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Abstract

As a pivotal architecture in Self-Supervised Learn-
ing (SSL), Graph Contrastive Learning (GCL) has
demonstrated substantial application value in sce-
narios with limited labeled nodes (samples). How-
ever, existing GCLs encounter critical issues in
the graph augmentation and positive and nega-
tive sampling stemming from the lack of explicit
supervision, which collectively restrict their effi-
ciency and universality. On the one hand, the re-
liance on graph augmentations in existing GCLs
can lead to increased training times and memory
usage, while potentially compromising the seman-
tic integrity. On the other hand, the difficulty in
selecting TRUE positive and negative samples for
GCLs limits their universality to both homophilic
and heterophilic graphs. To address these draw-
backs, this paper introduces a novel GCL frame-
work called GRAph learning via Self-contraSt
(GRASS). The core mechanism is node-attribute
self-contrast, which specifically involves increasing
the feature similarities between nodes and their in-
cluded attributes while decreasing the similarities
between nodes and their non-included attributes.
Theoretically, the self-contrast mechanism implic-
itly ensures accurate node-node contrast by cap-
turing high-hop co-inclusion relationships, thereby
enabling GRASS to be universally applicable to
graphs with varying degrees of homophily. Eval-
uations on diverse benchmark datasets demonstrate
the universality and efficiency of GRASS.

1 Introduction

Graph Self-Supervised Learning (GSSL) has made signif-
icant advancements in learning discriminative representa-
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tions without relying on expensive hand-labeled nodes (sam-
ples) [Hendrycks et al., 2019]. As a representative architec-
ture of GSSL, Graph Contrastive Learning (GCL) aims to
maximize the agreement between the representations of two
augmented views from the same input while minimizing the
agreement between the representations from different aug-
mented views. It has achieved remarkable performance on
various node-level downstream tasks, such as node classifica-
tion [Ma et al., 2023]. Depending on the different information
contained in contrastive objects, existing GCLs for node-level
tasks can be categorized into: 1) local-global contrast [Velick-
ovic et al., 2019; Hassani and Khasahmadi, 2020] and 2)
local-local contrast [Zhu et al., 2020b; Thakoor et al., 2021;
Zhuo et al., 2024a; Zhuo et al., 2024c]. Given that the funda-
mental objective is to contrast nodes, these two categories of
GCLs can be collectively termed as Node-Node Contrast.

Unfortunately, existing node-node graph contrastive mod-
els still face critical issues in the graph augmentation and
positive/negative sampling due to the lack of supervision in-
formation. First, graph augmentation not only faces the chal-
lenge of maintaining the semantic integrity of the graph dur-
ing the augmentation process but also inevitably increases
computational costs [Thakoor et al., 2022; Trivedi et al.,
2022]. Despite some methods successfully working with-
out graph augmentations by selecting positive samples from
neighboring nodes [Zhang er al., 2022; Xiao et al., 2022],
challenges persist in accurately identifying TRUE positive
and negative samples for nodes. On the one hand, positive
samples, whose representations will be pulled together, can
not be easily identified. Neighborhoods are from the same
classes with a high probability on homophilic graphs, and
thus can be treated as positive samples. However, this is not
feasible on heterophilic graphs. On the other hand, it is more
difficult to locally identify negative samples. Negative sam-
ples should be the nodes in the different classes. It is com-
monly accepted that nodes with long-distance may belong to
different classes. Therefore, this compromises the model’s
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universality to graphs with diverse structural characteristics.

To solve the aforementioned drawbacks, this paper seeks
to introduce a universal augmentation-free GCL framework.
Motivated by the Self-contrastive Learning [Bae er al.,
2023], which leverages a multi-exit architecture to generate
multiple representations from a single image without rely-
ing on data augmentation, this paper aims to explore self-
contrastive learning on graphs. To this end, a novel Graph
Self-contrastive Learning framework named GRAph learn-
ing via Self-contraSt (GRASS) is proposed. It enables self-
contrast between nodes and attributes, thereby eliminating the
reliance on augmentation and circumventing the challenges
associated with sample selection. GRASS first treats at-
tributes as another type of node, i.e., attribute nodes, and gen-
erates initial representations for each type of node separately.
The representations of nodes and attribute nodes are respec-
tively derived from the adjacency matrix, which describes the
link relationships between nodes, and the Positive Pointwise
Mutual Information (PPMI) matrix, which captures the co-
occurrence relationships of attributes. Then, it identifies pos-
itive pairs via inclusion relationships and negative pairs via
non-inclusion relationships in the attribute matrix for repre-
sentation learning. In theory, the framework can implicitly
capture the node-node co-inclusion relationship (a high-hop
relationship), which guarantees its universality.

