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Free Lunch of Image-mask Alignment for Anomaly Image
Generation and Segmentation

Xiangyue Li1 , Xiaoyang Wang2 , Zhibin Wan1 , Quan Zhang2 , Yupei Wu3 ,
Tao Deng1 , Mingjie Sun1∗

1School of Computer Science & Technology, Soochow University
2Xi’an Jiaotong-Liverpool University

3Aqrose Technology

Abstract
This paper aims at generating anomalous images
and their segmentation labels to address the lack
of real-world anomaly samples and privacy issues.
Departing from conventional approaches that use
masks solely to guide the generation of anomaly
images, we propose a dual-branch training strategy
for the generative model. This strategy enables the
simultaneous production of anomaly images and
masks, with an Alignment Regularization loss that
ensures the coherence between the generated im-
ages and their masks. During inference, only the
image-generation branch is activated to produce
synthetic samples for training the downstream seg-
mentation model. Furthermore, we propose to inte-
grate well-trained generative model into the train-
ing of segmentation models, utilizing a Generative
Feedback loss to refine the segmentation model’s
performance. Experiments show our method’s IoU
metrics exceed previous methods by 5.03%, 5.68%
and 16.63% on Real-IAD (industrial), polyp (med-
ical) and Floor Dirty (indoor) datasets. The code
is publicly accessible at https://github.com/huan-
yin/anomaly-alignment.

1 Introduction
The objective of anomaly image generation and segmentation
is to produce anomalous images, such as industrial product
defects or diseased areas in medical imagery, along with their
corresponding mask labels in a single process. This task ad-
dresses the scarcity of real-world anomaly samples and the
associated privacy issues. It is a crucial task in computer vi-
sion, characterized by the simultaneous creation of images
and masks, which distinguishes it from traditional image gen-
eration tasks. By creating these synthetic samples, we can
overcome the shortage of real ones and improve the perfor-
mance and generalization ability of the downstream segmen-
tation models to better handle various anomaly situations.

In previous research on anomaly image generation and seg-
mentation, prevalent approaches tend to employed a pipeline
where the guidance mask was utilized as a condition for

*Corresponding author (mjsun@suda.edu.cn).

Figure 1: Comparison between previous methods and ours. (a) Pre-
vious mask-guided image generation suffers from label drift issues
where generated images are not well aligned with the mask. (b) Our
dual-branch training strategy introduces an Alignment Regulariza-
tion by incorporating the mask into the noise-adding and denoising
process. It effectively improves the image-mask corresponding of
the generative model and alleviates the label drift problem. (c) Previ-
ous methods only adopt conventional segmentation training on real
and synthetic samples and fail to fully exploit the image-mask cor-
responding within the well-trained diffusion model. (d) We propose
to leverage the diffusion model to further improve the segmentation
model by directly evaluating its predictions with the generation ob-
jective, which we term as the Generative Feedback.

the generative model, specifying the location of the anomaly
within the synthetic image. Once the synthetic image was
produced, the mask was treated as the segmentation label.
However, misalignment happens when anomaly regions in
the generated images fail to accurately align with the con-
ditional mask. This phenomenon, known as the mask label
drift issue, negatively impacts the performance of the seg-
mentation models by introducing false training signals.

This drift issue may stem from the generative model’s in-
complete understanding of the image-mask correspondence
during training. To enhance this understanding, we propose
a dual-branch training approach for the generative model.
Specifically, different from previous methods that focused
solely on the generation of anomaly images (Figure. 1(a)), we
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introduce an innovative step where the binary mask is also
been generated during the training of the shared generative
model (Figure. 1(b)). This dual-branch framework allows us
to assess the discrepancy between the noise predicted for the
image and that for the mask by the shared generative model.
This discrepancy is termed as the Alignment Regularization
loss to improve the generative model’s image-mask alignment
during training. It is worth noting that only the image genera-
tion branch is employed during inference to generate samples
to train downstream segmentation models.

We attribute such improvement to the fact that denoising
both binary mask and image creates an explicit link between
their features, mitigating their distribution gap and estab-
lishing a robust internal representation of their relationship
at the pixel level. Consequently, the contour characteristics
of anomalies can be more rapidly learned through the mask
generation branch. These contour characteristics are then
transferred to the image generation branch via the Alignment
Regularization loss during training, ultimately enhancing the
image-mask corresponding of the generative model.

