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Abstract
Social dilemmas are an important benchmark to
study the emergence of cooperation among au-
tonomous learning agents and impressive results
were recently achieved in two-player games by re-
inforcement learning agents equipped with a part-
ner selection module. However, the same cannot
be said for games on networks. When surrounded
by many other defectors, cooperators suffer harsher
punishments and find it hard to replicate, making
mass defection quickly take over. The frameworks
studied so far for the emergence of cooperation in
social dilemmas on networks have shown the key
role of dynamical linking, the capacity of agents to
select their own neighbours, but they have also re-
lied on hard-wired heuristics, such as imitation dy-
namics, designed to favour cooperation. In this pa-
per, we remove this constraint and study a popula-
tion of agents that can autonomously learn whether
to cooperate or defect with any of their neighbours
in a social dilemma, as well as whether to form or
sever social ties with others. Building on a sem-
inal framework for the emergence of cooperation
in complex social networks with dynamical link-
ing, we implement our agents as Sarsa learners with
Boltzmann exploration and equipped with partner
selection actions. We show, for the first time, that
these agents can reach a fully cooperative society
without requiring ad-hoc heuristics. In doing so, we
confirm the fundamental role of timescales, the rel-
ative speed at which strategy and structure updates
occur, for the emergence of cooperation, highlight-
ing the intricate interplay between network dynam-
ics and decision-making in agent societies.

1 Introduction
Social dilemmas are situations where the social benefits of
contributing to a common good are overshadowed by the in-
dividual incentives of taking advantage of others’ contribu-
tions. They arise in many real-world domains, such as pay-
ing taxes, preserving common resources or investing in green

*Code available at https://github.com/Xiaoq-Fan/DynamicLink.

energy and their resolution is essential for tackling many
of the global challenges we face today. Designing artificial
agents that autonomously learn to promote cooperation in so-
cial dilemmas is one of the biggest challenges Cooperative
AI [Fatima et al., 2024], with benchmark competitions being
held at top AI venues seeking to “evaluate how agents can
adapt their cooperative skills to interact with novel partners
in unforeseen situations” [Trivedi et al., 2023]. Impressive
results were recently obtained with Reinforcement Learning
(RL) agents in two-player social dilemmas equipped with a
unilateral and single-partner selection module [Anastassacos
et al., 2020], which were able to autonomously learn reci-
procity through the Tit-for-Tat strategy [Axelrod, 1984]. RL
agents were also able to show reciprocity through partner se-
lection strategies, such as the Out-for-Tat rule [Zheng et al.,
2017], outcasting defectors and keeping ties with coopera-
tors, which was co-learnt in combination with Tit-for-Tat to
sustain a cooperative society [Leung and Turrini, 2024].

While breakthroughs were obtained for two-player games,
the same cannot be said for games on networks, where agents
interact with potentially many neighbours. When surrounded
by many other defectors, cooperators suffer harsher punish-
ments and find it hard to replicate, making mass defection
quickly take over. The frameworks studied so far have em-
phasised once again the key role of partner selection [Pacheco
et al., 2006] and the corresponding timescales, the ratio
at which partner selection and in-game strategies co-occur
[Pacheco et al., 2006; Santos et al., 2006a]. However, achiev-
ing cooperative societies in such frameworks generally re-
lied on hard-wired heuristics, such as imitation dynamics and
rule-based partner selection [Santos et al., 2006a], inherently
designed to favour cooperation. All in all, the work on Re-
inforcement Learning in games on networks has not yet been
able to show that cooperation can be obtained with learning
alone [Fulker et al., 2021; Leung et al., 2024].

