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Abstract
Spatial transcriptomics integrates spatial, gene ex-
pression, and multichannel immunohistochemistry
image data, enabling advanced insights into cellu-
lar organization. However, existing methods of-
ten struggle to effectively fuse these multimodal
data, limiting their potential for accurate spa-
tial domain identification. Here, we propose IE-
HERCL (Image-Enhanced Hybrid Encoding with
Reinforced Contrastive Learning), a novel frame-
work designed to address this challenge. Specifi-
cally, IE-HERCL employs hybrid encoding to cap-
ture both the non-spatial features and spatial depen-
dencies for both gene and image modalities via au-
toencoders and GraphSAGE, respectively. These
features are then fused using cross-view attention
mechanisms to generate the unified informative
embedding. To enhance the representation learning
capability, we introduce a reinforced contrastive
learning strategy to mitigate the influences of false
negative samples, where we detect potential posi-
tive counterparts with high-order random walks. In
addition, the cluster alignment is dynamically re-
fined through optimal transport, which ensures that
the fused consensus representation is coherent and
robust, enabling accurate spatial domain identifica-
tion. Our approach achieves state-of-the-art per-
formance on five image-enhanced spatial transcrip-
tomics datasets, demonstrating its robustness and
effectiveness in multimodal integration and spatial
domain identification. IE-HERCL offers a pow-
erful and innovative solution for advancing spatial
transcriptomics analysis. The code is released on
https://github.com/wdyi701/IE-HERCL.

1 Introduction
Spatial transcriptomics has revolutionized biological research
by integrating gene expression data with spatial information,
offering a comprehensive view of cellular distribution and
functional states within tissue microenvironments [Huang et
al., 2024]. Unlike traditional single-cell transcriptomics,

*Corresponding authors

which lacks spatial context, this approach uncovers intri-
cate spatial patterns of gene expression [Zhu et al., 2024a;
Singhal et al., 2024]. Its applications span tumor microenvi-
ronment analysis, tissue development, and disease pathology
[Nie et al., 2024; Zhong et al., 2024; Cao and Gao, 2022].
Recent advancements have improved resolution from spot-
level to single-cell, facilitating detailed investigations of cel-
lular interactions and tissue organization [Zhou et al., 2025;
Yuan, 2024; Yang et al., 2024]. However, the multimodal na-
ture of spatial transcriptomics data—including gene expres-
sion, spatial coordinates, and tissue images—poses signifi-
cant challenges for downstream analyses, particularly in spa-
tial domain identification [Tang et al., 2023a; Jia et al., 2024;
Jiang et al., 2024]. Integrating these diverse data modalities
to enhance classification performance remains a critical hur-
dle, limiting the broader application of this powerful tool in
biological research.

Many strategies have been developed to analyze spatial
transcriptomics data [Yuan et al., 2024; Ma and Zhou, 2022;
Long et al., 2024]. Classical methods, such as Seurat and
K-means, primarily cluster samples based on gene expres-
sion alone [Satija et al., 2015]. While effective in identifying
transcriptomic patterns, these approaches often overlook spa-
tial relationships between cells, limiting their ability to fully
interpret tissue heterogeneity. To address this limitation, ad-
vanced methods like stCluster[Wang et al., 2024a], SpaCAE
[Hu et al., 2024] and STAGUE [Nie et al., 2024] leverage
graph neural networks (GNNs) to integrate gene expression
and spatial information, enhancing performance by capturing
spatial context . Image-based approaches, such as xSiGra,
further incorporate tissue slice images to complement gene
expression data, utilizing morphological and structural fea-
tures [Budhkar et al., 2024]. However, many of these meth-
ods rely on straightforward concatenation for multimodal in-
tegration, which may fail to account for complex interdepen-
dencies between modalities. These challenges highlight the
need for a unified framework capable of effectively modeling
spatial relationships, integrating multimodal data, and over-
coming issues like high dimensionality and data noise.