Then, we further delve deeper into the “free lunch” of the
aforementioned image-mask correspondence within the well-
trained generative model: when the condition mask closely
matches the anomaly area within the input noisy image, the
generative model can easily reconstruct the image from its
noisy counterpart, resulting in a smaller standard denoise
loss; conversely, if there is a mismatch between the condi-
tion mask and the anomaly area in the input noisy image, the
corresponding denoise loss increases substantially as well.

Building on this observation, we propose to integrate the
generative model into the training of the segmentation model,
to complement the traditional training strategy (Figure. 1(c)).
Here is how the process unfolds for a given image: first, this
image is fed into the segmentation model. The segmentation
model then predicts a logit mask, which serves as the con-
dition for the generative model. Subsequently, we introduce
noise to the image, treating the noisy image as the input for
the generative model, as seen in Figure. 1(d). The standard
denoising loss of the generative model is harnessed to fine-
tune the segmentation model to improve its performance.

The main contributions of this paper are as follows:

• We introduce a dual-branch training approach that en-
ables the simultaneous generation of anomaly images
and their masks. In Addition, we incorporate an Align-
ment Regularization loss between the generated images
and masks to enhance their correspondence. Only the
image-generation branch is activated when synthesizing
samples, with the image-mask drift issue alleviated.

• We propose to integrate the well-trained generative
model into the training of downstream segmentation
models via Generative Feedback loss. This loss, derived
from the original denoising loss of the generative model,
can serve as an indicator of the segmentation model’s ac-
curacy in identifying anomaly areas for its finetuning.

• Experiments show our method outperforms previous ap-
proaches in IoU metrics by 5.03% on the Real-IAD
dataset (industrial), 5.68% on the polyp dataset (medi-
cal), and 16.63% on the Floor Dirty dataset (indoor).

2 Related Work
2.1 Anomaly Image Generation
Since anomaly data is extremely scarce in the real world,
researchers want to expand the anomaly dataset in various
ways. Previous methods [Zavrtanik et al., 2021; Lin et al.,
2021] transferred the existing anomalies or textures to nor-
mal images, but they lacked realism and diversity. Then
researchers used the GAN-based [Goodfellow et al., 2020]
model SDGAN [Niu et al., 2020] and Defect-GAN [Zhang et
al., 2021] to generate anomalies on normal samples, but the
shortage of anomaly samples limits training. Diffusion mod-
els [Ho et al., 2020; Yao et al., 2023; Wu et al., 2025; Qiu
et al., 2025] have gradually gained widespread application
due to their high-quality generation performance. Recently,
AnomalyDiffusion [Hu et al., 2024] has made progress in
few-shot anomaly generation, while requiring separate mod-
els to generate different types of anomalies.

2.2 Anomaly Image Segmentation
Anomaly Image Segmentation is a crucial computer vision
task of localization and segmentation [Sun et al., 2020b;
Sun et al., 2021b; Sun et al., 2021a; Sun et al., 2020a; Sun
et al., 2024] that aims to identify and segment the abnormal
regions within an image. Previous researchers often adopt
reconstruction-based methods [Schlegl et al., 2019; Cao et
al., 2023], which discover defects by analyzing the residual
before and after reconstructing the images. Embedding-based
methods [Lee et al., 2022; Cao et al., 2022] can be used,
where pre-trained encoder networks are used to extract fea-
tures, followed by using clustering methods to detect defects.

3 Method
3.1 Overview
The core of this work is the image-mask Alignment Regular-
ization strategy to address the drift issue in the Stable Diffu-
sion (SD) [Rombach et al., 2022] model. The well-learned
alignment is then used to assist the segmentation training by
high-quality training data augmentation and a novel Genera-
tive Feedback mechanism.

Figure 2 shows the framework of our method. For genera-
tive training, we finetune an SD model for mask-conditioned
image generation as shown in Figure 2 (a). Here, our pro-
posed Alignment Regularization is applied to enforce the
model to learn precise image-mask alignment at the pixel
level. For segmentation training, we first use the well-tuned
SD model to generate highly aligned training samples to aug-
ment the training data for segmentation models, as shown in
Figure 2 (b) and (c). Then, we transfer the image-mask corre-
spondence from SD model into a Generative Feedback super-
vision. This feedback mechanism, based on the SD model’s
noise prediction objective, guides the segmentation model to
produce masks that accurately correspond to the image.

