantic disentanglement.

Therefore, in this paper, we propose a novel multi-view
chest disease diagnosis framework with the Prompt Align-
ment, the Representation Disentanglement, and the Text Rep-
resentation Enhancement to address the two issues mentioned
above.

2.2 Preliminary
Our method designs the Prompt Alignment, the Representa-
tion Disentanglement, and the Text Representation Enhance-
ment to adapt pre-trained models to medical image data. To
do this, we first briefly introduce the widely adopted pre-
trained model, i.e., Contrastive Language-Image Pre-training
(CLIP) [Radford et al., 2021]. Specifically, it consists of two
modules, i.e., image encoder and text encoder:
(1) Image encoder V(·) aims to convert image into the im-
age presentation through tokenization and encoding oper-
ations. Specifically, the tokenization divides the original
image into a set of patches H = {h1,h2, · · · ,hn} and
embedded in patches to obtain a set of token embedding

T = {t1, t2, · · · , tn}. After that, the encoding employs the
ViT [Dosovitskiy, 2020] structure to obtain the final potential
image presentation z ∈ R1×D, i.e.,

e0 = [xcls, t1, t2, · · · , tn] +Epos, (1)

z = ViT(e0), (2)

where Epos ∈ R(n+1)×D is the positional embedding, ViT(·)
is the frozen pre-trained image encoder, xcls is pre-trained
class token, n is the number of patches and D is the dimen-
sion of the final embedded features, z is obtained by applying
a projection layer to the xcls of the last transformer layer.
(2) Text encoder T (·) aims to convert text prompts into the
text representation. Similar to the image encoder, the text
encoder also includes the tokenization and encoding opera-
tions. To do this, CLIP first generates text prompts manually.
Specifically, for tasks with c-class classification, its category
label is CLS = {cls1, cls2, · · · , clsc}, text prompts for the
i-th class can be represented as “a photo of a [clsi].” After
that, the tokenization divides text prompts into a set of to-
ken embedding M = {m1,m2, · · · ,mc}. In addition, the
encoding also employs a transformer-based model [Vaswani,
2017] to obtain the text representation, i.e.,

W = T (M), W ∈ Rc×D, (3)

where c is number of classes.
Finally, for a given image I, its probability to each target

class can be given by:

p (y = i|I) = exp (cos (V (I) , T (mi)) /τ)∑c
j=1 exp (cos (V (I) , T (mj)) /τ)

, (4)

where cos(·, ·) is the cosine similarity operation, τ is the tem-
perature coefficient. The class token within each prompt mi

is replaced by the corresponding word embedding vectors of
the i-th class name.

2.3 Prompt Alignment
Previous methods use the full fine-tuning to adapt pre-trained
model parameters to multi-view chest X-ray datasets [Black
and Souvenir, 2024; Van Tulder et al., 2021]. However, this
not only destroys the prior knowledge in pre-trained models
but also weakens generalization and scalability of pre-trained
models. Therefore, to address this issue, a intuitive idea is
to investigate efficient transfer learning to achieve tuning of
pre-trained models with a small number of parameters.

To do this, we refer to existing prompt-tuning methods
(e.g., VPT [Jia et al., 2022]) for pre-trained models by tun-
ing a few learnable prompts. Specifically, we first insert a set
of learnable shallow prompts between the learnable class to-
ken and the token embedding. After that, we freeze encoder
backbone network parameters and only tune prompts during
training, i.e.,

z0 = [xcls,P ,T ′], z0 ∈ R(n+k+1)×D, (5)

where P ∈ Rk×D is a set of learnable prompts, T ′ ∈ Rn×D

is obtained by summing the token embedding and the position
embedding, and k is the number of prompts. As a result,
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such prompt-tuning adapts the model to understand different
downstream tasks with few parameters.