The main contributions of this paper are as follows:

e We investigate the challenges faced by existing Graph
Contrastive Learning (GCLs) in terms of graph augmen-
tation and positive/negative sample selection.

e We introduce a novel GCL framework named GRAph
learning via Self-contraSt (GRASS), with a node-
attribute self-contrastive mechanism.

e We provide a theoretical analysis to justify the effective-
ness and universality of GRASS.

e We conduct extensive experiments on twelve well-
known benchmark datasets with various homophily de-
grees to demonstrate the performance of GRASS.

2 Related Works

Contrastive Learning. Contrastive Learning (CL) has be-
come highly popular in self-supervised visual representa-
tion learning, aiming to learn discriminative representations
by contrasting positive and negative sample pairs. Specif-
ically, SimCLR [Chen et al., 2020] maximizes the consis-
tency between representations of different augmented views
of the same image; BYOL [Grill ef al., 2020] removes neg-
ative pairs, using an online network to predict the represen-
tations produced by a target network. More recently, CM-
SCGC [Guan et al., 2024] has constructed two views by
extracting the pixel neighborhood texture information and
spatial-spectral information from hyperspectral images.
Augmentation-based Graph Contrastive Learning. CL
has also been successful on graphs. GRACE [Zhu et
al., 2020b] generates augmented graphs by randomly drop-
ping edges or nodes and maximizes the consistency of the
node representations from the two views; GCA [Zhu er al.,
2021] uses an adaptive augmentation method to perturb the

unimportant information, MVGRL [Hassani and Khasah-
madi, 2020] generates the multiple views via graph diffusion
and learns both node-level and graph-level representations.
GREET [Liu et al., 2023] introduces a discriminator to assess
the homophily of edges and implements random augmen-
tation. AGCL [Yu and Jia, 2024] generates multiple views
via graph topology and graph diffusion, capturing local and
global information. GOUDA [Zhuo et al., 2024b] makes uti-
lization of augmentation-centric vectors to simulate attribute
variations in node neighborhoods, thereby accomplishing a
unified augmentation framework.

Augmentation-free Graph Contrastive Learning. Some
Graph Contrastive Learning (GCL) models without augmen-
tation are given below. SImGRACE [Xia et al., 2022] takes
the original graph as input and Graph Neural Network (GNN)
model with its perturbed version as two encoders to obtain
two correlated views for contrast. AF-GCL [Wang et al.,
2022] leverages the features aggregated by GNN to con-
struct the self-supervision signal instead of augmentations.
DSSL [Xiao et al., 2022] imitates a generative process of
nodes and links decoupling the potential semantics of differ-
ent neighborhoods. GCFormer [Chen et al., 2024] develops
a new token generator to generate both positive and negative
token sequences for each node.

3 Notations and Preliminaries

3.1 Notations

LetG = (V, &) denote a graph with node set V = {v1, ..., v, }
and edge set £, where n denotes the number of nodes. The ad-
jacency matrix A = [a;;] € {0,1}"*™ represents the graph
topology, where a;; = 1 if and only if there exists an edge
eij = (v;,v;). The degree matrix D is a diagonal matrix
with diagonal element d; = Y-, a;; as the degree of node
v;. X € R™"*J denotes the collections of node attributes with
the ith rows, i.e., x; € R/ corresponding to node v;, where f
stands for the dimension of the attribute.

3.2 Homophily

Typically, the graph edge homophily ratio [Pei et al., 2020;
Zhu et al., 2020a] is defined as the proportion of edges con-
necting nodes with the same labels. Mathematically, this can
be represented by the following equation:

- H(vi,vj) D (vi,v5) €E Ny, = yvj}’.
€]
Homophilic graphs have a high edge homophily ratio, i.e., h
tends to 1, while heterophilic graphs correspond to a small
edge homophily ratio, i.e., h tends to 0. This paper particu-
larly examines graphs with varying degrees of homophily.