We are motivated by three key considerations to address the
challenges in spatial domain identification. First, while exist-
ing methods incorporate spatial coordinates, they often fail
to fully integrate these with gene expression data. To bridge
this gap, we utilize GraphSAGE [Hamilton et al., 2017], a
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scalable and inductive graph neural network, to model spatial
dependencies. By aggregating information from a fixed num-
ber of neighbors, GraphSAGE generates spatially informed
cell representations, offering a robust foundation for identify-
ing spatial domains. Second, tissue slice images contain rich
morphological and structural features that complement gene
expression data. Existing methods frequently rely on shal-
low feature extraction, overlooking deeper spatial and con-
textual information encoded in images. To address this, we
employ a dual-encoding strategy: autoencoders capture non-
spatial features, while GraphSAGE models spatial dependen-
cies. This approach produces more discriminative and com-
prehensive representations of cellular environments. Third,
traditional contrastive learning methods often encounter is-
sues with false-negative samples during multimodal data fu-
sion. To mitigate this, we introduce a reinforced contrastive
learning strategy that incorporates high-order random walks
to model transition probabilities between samples, reducing
the impact of false negatives. Additionally, we leverage op-
timal transport to dynamically align clustering distributions
with auxiliary distributions, further enhancing the robustness
and consistency of the learned representations.

In this work, we propose Image-Enhanced Hybrid Encod-
ing with Reinforced Contrastive Learning (IE-HERCL), a
novel framework for spatial domain identification in spatial
transcriptomics, as illustrated in Figure 1. IE-HERCL inte-
grates autoencoders, graphSAGE, and attention mechanisms
to extract spatial and non-spatial features from gene expres-
sion and image data. These features are fused through cross-
modal attention mechanism to generate unified and consistent
representation. To address challenges in multimodal data in-
tegration, we introduce a reinforced contrastive learning strat-
egy that employs high-order random walks to mitigate the im-
pact of false-negative samples. Additionally, optimal trans-
port is leveraged to further enhance the robustness and reli-
ability of the learned representations. Experimental evalua-
tions across multiple spatial transcriptomics datasets demon-
strate that IE-HERCL achieves outstanding performance in
both spatial domain identification and cell type classification,
consistently surpassing existing methods. This work offers
an innovative and efficient framework for multimodal analy-
sis of spatial transcriptomics data, paving the way for deeper
insights into tissue organization and cellular heterogeneity.

2 Related Work
2.1 Self-Supervised Contrastive Learning
Self-supervised contrastive learning aims to bring positive
pairs closer in the latent space while pushing negative pairs
apart, thereby enhancing representation learning[Zeng et al.,
2022; Wang et al., 2024b]. For example, SpaceFlow em-
ployed a spatially regularized deep graph network to encode
gene expression data and spatial location information, opti-
mizing embeddings through contrastive learning [Ren et al.,
2022]. Similarly, GraphST utilized graph convolutional net-
works (GCNs) to jointly model gene expression and spatial
coordinate information [Long et al., 2023]. It introduced
self-supervised contrastive learning by perturbing gene ex-
pression vectors while maintaining topological structures to

form negative pairs, improving latent representation learn-
ing. stDCL enhanced gene expression data to learn two la-
tent embeddings and trained the network using spatial-aware
contrastive learning and cluster-level contrastive learning to
capture more discriminative representations [Yu et al., 2025].
However, these methods often face challenges in effectively
handling negative samples, especially when jointly modeling
spatial and gene data, which can reduce model stability and
accuracy. In contrast, our method utilizes high-order random
walks to learn transition probabilities between samples. By
weighting negative samples with very low transition proba-
bilities, we reduce their adverse effects, enabling the model
to capture meaningful patterns more effectively and achieve
superior performance in spatial domain identification tasks.