However, the above prompt-tuning aims to optimize pre-
trained models for single-view data. As a result, pre-trained
models may ignore prompts consistency of different views of
the same sample when inputs are multi-view data. Therefore,
unconstrained prompts may prevent the model from recogniz-
ing that the views originate from the same sample, ultimately
degrading performance of multi-view classification.

Based on the above analysis, we hope pre-trained models
can understand prompts consistency of different views from
the same sample, thus outputting discriminative representa-
tion for downstream tasks. To do this, a natural idea is to
align prompts from different views to capture consistency.
Therefore, inspired by the multi-modal pre-trained model
MaPLe [Khattak et al., 2023], we investigate a Prompt-
Aligner to align prompts from different views. Specifically,
while prompts for the first view are directly generated using
tunable parameters, prompts for the other views are derived
by the Prompt-Aligner, i.e.,

Pi = ProAligneri(P1), i ≥ 2, (6)

where ProAligneri(·) is a linear layer to align prompts. As
a result, we use the Prompt-Aligner to map prompts of dif-
ferent views into the similar semantic space, which maintains
prompts consistency of different views.

Compared to the original VPT method, our method is able
to maintain prompts consistency of different views. More-
over, our method does not introduce extra tunable parameters
than the VPT method, as our method only trains the parame-
ters of the initial view’s prompt and the Prompt-Aligner, thus
achieving efficiency.

2.4 Multi-View Representation Disentanglement
With the Prompt Alignment, we input multi-view chest X-
ray data along with corresponding prompts into the frozen
pre-trained image encoder, resulting in the image represen-
tation that capture discriminative information in each view.
Actually, the image representation of different views reflect
characteristics of the sample as observed from various per-
spectives. As a result, they reflect consistency of the sample,
but also contain complementarity that the other views do not
have. However, directly utilizing the image representation
from the frozen pre-trained image encoder may mix consis-
tency and complementarity to cause negative impacts [Yang
et al., 2022]. Therefore, it is crucial to effectively fuse in-
formation from different views. Unfortunately, existing pre-
trained methods struggle to balance consistency and comple-
mentarity effectively [Van Tulder et al., 2021] or result in
high computational costs [Black and Souvenir, 2024]. Conse-
quently, these methods not only hinder model transferability
but also impose significant computational overhead.

To address these challenges, we propose to disentangle the
image representation extracted by the frozen pre-trained im-
age encoder. Specifically, we disentangle the image represen-
tation from different views into the common image represen-
tation and the private image representation.

First, we design the Common-Adapter to map the image
representation from different views to the same common se-

mantic space. Formally, for the i-th view, its common repre-
sentation is obtained as follows:

zi
com = ComAdapter(zi), zi

com ∈ R1×D, (7)

where all views use the same weighted ComAdapter(·).
Moreover, we design the Common-Adapter by following the
structure of the CLIP-Adapter [Gao et al., 2024b], which is
built with a two-layer neural network structure. For the com-
mon image representation of different views, they are inclined
to depict the common characteristics that observed from dif-
ferent views, as the same subject will present different fea-
tures under different viewpoints. As a result, our method de-
signs a Common-Adapter with shared weights to better ex-
tract consistency among views.

After that, we further design different Private-Adapters to
obtain the private image representation of different views.
Formally, for the i-th view, the private image representation
is obtained as follows:

zi
pri = PriAdapteri(z

i), zi
pri, z

i ∈ R1×D, (8)

where zi is the image representation of the i-th view. For the
private representation of different views, they are expected to
contain different information from different viewpoints. As
a result, our method designs separate Private-Adapters with
non-shared weights to better extract complementarity that is
unique to each view.

Finally, in this module, we train only a few parameters of
Adapters to disentangle the image representation, thereby ob-
taining both the common image representation and the private
image representation for different views. As a result, the com-
mon image representation highlights the information shared
among views, ensuring consistency among them. Meanwhile,
the private image representation retains unique information
specific to each view as much as possible, ensuring comple-
mentarity in each view. Overall, the module realizes the bal-
ance between consistency and complementarity in multi-view
fusion with only a small number of parameters, thus further
achieving the efficiency.