(D

3.3 Positive Pointwise Mutual Information

Positive Pointwise Mutual Information (PPMI) is a common
tool for measuring the association between two words in com-
putational linguistics [Church and Hanks, 1990]. PPMI be-
tween words w; and w; is defined by:

P(w;, w;) ]
N

P (w;)P(w;) @

PPMI(w;, w;) = [log
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Here, [p], denotes max(p,0). P(w;) is the occurrence prob-
ability of the word w;, and P(w;, w;) is the co-occurrence
probability of two words. If two words are completely inde-
pendent, P(w;, w;) = P(w;)P(w;), and the value of PPMI
is 0. In contrast, if there is a strong relationship between two
words, they will usually co-occur frequently and thus share a
high PPMI value, indicating a close association. Given this
property, PPMI is employed in our framework to represent
the correlations among attributes.

3.4 Contrastive Learning Loss

The key to contrastive learning (CL) is maximizing mutual
information (MI) [Tsai et al., 2021]. To this end, an infor-
mation theory viewpoint is adopted to construct the Graph
Contrastive Learning (GCL) objective. Let I(X;Y") be the
MI between random variables X and Y, which is commonly
represented by the Donsker-Varadhan variational represen-
tation [Donsker and Varadhan, 1983; Polyanskiy and Wu,
2014] as follows:

where Io(X,Y) is the neural information with parameters
0 € O, which is precisely given by the following detailed and
comprehensive definition:

Io(X,Y) = sup Epyy [To] — log(Bpyopy, [€7°]).  (4)
€

Based on this variational lower bound, the contrastive loss is

formulated by directly optimizing Io(X,Y):

Lecr = —Epy, [Tp] + log(Ep, opy [¢7]). )

4 Methodology

This section first introduces a novel graph contrastive learning
(GCL) framework named GRAph learning via Self-contraSt
(GRASS). Subsequently, it theoretically analyzes the effec-
tiveness of this framework.

4.1 GRASS

As shown in Figure 1, the architecture of GRASS consists of
three key modules: (1) View Construction, which extracts two
types of contrastive objects from the input graph. (2) Sam-
pling Matrix Construction, which determines positive sam-
ples for self-contrast based on the node-attribute inclusion re-
lationship (represented by a bipartite graph). (3) Graph Self-
contrastive Learning Loss, which guides the feature update
process for these two types of objects.

View Construction. As discussed in the Introduction, tra-
ditional GCL methods rely on perturbation-based augmenta-
tions to construct two views, which may result in expensive
training costs and compromised semantic integrity. The pro-
posed view construction module regards nodes and attributes
as two intrinsic views of the input graph, thus avoiding the
need for perturbation-based augmentations. To be specific,
for the input graph G(A,X), this module generates repre-
sentations for attributes in addition to nodes, represented as
Z ¢ R"*%and B € R/ %4,

The initial node representations are derived through the
embedding of the graph topology matrix, while the initial

Bipartite graph G’

Original graph G

= /ﬁm& g-
'I'j\ ﬁ% X

Negative pairs
@ Node

Zy

Negatlve pairs (xij:O) — Positive pairs (x;;=1)
A Attribute node

Figure 1: Illustration of the proposed framework GRASS. Firstly,
the initial representations are derived through the embedding of the
graph topology matrix and the attribute co-occurrence matrix. Sec-
ondly, the attributes are regarded as another type of node, and the
two types of nodes are connected based on non-zero entries in the
attribute matrix X, forming a node-attribute bipartite graph. Finally,
positive and negative sample pairs are selected on the bipartite graph
to construct the contrastive learning objective function.

attribute representations are obtained via the embedding of
the attribute co-occurrence matrix. The graph topology ma-
trix is selected as the adjacency matrix A. The attribute co-
occurrence matrix is constructed through the utilization of
Positive Pointwise Mutual Information (PPMI), which is de-
fined as Mi,j = PPMI(XJ, X:J).

After obtaining these matrices, the initial representations
are computed by applying Multi-Layer Perceptrons (MLPs)
to transform the graph topology matrix and the attribute co-
occurrence matrix into feature embeddings, that is:

Z = MLPa(A), B=MLPy(M), ©)

where M LP4 and M L Py stand for two distinct Multi-Layer
Perceptron (MLP). In this paper, the attributes are regarded as
another type of node, referred to as attribute nodes.