Contribution In this paper we show, for the first time, that
a fully cooperative society can be sustained in games on
networks by RL agents only, without relying on hard-wired
decision-making heuristics or imitation dynamics. To do so,
we build on the seminal model by Pacheco, Traulsen and
Nowak [Pacheco et al., 2006] for social dilemmas on complex
networks with dynamical linking, where agents are equipped
with fixed probabilities to form and sever links with others,
and choose whether to cooperate or defect by imitating their
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most successful neighbour. We replace such heuristics with
the Sarsa algorithm under Boltzmann action selection. We
show that our agents are able to reach a fully cooperative so-
ciety and identify the in-game and partner selection strategies
that are simultaneously co-learnt to support it, showcasing
the evolution of the underlying network structure. By ex-
amining the dominant policies at different learning phases,
we show how agents are able to come up with cooperation-
inducing strategies such as the Out-for-Tat (OFT), which out-
casts defectors and keeps ties with cooperators, and the Tit-
for-Tat (TFT) strategy, which copies the opponent’s last strat-
egy, in the Prisoner’s Dilemma game - the hardest of the
social dilemmas. We also confirm the fundamental role of
timescales, the relative speed at which strategic and struc-
tural updates occur, highlighting the intricate interplay be-
tween network dynamics and decision-making in structured
agent societies.

2 Related Work
Understanding what makes self-interested individuals coop-
erate is a key question for many fields of science, such as
economics, evolutionary and social psychology and biology
[Nowak, 2006]. Various studies, empirical [Rand et al., 2011;
Wang et al., 2012; Zhang et al., 2016] and theoretical [Seg-
broeck et al., 2009; Zheng et al., 2017; Bara et al., 2022;
Santos et al., 2006a], have shown how the capacity of indi-
viduals to choose reliable partners is key for this to happen.

The interplay between strategic and structural updates
naturally induces a two-dimensional timescale, the ratio of
which will determine the resulting cooperation rates. This
was shown in models with interaction propensity [Santos et
al., 2006a; Santos et al., 2006b], optional social dilemmas
[Zhang et al., 2016; Zheng et al., 2017], group selection [San-
tos et al., 2006a], unilateral [Bara et al., 2022] and bilateral
[Wang et al., 2012] attachment.

Agent-based simulation models abound for the emer-
gence of cooperation in social dilemmas, e.g.,[Gilbert, 1995;
Salazar et al., 2011; Santos and Pacheco, 2005], as well as co-
ordination games on networks, e.g., [Segbroeck et al., 2010],
with agents generally driven by heuristic rules. Mechanisms
such as reputation were also studied, as a way to isolate and
punish defectors [Sabater and Sierra, 2002; Pujol et al., 2002;
Perreau de Pinninck et al., 2010; Santos et al., 2018].

Reinforcement learning has recently emerged as the main
framework to model and analyse the equilibrium behaviour
of self-interested agents and the study of cooperation in so-
cial dilemmas is no exception. Breakthroughs were made in
the analysis of common pool resources [Pérolat et al., 2017]
and partner selection was shown to be a key mechanism for
the emergence of cooperation in two-player social dilemmas
[Anastassacos et al., 2020] and in two-player optional social
dilemmas [Leung et al., 2024]. While the work by [Anas-
tassacos et al., 2020] focuses on unilateral single-partner se-
lection with full knowledge of everyone’s last action, our
approach studies ties obtained by mutual consent with po-
tentially multiple partners, under more realistic observability
constraints.

In games on networks, [Fulker et al., 2021] modelled the

C D
C R,R S, T
D T, S P, P

C D
C 3, 3 −1, 5
D 5,−1 0, 0

Table 1: Payoff Matrix for the Prisoner’s Dilemma. The game is
structured such that the inequalities T > R > P > S and 2R >
T+S hold true. The bi-matrix on the left presents the general payoff
matrix, which we instantiate with the one on the right.

co-evolution of network weights, representing individuals’
openness to interact, and in-game strategies through imita-
tion, while in [Foley et al., 2018] a co-evolutionary model is
presented where strategy and structure evolve by reinforce-
ment learning, but only able to account for the emergence
of conventions, while social dilemmas require more complex
learning approaches. A recent attempt using RL for partner
selection [Leung et al., 2024] was able to retrieve a fully co-
operative society building on [Santos et al., 2006a] but still
relying on imitation dynamics at the game level.