2.5 Disentangled Representation Utilization
With the Representation Disentanglement, our method di-
vides the image representation into the common image rep-
resentation and the private image representation. As a result,
the common image representation contains consistency, but
cannot capture more detailed information in each view. More-
over, the private image representation contains complemen-
tarity from each view, but it cannot accurately describe the
main information among views. Therefore, it is a challenge to
use the common image representation and the private image
representation effectively, as they cannot be directly fused for
decision-making due to their distinct characteristics. To do
this, we use the private image representation to enhance the
expressiveness of the text representation. Moreover, we use
the common image representation for the multi-view classifi-
cation decision.

Text Representation Enhancement
Under the setting of text prompts, one popular method uses
a fixed template that manually selected, e.g., “a photo of a
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[cls]”. The fixed manual template has a good generalization
performance, but the quality of the fixed template may have a
large impact to performance [Zhou et al., 2022b]. Moreover,
only using a fixed template with no tunable parameters can-
not understand the specialized medical terminology well. As
a result, semantic bias may occur and result in performance
degradation. To alleviate the issue of the manually fixed tem-
plate, another popular practice is CoOp [Zhou et al., 2022b],
which uses optimized parameters to automatically select the
template and shows good performance on most tasks. How-
ever, CoOp accidentally memorizes background information
of the target class during the training phase [Ming et al., 2022;
Miyai et al., 2023]. Moreover, most of the backgrounds of the
medical images are often similar and meaningless, memoriz-
ing these background information may accidentally reduce
the performance of the model.

To alleviate the above issues, we propose a fixed template
enhancement technique to enrich the expressiveness of the
text representation by adding the additional text representa-
tion, i.e., the common text representation and the private text
representation. Specifically, we first input the fixed template
prompts (e.g., “a photo of normal/ abnormal lungs.”) to the
frozen pre-trained text encoder thus obtain the text represen-
tation W = {w1,w2, · · · ,wc}, and then propose a learn-
able common text representation rcom, followed by adding it
to the text representation to capture and describe consistency
among views. Formally, the common text representation is:

w′
j = [wj , rcom], w′

j ∈ R1×(A+D), rcom ∈ R1×A, (9)

where A is the dimension of the common text representation.
In Eq. (9), the common text representation complements the
fixed text template to provide consistency for multi-view data.
As a result, the common text representation enhances the ex-
pressiveness of consistency among views.

Moreover, due to differences among views, different views
observe different parts and perspectives of chest X-ray data.
If the differences among views cannot be distinguished and
only the common text representation is used, it may lead to
information loss as well as incorrect judgments. Therefore,
we utilize the private image representation as the private text
representation for different views, because the private image
representation contains rich complementarity from different
views. However, the semantic space of the text and the image
representation are different. To address this issue, we design
a RepreNet to further convert complementarity of different
views and obtain the private text representation, i.e.,

ripri = RepreNet(zi
pri), ripri ∈ R1×B , (10)

where RepreNet(·) is designed as a linear layer or Multi-
Layer Perceptron (MLP), and B is the dimension of the pri-
vate representation. In Eq. (10), the RepreNet converts the
private image representation into the private text representa-
tion. As a result, the RepreNet improves the quality of the
private text representation and achieves the cross-modal fu-
sion.

After that, we add the private text representation to the
text representation as the final text representation, thus cap-
turing and describing complementarity from different views,

i.e., Xi =
{
xi
1,x

i
2, · · · ,xi

c

}
for the i-th view, where

xi
j = [w′

j , r
i
pri], xi

j ∈ R1×(A+B+D). (11)

In Eq. (11), the private text representation complements
the fixed text template to provide unique information different
from other views. As a result, the private text representation
enhances the expressiveness of complementarity.