2.2 Graph Neural Networks for Spatial Domain
Identification

Graph Neural Networks (GNNs) are widely applied in spa-
tial domain identification by learning latent representations
or reconstructing gene expression data [Sun et al., 2025;
Tang et al., 2023b; Zhu et al., 2024b]. For example, SpaGCN
constructed adjacency graphs based on spatial coordinates
and used graph convolution to aggregate information from
neighboring nodes [Hu et al., 2021]. The aggregated features
were combined with gene expression matrices for unsuper-
vised clustering to identify spatial domains. STAGATE em-
ployed a graph attention autoencoder to integrate spatial co-
ordinate and gene expression data, enhancing spatial domain
identification by jointly modeling spatial and transcriptomic
relationships [Dong and Zhang, 2022]. STMGCN utilized a
multi-graph convolutional network to encode spatial and gene
expression information, employed attention mechanisms to
fuse these modalities, and applied an unsupervised deep em-
bedding clustering framework for spatial domain identifica-
tion [Shi et al., 2023]. MAFN adopted an end-to-end GNN
to encode coordinate and gene data, combining cross-view
correlation reduction strategy and attention mechanisms to
learn discriminative embeddings for spatial domain identifi-
cation [Zhu et al., 2024c]. While these methods effectively
capture relationships between spatial and transcriptomic data,
they leave room for improvement in multimodal data integra-
tion, especially when combining gene expression with image
data. Existing approaches often overlook deep correlations
between modalities. To address this, we leverage Graph-
SAGE, which employ neighborhood sampling and feature ag-
gregation strategies to generate flexible and robust node rep-
resentations. Simultaneously, we incorporate image data as a
complementary modality within the framework. By doing so,
our method fully exploit the latent information in multimodal
data, creating more discriminative embeddings for spatial do-
main identification.

3 Method
3.1 Preliminaries
The goal for image-enhanced spatial transcriptomics data in-
tegration is to incorporate spatial information, gene expres-
sion data, and image data to generate comprehensive la-
tent representations. Given spatial coordinates of N points
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Figure 1: An overview of the proposed IE-HERCL. The model utilizes autoencoders (AE) and GraphSAGE networks to extract features,
capturing non-spatial and spatial dependencies in multimodal data. These features are fused through a triple attention mechanism to generate
unified representations. The framework further optimizes the consensus representation through contrastive learning with a negative sample
mitigation strategy and by refining cluster alignment using optimal transport.

S = {(xi, yi)}N
i=1, the corresponding gene expression data

Xg ∈ RN∗d, and image data Ximg ∈ RN∗h∗w∗c, where
N denotes the number of samples, d represents the dimen-
sion of gene features, and h, w, and c are the height, width,
and channels of the image data, respectively. In our frame-
work, we propose a novel approach that integrates three key
innovations: first, a hybrid encoding strategy combines an
autoencoder (AE) to capture non-spatial features with Graph-
SAGE to model spatial dependencies, effectively processing
both gene and image data. Second, to mitigate the impact of
false negatives in contrastive learning, we design a probability
transition matrix using high-order random walks, which im-
proves the detection of potential positive counterparts and en-
hances the quality of contrastive learning. Finally, we lever-
age optimal transport to align the auxiliary distribution of the
fused consensus embedding from gene and image modali-
ties, ensuring consistency in the representations and improv-
ing clustering accuracy. This approach enables robust multi-
modal data integration and significantly enhances spatial do-
main identification performance.

3.2 Multimodal Feature Representation Learning
In spatial transcriptomics analysis, gene expression data and
image data exhibit high heterogeneity and dimensionality,
making their integration challenging. To effectively extract
and integrate features from these two modalities, we design a
multimodal feature representation learning framework. This
approach combines autoencoder (AE), GraphSAGE encoder,
and cross-modal attention mechanism to extract high-quality
latent representations and enhance semantic consistency be-

tween modalities.
Feature Extraction for Gene Expression Data. For gene
expression data Xg ∈ RN∗d, an AE is employed for denois-
ing and feature learning. The AE encoder maps the input data
to a latent space Zg ∈ RN∗d′

, and the decoder reconstructs
the original input. During this process, the AE removes noise,
compresses redundant information, and extracts semantic fea-
tures. The reconstruction loss function is defined as:

Lg
rec =

∥∥Xg,i − fg
θd

(fg
θe

(Xg,i))
∥∥2

F
(1)

where fg
θd

and fg
θe

represent the encoder and decoder,
respectively,∥·∥2

F denotes the Frobenius norm to measure the
difference between the input and reconstructed output. By
minimizing this loss, the AE effectively extracts representa-
tive gene expression features.
Feature Extraction for Image Data. For image data
Ximg ∈ RN∗h∗w∗c, high-level features Znet ∈ RN∗dnet are
first extracted using a pre-trained ResNet50. Subsequently, an
autoencoder further processes these features to learn a deeper
latent representation Zimg ∈ RN∗d′

, removing redundancy
and capturing meaningful patterns. The reconstruction loss is
defined as:

Limg
rec =

∥∥∥Znet,i − f img
θd

(f img
θe

(Znet,i))
∥∥∥2

F
(2)

where Znet,i is the feature of the i-th image extracted by
ResNet50, and f img

θd
and f img

θe
represent the encoder and de-

coder for image data, respectively. By minimizing this loss,
the model extracts compact and representative image fea-
tures.
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Local Structure Learning. To capture local structural fea-
tures in both gene expression and image data, we integrate
a GraphSAGE encoder. The adjacency matrix A ∈ RN∗N

is constructed based on spatial coordinates to define the rela-
tionships between nodes. The detailed construction process
is provided in the data processing section. GraphSAGE up-
dates node representations by aggregating information from
neighboring nodes, using the following formula:

Zv
i = σ (We · Concat(Xi, Aggregate({Xj |j ∈ N (i)})))

(3)
where Zv

i represents the updated node representation, v de-
notes the data type (gene or image), N (i) is the set of neigh-
boring nodes for node i, Aggregate(·) is an aggregation func-
tion (e.g., mean pooling), σ(·) is an activation function, and
We is the learned weight matrix. GraphSAGE effectively
captures local structural features and enhances spatial rela-
tionship modeling.
Cross-Modal Information Fusion. After extracting latent
representations from gene expression and image data, intra-
modal attention is used to adaptively fuse features within each
modality. The fused representations for genes and images are
given by:

Zg
f = αaeg

Zg + αgsg
Zg

gs (4)

Zimg
f = αaeimg

Zimg + αgsimg
Zimg

gs (5)

where αae and αgs are weights representing the contribu-
tions of AE and GraphSAGE encodings, respectively. Sub-
sequently, cross-modal attention is applied to adaptively inte-
grate the fused features from both modalities:

Z = βgZg
f + βimgZimg

f (6)

where βg and βimg are learnable attention weights that bal-
ance the contributions of gene and image features. This adap-
tive process ensures that the integrated latent representation
captures consistent and robust information from both modal-
ities.
Reconstruction of Gene Expression Data. A GraphSAGE
decoder is used to reconstruct gene expression data X̂g from
the integrated latent representation Z. The reconstruction
process is defined as:

X̂g,i = σ (Wd · Concat(Zi, Aggregate({Zj |j ∈ N (i)})))
(7)

where Wd is the learned weight matrix. The reconstruction
loss is given by:

Lgene
rec =

∥∥∥Xg,i − X̂g,i

∥∥∥2

F
(8)

The decoder reconstructs the gene expression data while
preserving local structural information.
Overall Reconstruction Loss. To comprehensively con-
sider the impact of each modality and cross-modal fusion, the
total reconstruction loss is defined as:

Lrec = Lg
rec + Limg

rec + Lgene
rec (9)

By minimizing the total reconstruction loss, the model
learns effective multimodal latent representations, ensuring
the reconstruction of accurate and consistent data.

3.3 Negative Sample Mitigation Strategy in
Contrastive Learning

In contrastive learning, the selection and treatment of neg-
ative samples critically impact model performance. Con-
ventional approaches often treat all other samples as nega-
tive for a given anchor, which can introduce false negatives
(FNs) in scenarios without clear class boundaries. These
FNs—samples that are incorrectly assumed to be dissimi-
lar—can hinder the ability of the model to learn meaning-
ful representations. To address this issue, particularly in the
context of gene expression data, we propose a random walk-
based negative sample mitigation strategy. This approach is
designed to adjust the influence of negative samples dynami-
cally, leveraging structural relationships among data points.