Sampling Matrix Construction. It is commonly assumed
that the attributes associated with nodes can accurately reflect
the node categories [Lim er al., 2021]. Based on this assump-
tion, this module aims to identify positive samples for nodes
and attribute nodes by constructing a node-attribute bipartite
graph G’ using the attribute matrix X.

To ensure symmetry, the adjacency matrix of the bipartite
graph, i.e., A’ € R"HNX(+F) s defined as:

S To X
A:[XT 0}, )

where 0 denotes an all-zero matrix. The adjacency matrix
indicates the node-attribute inclusion relationship, which is
regarded as the basis for identifying positive samples. Specif-
ically, for a given type of node, the positive samples are iden-
tified as the other type of nodes where the corresponding
weight in the adjacency matrix is non-zero.

Graph Self-contrastive Learning Loss. In general, con-
trastive losses aim to amplify feature similarities between
positive sample pairs while reducing them between negative
sample pairs [Xiao et al., 2022; Zhu et al., 2020b]. In the pro-
posed framework GRASS, connected node pairs are regarded
as positive sample pairs, while all unconnected node pairs are
regarded as negative sample pairs. Therefore, it is entirely
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feasible and rational to construct the overall objective func-
tion in the following comprehensive and detailed manner:

£ - - Ezv,buwau [CO (ZU, bu)]
+ log(En, i~y ey [ ™)), ®)

where ¢y (-) represents the similarity between node pairs cal-
culated using a neural network, specifically a single MLP. z,
is the vth row of Z, and b, is the uth row of B. Py, de-
notes the connection probability of positive sample pairs on
the bipartite graph, i.e., node pairs (z,, b,,) that are connected
by an edge, where V is the set of original graph nodes and
U is the set of attribute nodes. Meanwhile, h denotes any
node, h’ denotes all nodes except h on the bipartite graph.
Py ® Py denotes the product of marginal distribution of inde-
pendently sampling two nodes from the bipartite graph node
set V' =1V UU, which covers all node pairs.

4.2 Theoretical Analysis

This subsection aims to provide a theoretical understanding of
the proposed GCL framework. The framework can implicitly
capture the node-node co-inclusion relationship (a high-hop
relationship), which is important for its universality to both
homophilic and heterophilic graphs.

Theorem 1. Let No(v) denote the set of two-hop neighbors
of z,, on the bipartite graph G'. Minimizing the GRASS ob-
jective in Equation (8) is approximately minimizing the fol-
lowing alignment loss between rwo-hop neighbors:

["wo— 10] v fu 2-
t hop — 2 |V| XU:UEXN%’U ) UZEZN:(M)”Z z 2||2

Proof. By removing the second loss term and retaining only
the positive sample pair loss, Equation (8) can be formally
elaborated as follows:

1 1
v 2w

where z,, and b, are one-hop neighbors of each other on the
bipartite graph. |V| denotes the number of nodes on the bi-
partite graph and N (v) denotes the set of neighbors of node
z,,. Expanding Equation (9), the following equation is subse-
quently and precisely obtained:

\V\Zw er
> ‘sz\ﬁfzvfﬂ (10)

> (b)), )

ueN (v)

\qu\/ibT

veEV ueN (v
Let P, = /d,z, be the vth row of the matrix P € R("+/)xd,
and Q, = +/d,b, be the uth row of the matrix Q €

R(n+Hxd A7 = D'=1/2A'D’'~1/2 where A’ denotes the
adjacency matrix of the bipartite graph G’. d,, and d,, denote
the degree of z,, and b,,. Then Equation (10) can be specifi-
cally formulated as:

1
> —*f(IIA P3+1Q73). abn

T

v

For Equation (11), the inequality is utilized: tr(PQ) <
3 (P13 + |QJI3) for any two matrices P € R™** and Q €

R¥*t. Then, the property of the trace tr(X ' X) = || X||3 is
used to obtain the following equation:
11 ==
*im(”’(PTA/TA/P) +1QTI3). 12)

Equation (12) is extended using the cyclic invariant property
of traces to derive the following equation:

11
_im(tr(PPTA/TA ) +1QTI3). a3

Removing the ||Q T ||2 term and expanding the formula for the
trace in Equation (13) can be found:

tr(PPTA’TAY) =) (PPTA'TA),,

v

oY ALAL VA dn] 2, (14)

v,u2€V u€N (v)NN (uz)

where z,,, is the two-hop neighbor of z,. Expanding the ad-
jacency matrix in Equation (14) obtains:

Xv:uezw‘:w uQeZN:(u) du ‘ﬁ\/z

S DD DD S

v u€EN(v) usEN(u)

—F— /4, Zuz\/i\/ u2
— 2y, |13 (15)

Combining Equation (15) and Equation (13), the final con-
clusion can be obtained:

S

v uEN(u)

)| Z ||ZU 7Zu2||%. (16)

uz €N (u)

O

Theorem 1 shows that the optimization objective of
GRASS is equivalent to minimizing the distance between
two-hop neighbors on the constructed bipartite graph. Since
these two-hop neighbors correspond to node pairs that share
attributes on the original graph, the framework effectively en-
courages attribute-similar nodes to learn consistent represen-
tations. Besides, two-hop neighbors on the bipartite graph are
brought close, which effectively captures the high-hop rela-
tionship on the original graph. Compared to traditional node-
node contrast, the proposed node-attribute contrast can more
accurately and comprehensively capture node-node relation-
ships, thereby achieving universality for both homophilic and
heterophilic graphs.

S Experiments

In this section, to begin with, the proposed framework
GRASS is validated by empirically evaluating its perfor-
mances on the node classification task. Next, an in-depth
understanding of the efficacy of this framework is provided
through several experiment analyses.
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Dataset Cora CiteSeer PubMed Wiki-CS Computers Photo Chameleon Squirrel Actor Cornell Texas Wisconsin
Nodes 2,708 3,327 19,717 11,701 13,752 7,650 2,277 5,201 7,600 183 183 251
Edges 5,429 4,732 44,338 216,123 245,861 119,081 36,101 217,073 33,544 295 309 499
Features 1,433 3,703 500 300 767 2,325 2,089 932 1,703 1,703 1,703
Classes 7 6 3 10 10 5 5 5 5 5 5
h 0.81 0.74 0.80 0.65 0.78 0.23 0.22 0.22 0.13 0.11 0.20
Table 1: Statistics of datasets.

Methods Cora CiteSeer PubMed Wiki-CS Computers Photo

GCN 82.43+1.54 71.984+0.89 84.53+0.31 76.89+0.37 86.34+0.48 92.3540.25

GAT 83.27+1.36 72.36+1.13 84.931+0.44 77.42+0.19 87.06+0.35 92.64+0.42

DeepWalk 77.814+0.35 59.0640.23 79.6240.84 74.3540.06 85.68+0.06 89.44+0.11

Node2Vec 79.16+0.74 59.89+0.54 80.26+0.91 71.7940.05 84.39+0.08 89.67+0.12

DGI 82.57+0.36 71.5240.16 85.89+0.15 75.7340.13 84.09+0.39 91.4940.25

GMI 82.41+1.34 71.6440.52 84.57+0.88 75.06+0.13 81.76+£0.52 90.7240.33

GRACE 83.32+0.37 71.4840.38 86.304+0.43 79.16+0.36 87.21£0.44 92.6540.32

MVGRL 83.02+0.27 72.7440.36 85.42+0.38 77.97+0.18 87.09+£0.27 92.0140.13

GCA 82.80+0.46 71.1440.35 85.74+0.75 79.3540.12 87.84+0.27 92.7840.17

BGRL 82.66+0.76 71.534+0.56 84.21+0.17 78.7440.22 88.14+0.33 92.4540.29

AF-GCL 83.16+0.13 71.9640.42 83.95+0.75 79.01£0.51 89.68+0.19 92.4940.31

HLCL 82.34+0.87 72.3440.84 84.69+0.89 79.26+0.31 86.97+0.35 91.984+0.31

MaskGAE 83.21+0.51 72.4640.73 82.69+0.31 75.97+0.55 88.46+0.20 92.8240.04

GraphACL 83.70+0.41 72.8440.35 84.11+0.21 76.49+0.74 88.92+0.32 92.984+0.26

SGCL 83.56+0.28 72.984+0.69 85.64+0.37 79.85+0.53 88.57+0.43 92.7940.35

GCIL 83.80+0.73 73.76+0.52 84.96+0.63 78.61£0.19 88.32+0.44 93.1540.68

GRASS 84.93+1.63 73.474+0.94 85.18+0.76 81.35+1.06 89.76+0.61 93.264+0.57

Table 2: Node classification accuracy (mean =+ std) on homophilic graphs. The best and second best results are highlighted in bold and

underline, respectively.