In this module, we generate the common text representa-
tion with learnable parameters and obtain the private text rep-
resentation by fusing the visual modality, so it enriches the
expressiveness of the text presentation and preserves the gen-
eralization properties of the text fixed template.

Multi-View Fusion
We use the final text representation and the common image
representation as the final image representation to compute
prediction probabilities of different views for the target class
separately. To do this, we first compute the cosine similarity
of different views for each class. the cosine similarity be-
tween the i-th view and the j-th class can be given by:

sij = cos
(
MLP(zi

com),xi
j

)
, (12)

where MLP(·) is used to map the final image representation
to the same dimensions as the final text representation.

However, the quality of the representation from different
views is different. For instance, for multi-view X-ray chest
image, the lateral view contains the information which is not
present in the frontal view, enriching the feature expressive-
ness of the sample. However, the frontal view still observes
most of the chest area. Therefore, for poor quality lateral
views with less information, we propose to reduce influence
of those views in the decision-making stage. Moreover, for
the high-quality frontal views, we propose to increase their
influence. Based on the above analysis, we assign weights of
cosine similarities of different views, i.e., the similarity of the
i-th class after weighted fusion for two views is:

si = α× s1i + (1− α)× s2i , (13)

where α is the view weighting factor. Moreover, it allows
the selection of appropriate weighting ratios under different
tasks. As a result, our method enhances generalization of the
model across different tasks by weighting and fusing the sim-
ilarity of different views.

Finally, for an multi-view chest X-ray data input, its prob-
ability to the i-th class can be given by:

p (y = i|{I1,I2}) =
exp (si/τ)∑c
j=1 exp (sj/τ)

. (14)

Moreover, during the model training, all tunable parame-
ters are optimized by cross-entropy loss:

LCE = − 1

N

N∑
n=1

c∑
i=1

yni log ŷni , (15)

where N is the total number of training examples, yi = 1 if it
equals to the truth category, otherwise yi = 0, and the value
of the ŷi equals to p (y = i|{I1,I2}).
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Task PointCLIP TaskRes CLIP-Adapter CoOp Lin.CLIP Zer.CLIP DualNet MVC-NET CVT MV-HFMD Ours

Atelectasis 0.700 0.574 0.553 0.718 0.634 0.529 0.663 0.650 0.716 0.745 0.759
Cardiomegaly 0.844 0.568 0.624 0.847 0.791 0.578 0.884 0.878 0.862 0.871 0.872
Consolidation 0.786 0.517 0.579 0.794 0.711 0.532 0.802 0.790 0.809 0.821 0.825
Edema 0.825 0.467 0.552 0.822 0.771 0.520 0.812 0.807 0.841 0.854 0.843
Enlarged Cardiomed. 0.753 0.481 0.583 0.757 0.711 0.558 0.760 0.747 0.761 0.766 0.776
Fracture 0.716 0.508 0.521 0.717 0.624 0.518 0.701 0.679 0.701 0.745 0.765
Lung Lesion 0.679 0.482 0.526 0.713 0.639 0.514 0.628 0.638 0.679 0.693 0.700
Lung Opacity 0.739 0.495 0.599 0.735 0.677 0.561 0.730 0.712 0.736 0.722 0.746
Pleural Effusion 0.891 0.591 0.663 0.874 0.813 0.547 0.906 0.904 0.917 0.921 0.923
Pleural Other 0.658 0.543 0.617 0.691 0.661 0.591 0.657 0.669 0.742 0.751 0.773
Pneumonia 0.689 0.551 0.569 0.681 0.623 0.542 0.665 0.687 0.701 0.704 0.723
Pneumothorax 0.787 0.456 0.617 0.765 0.701 0.586 0.776 0.762 0.805 0.810 0.810
Support Devices 0.664 0.549 0.531 0.672 0.625 0.563 0.607 0.625 0.702 0.676 0.700

Average 0.748 0.522 0.579 0.753 0.691 0.549 0.738 0.735 0.767 0.775 0.786

Table 1: The average AUC-ROC of all methods with five scenarios on CheXpert. “Average” is the average results over 13 classification tasks.