Our paper stems from a seminal contribution by Pacheco,
Traulsen and Nowak, developed in the field of computational
physics [Pacheco et al., 2006]. In their framework agents
have a propensity to form new links with others which are
severed through a set death rate, while imitation dynamics
drive the evolution of the in-game strategy. When these pa-
rameters are properly set, the network structure will evolve to
make cooperators prevail gain higher fitness and take over the
entire population. The authors also demonstrated the key role
of timescales: only when the rate of dynamical linking is fast
enough, the population achieve full cooperation.

To show the emergence of cooperation, the above contri-
butions have all relied on hard-wired heuristics or imitation
dynamics in either partner or in-game action selection, which
we entirely replace using Reinforcement Learning.

Paper Structure Section 3 reviews social dilemmas and
the Sarsa algorithm with Boltzmann exploration, while Sec-
tion 4 describes our co-learning algorithm. The analysis of
the emergence of cooperation, the learnt strategies, timescales
and network evolution are presented in Section 5. Section 6
discusses potential future directions.

3 Preliminaries
3.1 Social Dilemmas on Networks
Social dilemmas are a benchmark model for the emergence
of cooperation in a population of autonomous agents, with
the Prisoner’s Dilemma (PD) serving as the main example
and the hardest to deal with. The PD is a 2-player symmetric
game where both players can choose to Cooperate (C) or De-
fect (D). Players receive a payoff based on the game outcome:
R (mutual cooperation reward), P (mutual defection punish-
ment), S (sucker’s payoff for cooperating with a defector), or
T (temptation payoff for defecting against a cooperator). Its
payoff matrix is presented in Table 1. While mutual coop-
eration provides the best collective outcome, defection is the
dominant strategy, leading to a Nash equilibrium of mutual
defection, encoding the tension between societal and individ-
ual interest that is typical of social dilemmas.
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When playing on networks, following [Pacheco et al.,
2006], we have that at each round of a game a pair of neigh-
bouring agents are randomly selected to play the PD game.
Upon receiving the respective rewards as a function of their
individual decisions, they will revise their strategy accord-
ingly. We implement this process, as well as the protocols for
forming and severing new links, using Sarsa with Boltzmann
exploration.

3.2 Sarsa and Boltzmann Exploration
We train our agents using Sarsa [Sutton and Barto, 2018],
a model-free, on-policy reinforcement learning algorithm.
Each agent learns its policy independently. At each time step,
the agent observes the current state of the environment, de-
noted as st ∈ S, where S represents the set of all possible
states. The agent then chooses an available action at ∈ A
from a set A. We denote the corresponding Q-value as
Qi(st, at), estimating the expected accumulated discounted
reward of choosing action at at state st. Based on its action
and the current state, the agent receives a reward rt+1 ∈ R
and transitions to a new state st+1 ∈ S, following the state-
transition probability Pss′ = P(st+1 = s′|st = s, at = a).

Let Gt =
∑T−t−1

k=0 γkrt+1+k, where γ ∈ [0, 1] and
t ∈ {1, ..., T}, be the accumulated discounted rewards from
an episode of the game. Then the Q-values of the agent are
updated as follows:

Qi(st, at)← Qi(st, at) + α[Gt −Qi(st, at)], (1)

where α ∈ [0, 1] is the learning rate. The policy of agent i is
defined using a Boltzmann exploration strategy, as follows:

Pi(an) =
eMQi(s,an)∑
k e

MQi(s,ak)
, (2)

where P(an) denotes the probability of selecting action an,
and M is the inverse temperature parameter that controls the
exploration-exploitation trade-off. A high temperature drives
the agent towards exploration, whereas a low temperature to-
wards exploitation, favouring actions with higher Q-values.

4 Co-Learning of Strategy and Structure
Our model, which we present next, directly extends the one in
[Pacheco et al., 2006] to RL-based decision-makers, allow-
ing for the co-learning of strategy and structure in complex
networks with dynamical linking. Starting with a complete
network, agents update their social ties by forming new links
or severing existing ones, while learning what to do in the
PD at the same time. The relative frequency at which agents
update their social ties versus playing a PD game depends
on a timescale ratio (Ts/Ta), where Ta is the timescale for
link update and Ts is the timescale for strategy update. When
Ta ≪ Ts, for example, link update is much faster than strat-
egy update, and vice versa. Without loss of generality, we fix
Ts = 1 and vary Ta to simplify the process.