3.2 Generative Model Training
Standard Finetuning for Conditional Image Generation
Our primary objective is to generate high-quality image-
mask pairs to augment the training data for our segmenta-
tion model. To achieve this, we first finetune an SD model
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Figure 2: The overview of our framework. (a) We propose a dual-branch training strategy for the diffusion model, incorporating an Alignment
Regularization loss to mitigate the drift problem in diffusion. This enables the generative model to robustly learn precise image-mask
alignment. (b) With the well-learned alignment, the diffusion model is then used to generate a series of synthetic images based on ground truth
masks, which form our generative dataset. (c) We train the segmentation model using both the real dataset and the generated dataset, enhancing
its ability to generalize across diverse data. (d) The segmentation model is further improved by the diffusion model. By leveraging the image-
mask alignment learned by the diffusion model, we introduce a Generative Feedback mechanism to iteratively refine the segmentation outputs
with the generative objective of the diffusion model.

on the training dataset for conditional image generation. The
SD model comprises four main components: a Variational
Autoencoder (VAE) [Kingma and Welling, 2013], a CLIP
Text Encoder [Radford et al., 2021], a Scheduler, and a U-
Net [Ronneberger et al., 2015]. The model is conditioned
on both a binary mask m, which specifies the background
and the foreground anomalous region, as well as a textual de-
scription p, which provides additional contextual details for
the content to be generated. Ultimately, m is leveraged as the
ground truth label for the generated anomalous image.

During training, the process begins with the VAE encoder
E compressing the input image x0 into a latent feature z0.
Concurrently, the CLIP Text Encoder τ converts the tok-
enized prompt p into text embedding vectors τ(p). In the
forward diffusion process, the Scheduler progressively adds
Gaussian noise ϵ to the latent feature z0 over t timesteps, re-
sulting in zt, which approaches pure Gaussian noise as t in-
creases. During the reverse (denoising) process, the U-Net is
trained to predict the added noise ϵ based on the noised latent
feature zt, the timestep t, and the text embedding vector τ(p).
The finetuning loss Lsd is calculated as the Mean Squared Er-

ror (MSE) between the actual noise ϵ and the predicted noise
ϵθ, as defined in Equation 1, as follows:

Lsd = EE(x),p,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, τθ(p))∥22

]
. (1)

After finetuning, the SD model becomes capable of gener-
ating anomalous images from randomly sampled noise, con-
ditioned on a given binary mask. However, a limitation arises
due to the model’s coarse understanding of the mask, which
results in a label drift issue. Specifically, the generated image-
mask pairs exhibit misalignment between the binary mask
and the corresponding foreground and background regions in
the image. The misaligned training pairs can introduce in-
consistencies in the training data, potentially producing false
supervision signals during subsequent segmentation training.

Enhancing Image-Mask Alignment with Regularization
To address the drift issue observed in conventional finetun-
ing, we propose a novel strategy termed Alignment Regu-
larization to enhance correspondence between generated im-
ages and their conditioning masks. Our hypothesis identifies
feature misalignment between masks and images as the root
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Alignment 
Regularization

Mask Features

Mask 

Image Image Features

Feature Encoding

Figure 3: Illustration of the effect of our Alignment Regularization
mechanism. By enforcing consistency on the noise predictions on
both mask and images, their feature distribution gap can be miti-
gated, thus enhancing the guidance of the mask.

cause of this drift phenomenon. Due to their inherent visual
differences, a distribution gap can emerge between their en-
coded features, hindering the model’s ability to learn effective
mask-to-image correlations and ultimately leading to unde-
sired foreground drift in the generated samples.

To overcome this challenge, we introduce an Alignment
Regularization mechanism that treats masks not only as con-
ditions but also as denoising targets. Specifically, we apply
identical noise to both images and masks, then enforce con-
sistency between their respective noise predictions through
our regularization term. As illustrated in Figure 3, this ap-
proach enables the model to adapt to both image and mask
features simultaneously, thereby bridging their distribution
gap. Furthermore, this mechanism establishes explicit links
between the representations of the image and mask, strength-
ening the mask’s effectiveness as a conditioning signal.