5.1 Experimental Settings

Datasets. Experiments are conducted on twelve widely
used benchmark datasets with various homophily. The ho-
mophilic graph datasets include Cora, CiteSeer, PubMed,
Wiki-CS, Amazon-Computers (abbreviated as Computers),
and Amazon-Photo (abbreviated as Photo). The heterophilic
graph datasets include Chameleon, Squirrel, Actor, Cornell,
Texas, and Wisconsin. The statistics of these datasets are
summarised in Table 1. Cora, CiteSeer, and PubMed [Sen
et al., 2008] are three citation network datasets where nodes
represent papers and edges indicate citation relationships be-
tween papers. Wiki-CS [Mernyei and Cangea, 2020] is a hy-
perlink network constructed based on Wikipedia. Nodes rep-
resent articles in computer science and edges are hyperlinks
between articles. Computers and Photo [Shchur et al., 2018]
are co-purchase networks from Amazon. In these networks,
nodes represent goods and edges represent two goods being
frequently bought together. Chameleon and Squirrel [Pei et
al., 2020] are two Wikipedia networks where nodes denote
pages and edges denote links between pages. Actor [Pei et al.,
2020] is an actor co-occurrence network where nodes denote
actors and edges denote two actors co-occurring in the same
film. Cornell, Texas, and Wisconsin [Pei et al., 2020] are net-
works of web pages from computer science departments of
diverse universities, where nodes are web pages and edges
are hyperlinks between web pages.

Baselines. To verify the superiority and effectiveness of
the proposed GRASS, we compare it with three categories
of graph learning methods: (1) semi-supervised GNN mod-
els for node classification tasks, including vanilla GCN [Pei
et al., 2020] and GAT [Veli¢kovié et al., 2018]; (2) unsu-
pervised graph learning methods, including DeepWalk [Per-
ozzi et al., 2014] and Node2Vec [Grover and Leskovec,
2016]; (3) self-supervised graph learning methods, includ-
ing DGI [Velickovic et al., 2019], GMI [Peng er al., 2020],
GRACE [Zhu et al., 2020b], MVGRL [Hassani and Khasah-
madi, 2020], GCA [Zhu et al, 2021], BGRL [Thakoor
et al., 2022], AF-GCL [Wang et al., 2022], HLCL [Yang
and Mirzasoleiman, 2023], MaskGAE [Li et al., 2023],
GraphACL [Xiao et al., 2023], SGCL [Sun et al., 2024], and
GCIL [Mo et al., 2024].

Experimental Details. For reproducibility, the detailed
settings of the experiments are described below. The experi-
ments are performed on Nvidia GeForce RTX 3090 (24GB)
GPU cards. Furthermore, the representations are obtained us-
ing a 1-3 layer MLP, with the hidden dimension of each layer
being subject to hyperparameter tuning. Based on the rep-
resentations, we train a Logistic classifier to perform down-
stream tasks. In all the experiments, we use the Adam op-
timizer. The training epoch is 200 with full batch train-
ing. For hyperparameter settings, the learning rates are tuned
in the range {0.1, 0.05, 0.01, 0.005, 0.001}. Besides, the
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Methods Chameleon Squirrel Actor Cornell Texas Wisconsin
GCN 59.6342.23 36.284+1.52 30.8340.77 57.0343.30 60.00+4.80 56.47+6.55
GAT 56.38+2.19 32.09+£3.27 28.0641.48 59.46+3.63 61.62+£3.78 54.714+6.87
DeepWalk 47.74+2.05 32.934+1.58 22.7840.64 63.354+4.61 60.594+7.56 55.4145.96
Node2Vec 41.934+3.29 22.8440.72 28.284+1.27 42.9447.46 41.9247.76 37.45+£7.09
DGI 39.95+1.75 31.80+0.77 29.8240.69 63.35+4.61 60.594+7.56 55.4145.96
GMI 46.97+3.43 30.114+1.92 27.8240.90 54.76+5.06 50.4942.21 45.98+2.76
GRACE 48.05+1.81 31.334+1.22 29.014+0.78 54.8616.95 57.574+5.68 50.001+5.83
MVGRL 51.0742.68 35.474+1.29 30.0240.70 64.3045.43 62.3845.61 62.374+4.32
GCA 49.80+1.81 35.504+0.91 29.65+1.47 55.414+4.56 59.46+6.16 50.784+4.06
BGRL 47.461+2.74 32.6440.78 29.86+0.75 57.3045.51 59.1945.85 52.354+4.12
AF-GCL 59.564+1.69 40.6440.67 32.2640.69 64.761+3.58 68.89+2.16 67.754+3.26
HLCL 58.8041.68 34.1140.88 30.984+0.94 58.45+3.24 65.264+1.78 66.961+3.76
MaskGAE 54.1247.65 37.9341.15 31.1240.89 55.414+4.56 65.954+6.53 56.86+4.47
GraphACL 60.2140.35 41.36+4.57 30.1240.21 59.674+1.39 70.244+1.56 68.34+2.03
SGCL 58.9641.43 38.4940.86 31.2340.64 62.764+2.94 68.314+4.33 63.2643.06
GCIL 60.1442.26 40.68+1.35 31.674+0.94 63.574+3.19 67.544+6.27 65.24+1.85
GRASS 60.25+2.48 40.38+2.64 34.9440.94 70.25+5.66 77.41+2.17 77.054+5.98