Algorithm 1 describes our interaction protocol. In each
episode, there will be H 1 rounds of selection, a pair of agents

1We control this number such that at different timescale ratios
the number of PD games played is constant at 1500, so that the ex-
perience agents gain from game play is equivalent.

Algorithm 1 Social Dilemmas with Dynamical Linking
Input: N , H , α, τ , β, p, T

1: Initialize Agent with N,α, τ
2: Initialize LastActions randomly
3: Initialize Network as a complete graph
4: for episode = 1 to T do
5: for round = 1 to H do
6: Draw x ∈ [0, 1) randomly
7: if x < p = Ta

1+Ta
then

8: Draw i, j from Network randomly
9: if i ∈ N(j) then

10: siDB ← LastActions[j]

11: sjDB ← LastActions[i]
12: aiDB ← Agents[i].getAction(siDB)

13: ajDB ← Agents[j].getAction(sjDB)

14: if aiDB and ajDB == “Y ” then
15: Network.addEdge(i, j)
16: end if
17: else
18: siDL ← LastActions[i]

19: sjDL ← LastActions[j]
20: aiDL ← Agents[i].getAction(siDL)

21: ajDL ← Agents[j].getAction(sjDL)

22: if aiDL or ajDL == “Y ” then
23: Network.removeEdge(i, j)
24: end if
25: end if
26: else
27: siPD ← LastActions[j]

28: sjPD ← LastActions[i]
29: aiPD ← Agents[i].getAction(siPD)

30: ajPD ← Agents[j].getAction(sjPD)

31: riPD, rjPD = playgame(aiPD, ajPD)
32: LastActions[i]← aiPD

33: LastActions[j]← ajPD

34: Agent[i].updateReward(riPD)

35: Agent[j].updateReward(rjPD)
36: end if
37: end for
38: for each agent in Agents parallel do do
39: agent.train() with equation (1)
40: end for
41: end for

are selected to conduct a PD game play with probability p =
Ta

1+Ta
or perform a dynamical linking otherwise (lines 6-7).

In the case of dynamical linking, a random pair of agents i
and j is selected. If they are neighbours in the current net-
work, the agents will decide whether to maintain or sever
the link (lines 9-16). Both agents will decide based on the
opponent’s last action, for (si, sj) representing states agents
are in, where s ∈ {DBC , DBD}, and (ai, aj) the actions
chosen, where a ∈ {DBY , DBN}. Here, DBY represents
”yes” (break the link), and DBN indicates ”no” (keep the
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link). If both agents choose DBN , the link is preserved; if
either chooses DBY , the link is severed. If selected agents
i, j are not already linked, they need to decide whether to
form a link with one another (lines 17-25). Notably, un-
like e.g., [Anastassacos et al., 2020], we let both agents
decide based on their own last action, as they lack knowl-
edge of each other, thus having si, sj ∈ {DLC , DLD} and
ai, aj ∈ {DLY , DLN}. If both agents choose DLY , a link
is formed between them. Conversely, if either chooses DLN ,
they remain unconnected. To prevent agents from becoming
completely isolated, the link cannot be severed if it is their
last remaining connection. Note that agents do not earn any
immediate reward from either forming or severing a link.

When in the PD game play phase (lines 26-36), an agent
i is randomly selected among all agents, and then one of its
neighbours j is randomly drawn. They will then play a PD
game, informed of the opponent’s last action, (sj , si), where
s ∈ {PDC , PDD}. Each agent needs to choose between co-
operate and defect, (ai, aj), where a ∈ {C,D}, and receives
the corresponding reward, (ri, rj).

At the end of each episode, the agents will update their Q-
values (lines 38-40). To do so, they employ Sarsa with Boltz-
mann exploration, with all Q-values initialised to zero. The
learning rate is set to α = 0.05. The temperature parameter is
fixed at M = 1, and the discount rate is set to γ = 1. These
parameters guide the learning process, balancing exploration
and exploitation to optimise agent performance.