3 Experiments
3.1 Experimental settings
Dataset
CheXpert [Irvin et al., 2019] is a large publicly available
chest X-ray image dataset. We follow [Van Tulder et al.,
2021; Black and Souvenir, 2024] to filter, pre-process, and
divide the original dataset. CheXpert includes four kinds
of labels, i.e., “positive”, “negative”, “uncertain” , and “un-
known”. Previous studies regard the “uncertain” label as
one of five scenarios, i.e., U-Ignore, U-Zeros, U-Ones, U-
SelfTrained and U-MultiClass. However, to the best of our
knowledge, there is no study considering all five scenarios on
multi-view chest disease diagnosis. Therefore, to provide a
more comprehensive and in-depth evaluation of our method,
we report the average results using all five scenarios.

Comparison Methods
The comparison methods include CLIP-based methods, tra-
ditional methods, and pre-trained methods. Specifically, the
comparison methods include six CLIP-based methods Point-
CLIP [Zhang et al., 2022], TaskRes [Yu et al., 2023], CLIP-
Adapter [Gao et al., 2024b], CoOp [Zhou et al., 2022b],
Linear-probe CLIP [Radford et al., 2021], and Zero-shot
CLIP [Radford et al., 2021], two traditional deep learning
methods DualNet [Rubin et al., 2018] and MVC-NET [Zhu
and Feng, 2021], two pre-trained methods CVT [Van Tulder
et al., 2021] and MV-HFMD [Black and Souvenir, 2024].

Implementation Details
All experiments are conducted with 2 NVIDIA GeForce
RTX-4090 GPUs. We use the CLIP pre-trained on Ima-
geNet [Deng et al., 2009] as the backbone model. For all
CLIP-based methods, we uniformly use ViT-B/32 as the im-
age encoder. Unless otherwise specified, all methods are opti-
mized using stochastic gradient descent with a fixed learning
rate of 0.0001, weight decay of 10e-5, a view weighting fac-
tor α of 0.5, a batch size of 64.

3.2 Experimental Results
Performance Comparison
We evaluate the effectiveness of our method on a large-scale
multi-view chest X-ray dataset. Table 1 summarizes the av-

Method Tunable Param (M) AUC-ROC

DualNet [Rubin et al., 2018] 47.02 0.738
MVC-NET [Zhu and Feng, 2021] 71.10 0.735
CVT [Van Tulder et al., 2021] 23.67 0.767
MV-HFMD [Black and Souvenir, 2024] 36.05 0.775
Ours 2.05 0.786

Table 2: Comparison of the number of tunable parameters and the
AUC-ROC for different methods on CheXpert.

erage performance of all methods. Obviously, our method
achieves competitive performance than previous methods.

Firstly, experimental results demonstrate that our method
achieves better performance than traditional deep learning
methods. For example, it shows an average performance
improvement of 6.5% compared to the best traditional deep
learning method (i.e., DualNet). This indicates that pre-
trained models have rich semantic space and reduced data
dependency. As a result, pre-trained models are able to ex-
plore correlations among views more effectively, thus better
learning discriminative representation.

Secondly, experimental results demonstrate that our
method achieves competitive performance than pre-trained
methods. For instance, it achieves an average performance
improvement of 1.42% compared to the best competitor
(i.e., MV-HFMD). This can be attributed to the fact that our
method effectively disentangles the representation and en-
sures consistency and complementarity from different views.
As a result, our method efficiently leverages diverse represen-
tation, leading to high performance on downstream tasks.

Thirdly, experimental results demonstrate that our method
outperforms CLIP-based methods. For instance, it shows an
improvement of 5.08% compared to the CLIP-based multi-
view classification method (i.e., PointCLIP). A key factor be-
hind this improvement is the design of a specialized efficient
transfer method tailored for multi-view data, along with the
inclusion of the additional text representation. As a result,
our method enhances both consistency of visual prompts and
the expressiveness of the text representation.