Constructing the Transition Probability Matrix via Ran-
dom Walks. Given the high-dimensional and structured na-
ture of gene expression data, we first construct an affinity
graph where each sample is a node, and edge weights reflect
pairwise similarities. Specifically, we use a heat kernel func-
tion to define the adjacency matrix A:

Aij = exp(−∥xi − xj∥2
/σ ) (10)

where xi and xj are the embeddings of samples i and j, and
σ is a smoothing parameter that controls the decay rate of
similarity. This affinity graph captures the inherent relation-
ships among samples. To explore high-order neighborhood
relationships, we perform a random walk on the graph. The
random walk is represented by the transition matrix M :

M = D−1A (11)

where D is the degree matrix. By iterating this process, we
compute a high-order transition probability matrix T :

T = αI + (1 − α)M t (12)

where α is a balance parameter (default 0.5) controlling the
contribution of direct and high-order neighbors, and t is the
number of steps in the random walk. The resulting Tij en-
codes the probability that node j is a high-order neighbor of
node i, effectively capturing distant relationships in the data.
This transition matrix allows us to reduce the likelihood of in-
correctly treating semantically similar samples as negatives.

Incorporating Transition Probabilities into Contrastive
Learning. The transition probability matrix T is integrated
into the contrastive learning framework to mitigate the im-
pact of false negatives. In contrastive learning, views of the
same sample are treated as positives, while other samples are
treated as negatives. However, a naive random selection of
negatives may introduce FNs in datasets without clear cat-
egorical separation. To address this, we use Tij to weight
negative samples during the optimization process. For a con-
sensus representation Zi and a view-specific representation
Zv

j , we define the contrastive loss as:

Lc = − 1
2N

N∑
i=1

V∑
v=1

log ecos(Zi,Zv
i )/τ∑N

j=1 e(1−Tij) cos(Zi,Zv
j

)/τ − e1/τ

(13)
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where cos(Zi, Zv
i ) denotes the cosine similarity between Zi

and Zv
i , τ is a temperature parameter (default 0.5), and Tij

represents the transition probability between samples i and
j. Negative samples with lower transition probabilities are
assigned reduced weights, ensuring that semantically distant
samples have a minimal impact on the loss. This strategy
effectively mitigates the influence of false negatives and im-
proves the robustness of the learned representations.

3.4 Optimal Transport-Based Representation
Optimization

To further enhance the quality of the unified embedding,
particularly in terms of achieving superior clustering perfor-
mance, we propose an optimal transport (OT)-based self-
optimization strategy. By leveraging a mutual supervision
mechanism, this strategy dynamically aligns the clustering
distribution with an auxiliary distribution, enabling adaptive
clustering optimization.

Construction of Clustering and Auxiliary Distributions.
We define two key distributions: the clustering distribution Q
and the auxiliary distribution P . The clustering distribution
Q represents the relationship between the latent embedding
Z and the cluster centroids. The element qiu is calculated as:

qiu =

(
1 + ∥zi − µu∥2

)−1

∑
k

(
1 + ∥zi − µk∥2

)−1 (14)

where qiu indicates the probability that sample i belongs to
the µu-th cluster. zi is the embedding of sample i, µu is the
u-th cluster centroid computed using pseudo-labels, and k is
the total number of clusters. This distribution quantifies the
probability of each sample belonging to different clusters. To
enhance the contribution of high-confidence samples in clus-
tering optimization, we construct the auxiliary distribution P
as:

piu =
q2

iu/
∑

i qiu∑
k (q2

ik/
∑

i qik ) (15)

This design amplifies the influence of high-confidence
samples, allowing them to play a more prominent role during
optimization and improving the robustness of the clustering
process.