5 Cooperation Through Dynamical Linking
When agents play a social dilemma on networks and are al-
lowed to update their ties based on the dynamical linking
mechanism, full cooperation emerges. Figure 1 presents the
percentage of outcomes for the PD game and the population
rewards across episodes averaged over 200 simulations for a
population of 100 agents, which we maintain throughout our
experiments. Figure 1a shows that when agents are allowed
to perform dynamical linking (Ts/Ta = 1), full cooperation
emerges with maximised total rewards. Meanwhile, when the
agents are not given a chance to adjust their social ties, i.e. un-
der a random matching mechanism, mutual defection quickly
dominates the entire population, effectively suppressing co-
operative behaviour, as shown in Figure 1b.

5.1 The Four Phases of Learning
With dynamical linking, agents adjust their connections by
forming or severing links in response to rewards, and cooper-
ative behaviour emerges as the dominant strategy. This pro-
cess results in a gradual and sustained increase in the popu-
lation’s overall rewards, as depicted in Figure 1a. Over time,
cooperative agents prevail, eventually dominating. Looking
into the learning process, we observe four phases:

• Phase 1 (episodes 0 to 500): Agents learn to defect.
• Phase 2 (episodes 500 to 7000): Agents learn that break-

ing ties with defectors and keeping them with coopera-
tors (Out-for-Tat, OFT) and always forming a new link
with strangers (Commit) is a good strategy.

• Phase 3 (episodes 7000 to 10000): OFT strategies be-
come dominant in the population. Meanwhile, agents

learn that cooperating with cooperators and defecting
with defectors (Tit-for-Tat, TFT) is a good strategy. The
number of agents adopting TFT grows sharply.

• Phase 4 (episodes 10000 onwards): We observe the
emergence of a stable cooperative society, where all
agents employ the Always Cooperate (All-C) or the Tit-
for-Tat (TFT) strategies.

5.2 Emergent Strategic Types
By analysing the Q-values for different states, we can cat-
egorise the agent’s policy into distinct strategic types. For
instance, when creating a new link, if the Q-value for action
N consistently exceeds that of action Y, regardless of their
previous action (Q(N |DLC) > Q(Y |DLC), Q(N |DLD) >
Q(Y |DLD)), the agent is classified as following the Iso-
late strategy. If the Q-value for action N is greater than
that for action Y when their previous action was coopera-
tion, but the opposite is true when the opponent defected, i.e.,
(Q(N |DLC) > Q(Y |DLC), Q(N |DLD) < Q(Y |DLD)),
the agent is classified as employing the D-link strategy. Sim-
ilar classifications can be applied to other states.

Thus, we can categorise agents’ strategies into four dis-
tinct types for the link-formation decision stage, four differ-
ent types for the link-breaking decision stage and another four
types for the Prisoner’s Dilemma (PD) game stage.

For the link-formation decision stage, they are (1) Always-
Link (Commit), (2) C-Link where a cooperator agent always
establishes links with strangers, whereas a defector agent
avoids forming such links, (3) D-Link where the agent who
is a defector always form a link with strangers and not form
link if the agent is a cooperator, (4) Always-not-link (Isolate).

For the link-breaking decision stage, the strategy types are
(1) Always-Stay (Stay), (2) Out-for-Tat (OFT), where agents
cut the link with defectors and keep the link with coopera-
tors, (3) Reverse-Out-for-Tat (R-OFT), where agents keep the
link with defectors and cut the link with cooperators and (4)
Always-Leave (Leave).

For the PD game stage, we have (1) Always-Cooperate
(All-C), (2) Tit-for-Tat (TFT), where the agent plays cooper-
ate when the opponent plays cooperate and plays defect when
the opponent plays defect, (3) Reverse-Tit-for-Tat (R-TFT),
where the agent plays cooperate when the opponent plays de-
fect and plays defect when the opponent plays cooperate and
(4) Always-Defect (All-D).