Table 3: Node classification accuracy (mean =+ std) on heterophilic graphs. The best and second best results are highlighted in bold and

underline, respectively.

weight decay is tuned from {0.0, 0.001, 0.005, 0.01, 0.1}.
Finally, the representation dimension is tuned in the range
{256, 512, 1024, 2048, 4096}. For homophilic graphs, all
nodes are randomly divided into three parts, 10% nodes for
training, 10% nodes for validation and the remaining 80%
nodes for testing. The performance on heterophilic graph
datasets is evaluated on the commonly used 48%/32%/20%
training/validation/testing.

5.2 Experiment Results

Results on Homophilic Graphs. The comparison of accu-
racy between GRASS and the baselines on six homophilic
graphs is shown in Table 2. First, it can be observed that
GRASS achieves the optimal performance on four of the six
datasets, which illustrates the superiority of GRASS for pro-
cessing homophilic graphs. GRASS even surpasses all super-
vised comparison models on all datasets. To be specific, on
the Cora dataset, GRASS outperforms the second-best self-
supervised model (i.e., GCIL) by 1.13%, and on the Wiki-
CS dataset, GRASS outperforms the second-best model (i.e.,
SGCL) by 1.50% in classification accuracy. This highlights
the effectiveness of GRASS in learning consistency between
node representations and attribute representations.

Results on Heterophilic Graphs. Table 3 shows the ex-
perimental results on heterophilic graphs. It can be observed
that GRASS outperforms the baselines on five of the six
datasets. Specifically, contrastive strategies with augmenta-
tions (e.g., GRACE, GCA, and BGRL) can not work well
on heterophilic graphs compared to homophilic graphs. In
contrast, augmentation-free models such as GRASS, AF-
GCL, and GraphACL achieve consistent performance advan-
tages across five heterophilic benchmark datasets. Exist-
ing studies have shown that graph augmentations preserve
the low-frequency components of the graph while potentially
perturbing the high-frequency components in heterophilic
graphs [Lee et al., 2022]. Therefore, achieving better per-

Photo

CiteSeer Computers Actor

st

GRASS GraphACL GRACE

Figure 2: t-SNE visualization of node embeddings from GRACE,
GraphACL, and GRASS on CiteSeer, Computers, Photo, and Actor.

formance without graph augmentations may benefit from the
preservation of high-frequency components. Additionally,
GRASS outperforms the second-best model (i.e., AF-GCL
and GraphACL) by 5.49%, 7.17%, and 8.71% on the Cor-
nell, Texas, and Wisconsin datasets, respectively. Compared
to GraphACL, the performance advantage of GRASS stems
from its ability to identify more accurate and numerous node
neighbors than GraphACL, which relies on two-hop neigh-
bors on the graph. As shown in Figure 3, even in het-
erophilic graphs, the identified two-hop neighbors have over
90% similarity, which is significantly higher than the two-hop
monophily reported in GraphACL.