Optimal Transport Objective. To align the clustering dis-
tribution Q with the auxiliary distribution P , we frame the
problem as an optimal transport task. The objective is to min-
imize the cost of transporting mass from Q to P , while ensur-
ing smoothness through entropy regularization. The objective
function is defined as:

OT (C, Q, P )ε = min
γ

⟨γ, C⟩F + ε ·
∑
i,j

γi,j log (γi,j),

s.t.
∑

j γij = Qi;
∑

i γij = Pj ; γij ≥ 0,
(16)

where C is the cost matrix representing the Euclidean dis-
tance between points in Q and P , γi,j denotes the transport
plan between the i-th element of Q and the j-th element of
P , and ε controls the strength of entropy regularization. To
measure the alignment between distributions efficiently, we

Algorithm 1 IE-HERCL

Input: Multi-modal data including RNA sequencing and im-
age data, and spatial coordinates S.

Parameters: Total epochs E, number of random walk steps
t, and weight parameters λ1, λ2, λ3.

1: Initialize the spatial coordinate graph G using distance
nearest neighbors.

2: for epoch in 1, 2, . . . , E do
3: Calculate Lg

rec for the gene modality using Eq. (1).
4: Calculate Limg

rec for the image modality using Eq. (2).
5: Obtain modality-specific encodings Zg

f and Zimg
f .

6: Map all modality-specific encodes to a unified embed-
ding Z using Eq. (6).

7: Update AE and GraphSAGE encoders and decoders
using Eq. (9).

8: Calculate the contrastive learning loss with a negative
sample mitigation strategy using Eq. (13).

9: Calculate the optimal transport loss Ls using Eq. (17).
10: Train IE-HERCL by minimizing L using Eq. (18).
11: end for
Output: Unified embedding Z and reconstructed gene ex-

pression data X̂ .

employ the Sinkhorn divergence [Yu et al., 2024], which is
defined as:

Ls = Sε(Q, P ) := OT (M, Q, P )ε

− 1
2 (OT (M, Q, Q)ε + OT (M, P, P )ε) (17)

In practice, the auxiliary distribution P is constructed
based on the clustering distribution Q. By continuously op-
timizing the alignment between Q and P , high-confidence
data points are expected to play a dominant role in the clus-
tering process. This optimization continues iteratively until a
predefined maximum number of iterations is reached, achiev-
ing deep refinement of the consistency representation and en-
hancing the performance of the model in clustering assign-
ment tasks.

3.5 Overall Optimization Objective
The final loss function of IE-HERCL integrates three compo-
nents: the reconstruction loss Lrec, the contrastive learning
loss Lc, and the optimal transport loss Ls. The joint opti-
mization objective is given as:

L = λ1Lrec + λ2Lc + λ3Ls (18)

where λ1, λ2, and λ3 are the weight parameters for each loss
term. By jointly optimizing these objectives, the proposed
method effectively integrates spatial information, image data,
and gene expression data to learn a more consensus embed-
ding representation, significantly improving clustering per-
formance. Algorithm 1 provides a detailed description of the
entire model workflow.
4 Experiments
4.1 Experimental Setups
Datasets. We evaluate the proposed method on five widely
used spatial transcriptomics datasets that include image in-
formation: (1) NanoString Lung 9-1, (2) 10x Visium DLPFC,
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NanoString Lung 9-1 Human breast cancer
Methods ARI NMI AMI FMI HS ARI NMI AMI FMI HS
scanpy 0.2918 0.4554 0.4553 0.4443 0.4192 0.5343 0.6395 0.6327 0.5696 0.6394

STAGATE 0.3658 0.4087 0.4086 0.5095 0.3822 0.4448 0.6613 0.6552 0.4866 0.6379
GraphST 0.4084 0.4421 0.442 0.5493 0.4237 0.3571 0.6881 0.6428 0.3870 0.6659

SiGra 0.5216 0.5313 0.5313 0.6353 0.5100 0.5030 0.6141 0.6070 0.5395 0.6092
xSiGra 0.4377 0.4360 0.4359 0.5690 0.4162 0.6026 0.6782 0.6723 0.6322 0.6652
stDCL 0.3110 0.4470 0.4469 0.4736 0.4287 0.5813 0.6889 0.6839 0.6145 0.7059

IE-HERCL 0.5679 0.5428 0.5427 0.6529 0.5348 0.6279 0.7133 0.7081 0.6757 0.7207
Mouse anterior brain Mouse coronal brain