We introduce a dual-head training strategy that simultane-
ously processes the image and mask. Specifically, during the
diffusion process, the framework employs the VAE encoder
E to compress the mask m into a latent feature h0. The same
noise ϵ, added to the latent image, is applied to the latent fea-
ture h0 over t timesteps to produce noisy latent feature ht:

h0 = E(m), ht =
√
ᾱth0 +

√
1− ᾱtϵ. (2)

In the denoising stage of the generative process, the model
conditions on both the mask m and the text embedding τ(p).
Using the noise-added feature ht as input to the U-Net model,
the framework predicts the noise ϵh for the mask region as:

ϵh = ϵθ (ht, t, τθ(p),m) . (3)

To enforce structural alignment, the Alignment Regulariza-
tion term Lal computes the mean squared error (MSE) be-
tween the noise ϵz predicted by the input image head and the
noise ϵh predicted by the mask head, as shown below:

Lal = EE(x),E(m),p,ϵ∼N (0,1),t,m

[
∥ϵz − ϵh∥22

]
. (4)

The overall training objective for generation Lgen combines
the conventional finetuning loss Lsd and the proposed struc-
tural alignment loss Lal, then weighted by a factor α:

Lgen = Lsd + αLal. (5)

Figure 4: Illustration of the module to convert logits to masks by
amplifying values, applying softmax along the channel dimension,
and extracting the second channel’s value as the approximate mask.

3.3 Segmentation Model Training
Segmentation Training on Augmented Dataset
Building upon our novel finetuning strategy, the SD model
is now capable of generating high-quality image-mask pairs.
We first leverage this capability to augment our training
dataset. Specifically, we generate synthetic training images
conditioned on binary masks and combine these with real
data pairs. The segmentation model is then trained on this
combined dataset. The training process optimizes a cross-
entropy loss, Lce, which minimizes the discrepancy between
the model-predicted logits and the ground truth masks.

Given real images xreal and synthetic images xsyn, the
segmentation model f produces corresponding logits lreal
and lsyn, respectively. The loss is then computed as:

Lce =
1

Nreal

Nreal∑
i=0

H(lireal, y
i) +

1

Nsyn

Nsyn∑
j=0

H(ljsyn, y
j),

(6)
where y represents the binary masks, and H denotes the
cross-entropy calculation. By training on these high-quality
and diverse augmented data, we enable the segmentation
model to develop more robust representations compared to
training solely on real data, yielding better performance.

Improving Segmentation with Generative Feedback
To further leverage the image-mask alignment learned in the
SD model, we introduce a novel Generative Feedback loss,
Lfb, which utilizes the well-trained SD model to evaluate the
output of the segmentation model, providing guidance and
iterative refinement. During training, the segmentation model
f initially predicts logits l for a given input image x. These
logits are then processed through a conversion module T to
obtain an approximate mask m̃, which can be defined as:

l = f(x), m̃ = T (l). (7)

The logits l have dimensions of N × C × H × W , where
the channel dimension C = 1 corresponds to the prediction
scores for the background and foreground. They are then con-
verted by module T defined as in following equations:

m̃ = softmax(
l

λ
), (8)

m̃ = m̃[:, 1, :, :], (9)

It is also illustrated in Figure 4. First, the logits are rescaled
by a temperature parameter λ ∈ (0, 1], followed by a softmax
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Method Training Data
ClinicDB ETIS EndoScene Kvasir ColonDB AVE

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

PVT

train-real(1450) 93.7 88.9 78.7 70.6 90.0 83.3 91.7 86.4 80.8 72.7 86.98 80.38

+ train-real(1450) 93.4 88.7 77.2 69.5 89.5 82.9 92.1 87.1 80.9 72.8 86.62 80.20

+ train-ArSDM(1450) 92.2 87.5 80.6 72.9 88.2 81.2 91.5 86.3 81.7 73.8 86.84 80.34

SAnet

train-real(1450) 91.6 85.9 75.0 65.4 88.8 81.5 90.4 84 75.3 67.0 84.22 76.76

+ train-real(1450) 92.2 87.2 78.3 69.8 88.6 82.2 90.4 84.8 75.4 68.2 84.98 78.44

+ train-ArSDM(1450) 91.4 86.1 78.0 69.5 90.2 83.2 91.1 85.6 77.7 70.0 85.68 78.88

Segformer

train-real(100) 84.6 76.8 71.2 64.5 87.3 80.2 88.6 81.0 74.4 65.8 81.20 73.65

+ train-ArSDM(1450) 88.7 82.0 73.9 66.7 85.7 78.2 90.3 83.7 76.3 67.8 82.96 75.66

+ train-ours(1450) 93.2 88.3 81.8 74.4 92.0 86.6 90.6 84.2 80.4 73.3 87.59 81.34

Table 1: The comparison with other SOTA methods for the polyp segmentation, using the metrics of mIoU (%) and mDice (%), where higher
values mean more accurate segmentation. The result with the highest score is highlighted in bold and the second highest is underlined. “+”
denotes the combination of “train-real” dataset and another dataset and dataset(n) indicates this dataset consists of n samples.