Ablation Study
Our method includes three key components, i.e., the Prompt
Alignment to align visual prompts from each view, the Rep-
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Figure 2: The average AUC-ROC of our method with five scenarios at different combinations of components (left) and different views (right)
on CheXpert.

resentation Disentanglement to disentangle the common and
private image representation, and the Text Representation En-
hancement to add the additional text representation for each
view. To validate effectiveness of each component, we eval-
uate performance of all variants across 13 tasks, with the re-
sults presented in Figure 2. However, we do not conduct a
separate ablation study on the Text Representation Enhance-
ment, as the private text representation is derived from the
Representation Disentanglement. Specifically, we first gener-
ate independent visual prompts for each view as the baseline
method ‘B’, apply the Prompt Alignment (‘B+A’) as well as
apply the Representation Disentanglement and the Text Rep-
resentation Enhancement (‘B+D’), and combining all three
components (‘B+A+D’) as our method.

Based on the experimental results, we observe that each
component contributes significantly to the overall perfor-
mance. First, the addition of the Prompt Alignment improves
performance by 20.77% compared to the baseline method,
demonstrating effectiveness of efficient transfer learning and
ensuring consistency in visual prompts across views for
multi-view chest X-ray images. Moreover, the Representa-
tion Disentanglement and the Text Representation Enhance-
ment improve performance by 21.10% compared to the base-
line method. The Representation Disentanglement effec-
tively captures consistency and complementarity from differ-
ent views, while the Text Representation Enhancement en-
hances the expressiveness of the text representation in medi-
cal image domain. Finally, the proposed MCD-CLIP method
improve performance by 26.57% compared to the baseline
method, underscoring the importance of all components for
the success of our method.

In addition, our method utilizes rich information of differ-
ent views to improve the performance of multi-view chest dis-
ease diagnosis. We further investigate effectiveness of single-
view and multi-view by reporting performance when utiliz-
ing different views in Figure 2. Specifically, the multi-view
approach yields a large improvement in performance com-
pared to the direct use of single view classification. For ex-
ample, multi-view performance is improved by 5.22% com-

pared to the frontal view and 6.22% compared to the lateral
view. it demonstrates that utilizing complementary informa-
tion among views improves performance of the model when
diagnosing chest disease.

Efficiency Analysis
Our method tunes pre-trained models as well as efficiently
keep the trade-off between consistency and complementarity
cross views by a small number of parameters. We report the
number of tunable parameters for multi-view chest disease
diagnosis methods in Table 2. Specifically, our method uses
the efficient transfer learning to tune pre-trained models, and
also trains only a few parameters of the adapter to balance
consistency and complementarity efficiently among views.
For instance, Compared with the best competitor (i.e., MV-
HFMD), our method reduces the number of tunable parame-
ters by 94.31% while maintaining comparable performance.
As a result, our method performs comparable or better per-
formance with fewer parameters than previous multi-view
chest disease diagnosis methods. It is demonstrated that our
method achieves efficient multi-view chest disease diagnosis.

4 Conclusion
In this paper, we propose a new CLIP-based multi-view chest
disease diagnosis method. Specifically, we design the Prompt
Alignment to efficiently tune pre-trained models and con-
tain prompts consistency of different views. In addition,
we employ the Representation Disentanglement to disentan-
gle the image representation into the common image repre-
sentation and the private image representation of each view.
As a result, the Representation Disentanglement efficiently
preserves consistency and complementarity from different
views. Further, we design the Text Representation Enhance-
ment to add the common text representation and the private
text representation to the text representation. As a result, it
improves the expressiveness of the text representation. Fi-
nally, experiments demonstrate that the proposed MCD-CLIP
achieves better or comparable performance to the state-of-
the-art methods with a small number of parameters.
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