Methods ARI NMI AMI FMI HS ARI NMI AMI FMI HS
scanpy 0.3428 0.6589 0.6102 0.3697 0.6428 0.4952 0.6084 0.6070 0.5770 0.6189

STAGATE 0.3939 0.7274 0.6878 0.4242 0.7032 0.4231 0.5810 0.5795 0.5145 0.5869
GraphST 0.3840 0.6884 0.6438 0.4097 0.6714 0.4288 0.5386 0.5370 0.5246 0.5514

SiGra 0.4687 0.6729 0.6266 0.4894 0.6626 0.3278 0.5085 0.5067 0.4519 0.5358
xSiGra 0.3440 0.6739 0.6274 0.3715 0.6570 0.5374 0.6309 0.6196 0.6127 0.6346
stDCL 0.4686 0.7212 0.6892 0.4897 0.7344 0.5286 0.5874 0.5859 0.6115 0.6150

IE-HERCL 0.5255 0.7277 0.6976 0.5500 0.7559 0.5405 0.6373 0.6361 0.6225 0.6560

Table 1: Clustering performance of all methods on NanoString Lung 9-1, Human breast cancer, Mouse brain anterior and Mouse brain coronal
datasets.

(3) 10x Visium human breast cancer data, (4) mouse brain an-
terior slice, and (5) mouse brain coronal slice. Details on the
dataset processing can be found in the Supplementary Mate-
rial.

Baseline Methods. To validate the superiority of our
model, we compare it with recent state-of-the-art methods,
including four single-modal spatial domain identification ap-
proaches, namely Scanpy [Wolf et al., 2018], STAGATE
[Dong and Zhang, 2022], GraphST [Long et al., 2023] and
stDCL [Yu et al., 2025], as well as two image-enhanced spa-
tial domain identification methods, SiGra [Tang et al., 2023a]
and xSiGra [Budhkar et al., 2024]. A detailed description of
these methods can be found in the supplementary materials.

Evaluation Metrics. To comprehensively evaluate the per-
formance of spatial domain identification, we adopt five
widely used clustering metrics: Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI), Adjusted Mutual In-
formation (AMI), Fowlkes-Mallows Index (FMI), and Homo-
geneity Score (HS) [Long et al., 2024]. These metrics collec-
tively capture clustering quality from multiple perspectives,
ensuring a thorough assessment of model performance.

Implementation Details. The entire model is implemented
using PyTorch 1.13.0 and all experiments are conducted on
an Ubuntu 20.04 server with an NVIDIA 3090 GPU. For
the autoencoder in our model, we employ two layers (512-
dimensional to 64-dimensional), while the GraphSAGE layer
is set to a single layer (64-dimensional). To optimize the
model, we utilize the Adam optimizer with a weight decay
of 0.0001 and an initial learning rate of 0.001. For the other
comparison methods, we use the default parameters from the
original papers.

4.2 Experimental Results
Results Comparison. To demonstrate the superiority of
our model, we conduct both qualitative and quantitative eval-
uations on the datasets mentioned earlier. For the qualitative
evaluation of IE-HERCL, we visualize the spatial domains of
a lung cancer tissue FOV. As shown in Figure 2, our method
exhibits a strong alignment with the true labels. In contrast,
the comparison method, Scanpy, which does not incorporate
spatial coordinate information or pathological image data,
shows poor alignment between the spatial distribution and the
true labels. The superior performance of IE-HERCL is pri-
marily attributed to the incorporation of pathological image
data, which enhances representation learning and enables the
model to generate robust representations. In terms of quanti-
tative metrics (Supplementary Figure 1), IE-HERCL achieves
superior performance across ARI, NMI, and HS on all lung
cancer and DLPFC tissue slices, with particularly notable im-
provements in lung cancer tissue where pathological image
data is utilized. Furthermore, on other datasets, including hu-
man breast cancer, mouse brain anterior slices, and mouse
brain coronal slices (as shown in Table 1), IE-HERCL out-
performs all competing methods across all metrics. We also
present spatial domain distributions, UMAP visualizations,
and trajectory inferences for the DLPFC dataset; detailed re-
sults are provided in the supplementary materials. Notably,
on the human breast cancer dataset, IE-HERCL surpasses the
second-best method, stDCL, by 4.66% in ARI and 6.12%
in FMI. This outstanding performance can be attributed to
the reinforced contrastive learning strategy, which mitigates
the influence of negative samples, and the optimal transport
mechanism, which optimizes the learning of latent represen-
tations, resulting in highly competitive outcomes. For addi-
tional experimental results, please refer to the supplementary
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Figure 2: Spatial distribution obtained by all methods on FOV2 of the NanoString Lung 9-1 dataset.
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Figure 3: Performance of different random walk steps on the human
breast cancer dataset.