Figure 5: VAE-encoded distribution via t-SNE on polyp dataset.

normalization along the channel dimension. The tempera-
ture parameter λ sharpens the softmax output, emphasizing
the foreground scores. As shown in Equation 9, we extract
the foreground predicted probabilities by slicing the second
channel of the predictions to approximate a binary mask, also
shown by the yellow probability map in Figure 4.

The approximate mask m̃ is then used as a condition for the
SD model, along with a text embedding vector τ(p). The SD
model then processes the noise-added latent image feature zt
to generate predicted noise ϵfb. Our feedback loss, Lfb, is
then defined as the Mean Squared Error (MSE) between the
real noise ϵ added during the forward diffusion process and
the noise ϵfb predicted by the SD model, as follows:

Lfb = EE(m̃),p,ϵ∼N (0,1),t

[
∥ϵ− ϵfb (zt, t, τ(p), m̃)∥22

]
.

(10)
The final segmentation training loss, Lseg , is a combination

Method FID↓ IS ↑ LPIPS ↓
ArSDM 361.55 1.98 0.869

Ours 162.01 3.25 0.698

Table 2: Quantitative comparison about the generated image quality
of different generative models on the polyp dataset. Both ArSDM
and our method use 100 real image-mask pairs for training.

of the cross-entropy loss and the Generative Feedback loss:

Lseg = Lce + Lfb. (11)

This dual loss mechanism allows the learned alignment ex-
pertise of the generative model to guide and refine the seg-
mentation process. Specifically, if the predicted mask aligns
closely with the real mask, the SD model can effectively re-
construct the image, resulting in a predicted noise close to
the real noise and, therefore, reducing the Lfb. Conversely,
significant deviations between the predicted and actual masks
will hinder the reconstruction, leading to less accurate noise
predictions and an increase in Lfb. By integrating Lfb into
the overall segmentation loss, the discrepancy between the
approximate mask and the actual mask is effectively reduced.
By doing so, the segmentation model is encouraged to gener-
ate higher-quality mask prediction close to the ground truth.

4 Experiment
4.1 Dataset and Metrics
The evaluation experiments are conducted on multiple sce-
narios, including medical polyp dataset (ETIS [Silva et
al., 2014], CVC-ClinicDB/CVC-612 [Bernal, 2015], CVC-
ColonDB [Tajbakhsh et al., 2015], En-doScene [Vázquez
et al., 2017], Kvasir [Jha et al., 2020]), industrial dataset
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Dataset Method Category mDice ↑ mIoU ↑

MVTec-AD
AnomalyDiffusion - 77.60 71.84

Ours - 78.62 72.91

Real-IAD

AnomalyDiffusion
easy 70.98 66.35
hard 67.31 63.91

average 69.15 65.13

Ours
easy 74.68 72.39
hard 69.32 67.94

average 72.00 70.16

Floor Dirt

AnomalyDiffusion
stains 35.61 35.23
faeces 34.98 34.51

average 35.30 34.87

Ours
stains 49.52 48.94
faeces 57.60 54.06

average 53.56 51.50

Table 3: Anomaly segmentation comparison on MVTec-AD, Real-
IAD and Floor Dirt dataset. The highest score is in bold.

(Real-IAD [Wang et al., 2024], MVTec-AD[Bergmann et al.,
2019]), and Floor Dirty dataset. Frechet Inception Distance
(FID) [Heusel et al., 2017], Inception Score (IS) [Salimans
et al., 2016] and Learned Perceptual Image Patch Similarity
(LPIPS) [Zhang et al., 2018] are adopted to evaluate synthetic
image quality. Intersection over Union (IoU) and Dice coef-
ficient are utilized to evaluate the accuracy of downstream
segmentation models.