Visualization. This experiment aims to intuitively demon-
strate the representation ability of the proposed GRASS. For
this purpose, the t-SNE [Van der Maaten and Hinton, 2008]
method is exploited to perform feature reduction and visual-
ization of the trained representations. Figure 2 exhibits the
experiment results (scatter plots) on four benchmark datasets
(i.e., CiteSeer, Computers, Photo, and Actor), where col-
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Figure 3: The effect of two-hop neighbors on the bipartite graph.

ors stand for the classes of nodes. It can be observed that
compared to all the comparison models (i.e., GRACE and
GraphACL), the proposed GRASS framework is enabled to
produce the most informative representations. As exempli-
fied by the CiteSeer and Actor datasets, compared to the
self-supervised models, GRASS achieves more compact clus-
ters in node embeddings. Specifically, the embeddings of
the same class are closer, while the embeddings of different
classes exhibit more significant differences. The experiment
results emphasize the effectiveness of GRASS in enhancing
representation ability. Furthermore, GRASS is able to ad-
dress the uneven distribution in the dataset due to class im-
balance. As exemplified by the CiteSeer dataset, GRASS can
achieve a more balanced distribution of nodes across different
classes, thereby mitigating the distribution disparity among
classes compared to GRACE.

5.3 Similarity Analysis

Figure 3 plots the pairwise cosine similarity distribution of
two-hop neighbor pairs on the bipartite graph. It can be ob-
served that in both homophilic and heterophilic graphs, the
similarity is mostly concentrated in the range of 0.75 to 1,
indicating that GRASS is able to efficiently identify pairs of
nodes with similar attributes in the original graph. This phe-
nomenon coincides with Theorem 1. In homophilic graphs,
connected nodes tend to belong to the same class, i.e., they
share similar attributes. The two-hop neighbors in the bipar-
tite graph are connected by the same attribute, thus they are
inclined to be similar. Besides, nodes shared attributes (i.e.,
two-hop neighbors on the bipartite graph) often correspond
to the high-hop relationship on the original graph. In het-
erophilic graphs, directly connected nodes are usually from
different classes. Therefore, the high-hop relationship is more
likely to uncover nodes of the same class.

5.4 Hyperparameter Study

To analyze the sensitivity of the proposed model, experiments

have been conducted with various hyperparameters.
Representation Dimension. In Figure 4, the effect of the

representation dimension on performance is analyzed. The
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Figure 4: The effect of the representation dimension.
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Figure 5: Node classification performance of two MLPs with un-
shared parameters at different learning rates.

results show that higher representation dimensions generally
lead to better performance, especially on datasets with large
initial attribute dimensions such as CiteSeer and Squirrel.
This indicates that preserving more feature information con-
tributes to improved performance on both homophilic and
heterophilic graphs.

Learning Rate. In Figure 5, the impact of the hyperpa-
rameters [r; and [re on node classification accuracy across
different graphs is analyzed. Ir; and lrs control the learn-
ing rates for the topology part (M LP4) and the attribute part
(M LPyy) of the model, respectively. In the experiments,
when (77 is adjusted, 75 is kept fixed, and vice versa. The
results show that in homophilic graphs, the performance is
relatively stable with respect to both learning rates, which re-
flects the insensitivity to learning rates on homophilic graphs.
However, in heterophilic graphs, results show that adjusting
lro leads to more significant accuracy improvements, while
tuning [r; has a relatively smaller effect. This indicates that
the attribute representation plays a more important role in
handling heterophilic structures, with the model relying more
on attributes to distinguish node categories.

6 Conclusions

This paper proposes a novel Graph Contrastive Learning
(GCL) framework named GRAph learning via Self-contraSt
(GRASS) to overcome the limitations of traditional GCL
methods, including the reliance on complex graph augmen-
tations and the difficulty of selecting TRUE positive and neg-
ative samples. GRASS adopts a node-attribute self-contrast
mechanism that enhances the similarity between nodes and
their included attributes while suppressing the similarity
with non-included attributes. This framework implicitly en-
sures accurate node-node contrast by capturing high-hop co-
inclusion relationships. The theoretical analysis and empir-
ical results on multiple benchmark datasets validate the ef-
ficiency and universality of GRASS across both homophilic
and heterophilic graphs.
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