materials.
Parameter Analysis. To further validate the sensitivity of
our model to parameter settings, we conduct a series of pa-
rameter sensitivity experiments. These experiments evaluate
the effects of the weight factors λ1, λ2 and λ3, which are set
to [1, 10], [0.0001, 0.001] and [0.1, 1], respectively, and the
random walk step size t, which varies from 1 to 15 with an
interval of 2. Fixing λ1, λ2 and λ3 at 10, 0.001 and 1, Fig-
ure 3 demonstrates that the optimal step size t for the random
walk is 9 for the above dataset. Furthermore, fixing the ran-
dom walk step size at t=5, Supplementary Table 1 shows that
the model achieves the best performance on the human breast
cancer datasets when λ1, λ2 and λ3 are set to 10, 0.001 and
1, respectively. These results suggest that high-order random
walks effectively mitigate the influence of negative samples,
thereby improving clustering performance.

4.3 Ablation Studies
In this section, we evaluate the contribution of each compo-
nent in IE-HERCL using the human breast cancer dataset. To
verify the effectiveness of contrastive learning, we remove the
Lc module (denoted as ”w/o Lc”). To assess the impact of op-
timal transport in aligning latent representations, we exclude
the Ls module (denoted as ”w/o Ls”). We also evaluate the
effect of mitigating negative samples in contrastive learning
by removing the high-order random walks (denoted as ”w/o

Methods ARI NMI AMI FMI HS

IE-HERCL 0.6279 0.7133 0.7081 0.6757 0.7207

w/o Lc 0.5344 0.6688 0.6637 0.5787 0.7036

w/o Ls 0.6120 0.6895 0.6840 0.6423 0.6975

w/o Random Walk 0.5582 0.6786 0.6733 0.5913 0.6805

w/o Image Data 0.6074 0.6943 0.6888 0.6680 0.7065

Table 2: Ablation Study on the Human Breast Cancer Dataset. w/o
denotes the abbreviation without.

Random Walk”). Additionally, we analyze the importance
of the image data modality by removing it from the model
and using only gene expression data for representation learn-
ing and clustering (denoted as ”w/o Image Data”). As shown
in Table 2, each component contributes significantly to the
model’s performance. The removal of any single component
results in a noticeable decline in clustering performance. The
best results are achieved when all components are included
and the image data modality is utilized. These findings high-
light the robustness and effectiveness of the proposed frame-
work, particularly the synergy between its components.

5 Conclusion
In this work, we present IE-HERCL, a novel framework for
spatial domain identification in spatial transcriptomics that
seamlessly integrates gene expression, spatial information,
and histological image data. By employing a hybrid encoding
strategy with autoencoders and GraphSAGE, IE-HERCL cap-
tures non-spatial features and spatial dependencies within and
across multimodal data. Cross-modal attention mechanisms
further fuse these features into unified representations, en-
abling a comprehensive understanding of tissue organization.
Additionally, we introduce a reinforced contrastive learning
strategy that combines high-order random walks and optimal
transport to reduce the impact of false negatives on represen-
tation learning and improve clustering alignment. Extensive
experiments on five diverse spatial transcriptomics datasets
demonstrate the superior performance of IE-HERCL in spa-
tial domain identification and cell type classification, consis-
tently surpassing state-of-the-art methods.
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