4.2 Implementation Details
Using LoRA [Hu et al., 2022] to add image conditions for
Stable Diffusion is adopted as the baseline generative model.
Segformer [Xie et al., 2021] is adopted as the baseline seg-
mentation model. AdamW is adopted as the optimizer. Input
and output images are constrained to 512 × 512. The learn-
ing rate is set as 10−5. The batch size is set as 4. For the
inference of the diffusion model, the classifier free guidance
scale is set as 7. We set the factor α for Lal to 0.7. For
each dataset, we first finetune SD via real samples. Then, real
masks are utilized to guide SD to generate synthetic samples.
Ultimately, real samples are combined with augmented syn-
thetic samples to train downstream segmentation models (see
details in complementary materials).

4.3 Comparisons with SOTA Methods
Synthetic Data Quality Evaluation
In order to explore the matching degree between the gener-
ated image and the mask, we carry out relevant experiments.
Figure 5 displays the data distribution of real masks, real im-
ages, generated images without alignment loss, and generated
images with alignment loss after encoding by the VAE. The
figure shows that without the alignment loss, there is a sig-
nificant distribution gap between the generated images and
both the real masks and real images. However, after adding

Figure 6: Qualitative comparison of different image generative
methods. The red region marks the boundary position of GT mask.

the alignment loss, the distribution gap between the generated
images and the real masks is noticeably reduced, and the gap
with the real images also becomes relatively smaller.

For qualitative synthetic data assessment, we compare im-
ages generated by our approach to those from AnomalyDiffu-
sion [Hu et al., 2024] and ArSDM [Du et al., 2023]. Figure 6
shows the results. In medical anomaly datasets with larger
Ground-truth (GT) masks, our model’s images closely match
the GT, while ArSDM’s images show misalignment and ir-
regular shapes. For industrial and floor anomaly datasets with
smaller GT masks, our model maintains high consistency be-
tween generated and real masks, unlike AnomalyDiffusion’s
images, which have significant shape inconsistencies.

In terms of the quantitative synthetic data evaluation, we
compare our method to previous models using FID, IS, and
LPIPS metrics on the medical polyp dataset. Results in Ta-
ble 2 show our method yields lower FID and LPIPS scores,
indicating greater similarity to real images, and a higher IS
score, suggesting high-quality and diverse image generation.

Segmentation Accuracy Evaluation
As shown in Table 1, in the medical anomalies scenario, we
primarily compare segmentation performance with data gen-
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No. Lal Lfb
Segmentation Metrics

mDice ↑ mIoU↑
1 81.21 73.65
2 ✓ 87.11 80.46
3 ✓ 87.28 80.51
4 ✓ ✓ 87.59 81.34

Table 4: Ablation studies about the proposed loss functions. The
segmentation metrics are the average results obtained from five
polyp datasets. The result with the highest score is marked in bold.

No. Sample Numbers
Segmentation Metrics

mDice ↑ mIoU↑
1 20 58.74 47.27
2 50 85.64 78.80
3 100 87.59 81.34
4 150 88.80 82.22

Table 5: Ablation studies about different numbers of samples used
for training the generative model on the polyp dataset. The seg-
mentation metrics are the average results obtained from five polyp
datasets. The result with the highest score is marked in bold.

erated by ArSDM on the polyp dataset. We train our gener-
ative model on a smaller dataset with only 100 image-mask
pairs to simulate the scarcity of labelled data in medical sce-
narios. Compared to using 100 samples to train ArSDM, our
method yields much better segmentation performance when
training segformer with generated images. ArSDM struggles
with limited samples, and even with 1,450 samples, training
PVT [Dong et al., 2021] or SANet [Wei et al., 2021] doesn’t
match our results. Our method excels in datasets like ETIS
and EndoScene, which greatly differ from the training set,
by better capturing image-mask relationships. ArSDM, how-
ever, only generates images similar to the training set and fails
to adapt to significant differences. Thus, our improvements
are notable on these datasets. On other test sets similar to the
training set, where segmentation performance is near satura-
tion, the proposed method shows no significant gains.

Table 3 shows industrial anomaly segmentation per-
formance comparisons on the MvTec-AD and Real-IAD
datasets. The Real-IAD dataset, split into easy (10 objects)
and hard (20 objects) based on generation difficulty, reveals
that segformer trained with our synthetic samples achieves
1.07% and 5.03% higher average mIoU on MvTec-AD and
Real-IAD, respectively, than segformer trained on the sam-
ples generated by AnomalyDiffusion. Similar accuracy im-
provement can be observed on the Floor Dirty dataset.

4.4 Ablation Study
Contribution of Main Components
The main components: Alignment Regularization loss Lal

and Generative Feedback loss Lfb, play a crucial role in en-
hancing the performance and stability of the model. Table 4

Figure 7: Ablation studies about different numbers of real masks
used for the inference of the generative model. The segmentation
metrics are the average results obtained from five polyp datasets.

shows the individual and combined impact of these loss func-
tions. Using Lal and Lfb separately brings gains of 5.9% and
6.07% on mDice and 6.81% and 6.86% on mIoU over base-
line, respectively. Combining these two loss functions raises
the performance to a new level, leading to improvements of
6.38% on mDice and 7.69% on mIoU. This indicates the ef-
fectiveness of the two main loss functions. It is worth noting
that the Alignment Regularization impacts the segmentation
model indirectly by enhancing its training data, while Gen-
erative Feedback mechanism is directly involved in its opti-
mization process. Importantly, these two loss functions have
a synergistic effect in improving the segmentation model.

Sample Size on Generative Model Training
Table 5 shows the impact of sample size on finetuning the
generative model. As samples increase from 50 to 150,
the segmentation model’s mIoU improves from 78.80% to
82.22%. With only 20 samples, mIoU drops to 47.27%,
likely due to insufficient tuning of the diffusion model, caus-
ing misalignments in synthetic data and misleading segmen-
tation model optimization. This highlights the importance of
adequate training samples for diffusion model finetuning.

Real Mask Numbers for Generative Model Inference
This study examines how the number of real masks guiding
synthetic sample generation affects downstream segmenta-
tion performance. Figure 7 shows a non-linear relationship
between real mask number and segmentation performance.
mIoU fluctuates minimally from 10 to 60 masks, peaking
at 80.47% with 20 masks and bottoming at 79.24% with 10
masks. From 60 to 100 masks, mIoU slightly increases to
80.38%. The high performance with few real masks indicates
our method’s robustness and low sensitivity to mask quality.

5 Conclusion
Our method introduces Alignment Regularization loss during
generative model training to improve diffusion’s understand-
ing of image-mask relationships and output quality. It also
integrates Generative Feedback loss into segmentation model
training to optimize performance and accuracy. Extensive
experiments validate the proposed approach’s effectiveness,
supporting their application and value in downstream tasks.
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bastian M. Waldstein, Georg Langs, and Ursula Schmidt-
Erfurth. f-anogan: Fast unsupervised anomaly detec-
tion with generative adversarial networks. Medical Image
Analysis, 54:30–44, 2019.

[Silva et al., 2014] Juan Silva, Aymeric Histace, Olivier Ro-
main, Xavier Dray, and Bertrand Granado. Toward embed-
ded detection of polyps in wce images for early diagnosis
of colorectal cancer. International Journal of Computer
Assisted Radiology and Surgery, 9:283–293, 2014.

[Sun et al., 2020a] Mingjie Sun, Jimin Xiao, Eng Gee Lim,
Yanchun Xie, and Jiashi Feng. Adaptive roi generation for
video object segmentation using reinforcement learning.
Pattern Recognition, 106:107465, 2020.

[Sun et al., 2020b] Mingjie Sun, Jimin Xiao, Eng Gee Lim,
Bingfeng Zhang, and Yao Zhao. Fast template matching
and update for video object tracking and segmentation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[Sun et al., 2021a] Mingjie Sun, Jimin Xiao, and Eng Gee
Lim. Iterative shrinking for referring expression grounding
using deep reinforcement learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
and Pattern Recognition, 2021.

[Sun et al., 2021b] Mingjie Sun, Jimin Xiao, Eng Gee Lim,
Si Liu, and John Y. Goulermas. Discriminative triad
matching and reconstruction for weakly referring expres-
sion grounding. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(11):4189–4195, 2021.

[Sun et al., 2024] Mingjie Sun, Jimin Xiao, Eng Gee Lim,
Cairong Zhao, and Yao Zhao. Unified multi-modality
video object segmentation using reinforcement learning.
IEEE Transactions on Circuits and Systems for Video
Technology, 34(8):6722–6734, 2024.

[Tajbakhsh et al., 2015] Nima Tajbakhsh, Suryakanth R Gu-
rudu, and Jianming Liang. Automated polyp detection in
colonoscopy videos using shape and context information.
IEEE Transactions on Medical Imaging, 35(2):630–644,
2015.

[Vázquez et al., 2017] David Vázquez, Jorge Bernal,
F. Javier Sánchez, Gloria Fernández-Esparrach, An-
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