To analyse how strategies develop and stabilise within the
population, we have created a box plot to show the number
of agents that adopted each strategy type during the training
process across various learning phases (Figure 2).

In the first phase, agents learn to defect quickly. As for
linking, more agents learn to connect with strangers. Since
the majority of agents are defectors, the Commit strategy of-
fers a higher likelihood of successful exploitation of others.
For the breaking strategy, some agents learn to OFT which
leaves their neighbours who are defecting to avoid being fur-
ther exploited. At this stage, agents generally have not come
up with a clear strategy to choose their neighbour, therefore,
defection quickly spreads and dominates the population.

In the second phase, as agents continue to adapt, more re-
alise TFT is rewarding. All-D agents are down to 50. For the
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(a) Matching in PDs with Dynamical Linking (b) Random Matching

Figure 1: The mean and standard deviation of the percentage of outcomes in PD games and the population rewards across episodes. The
population size is 100, results are averaged over 200 simulations. (a) When agents are allowed to perform dynamical linking (Ts/Ta = 1),
full cooperation emerges. The vertical dashed lines indicate the end of each learning phase. (b) In random matching, defectors quickly take
over the population, effectively suppressing cooperative behaviour.

Figure 2: The box plots illustrate the number of agents that adopted each strategy type during the training process across various learning
phases. Agents quickly learnt the Commit and OFT strategy which resulted in the development of All-C and TFT. This leads to a 100%
cooperation rate in the population.

linking strategy, while defectors continue to learn to actively
pursue links with strangers, the number of agents adopting
Commit continues to grow. Regarding the breaking strategy,
OFT becomes dominant in the population, which keeps the
cooperators from being exploited by the defectors.

For the third phase, the number of TFT agents starts to
grow significantly. For the linking strategy, more and more

agents are willing to link with others. Agents adopting the
TFT strategy are able to cooperate with cooperators to get
higher rewards and defect with defectors to avoid being ex-
ploited. Thus, they are willing to form new connections to
increase their chances of being chosen. The rise of TFT
agents has significantly impacted defecting agents, encourag-
ing them to resort to cooperative behaviour over time. There-
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Figure 3: Cooperation rates result at different timescales. For each
Ts/Ta ratio, we ran 200 simulations starting with a complete graph
of N = 100 agents. When Ts/Ta ≥ 0.2, full cooperation is
achieved. When 0 ≤ Ts/Ta < 0.2, a V-shaped pattern is observed.

fore, the number of All-D agents experiences a steep decline.
For the last phase, Always-Cooperate and TFT agents

gradually grow and eventually take over the entire population
at the end of the simulations. This has led to a steady increase
in cooperative outcomes (C, C) in the PD game. By episode
20, 000, more than 80% of agents are cooperating. For the
linking strategy, the Commit policy continues to grow. In a
cooperative society seeking to link with others benefits every-
one, as this increases the chances of being selected for the PD
game and generates higher rewards. In the end, we achieved
full cooperation in the PD and the population comprised a
stable combination of All-C agents and TFT agents.

The influence of TFT agents is evident, as they greatly re-
duce the effectiveness of the defecting strategy. When agents
rely on the ALL D strategy, adopting TFT becomes the opti-
mal response. Yet, TFT requires an agent to learn from long-
term rewards, which is hard, as we have demonstrated in the
case of random matching. The OFT strategy is far easier to
learn as it reflects on the agent’s short-term reward. This al-
leviates the loss of being exploited and gives agents time to
discover TFT before becoming defectors. As the number of
TFT agents increases, the immediate rewards for defectors
drop sharply, further encouraging them to adopt this strategy.
Therefore, when agents can choose their neighbours, the TFT
strategy establishes itself as a norm, motivating others to fol-
low suit and resulting in a stable cooperative society.

5.3 On the Effect of Timescales
From the previous experiments, we observed the emergence
of full cooperation when the structure update and the PD
game play operate at the same rate (Ts/Ta = 1). In this
section, we try and look at the limit of the linking dynamics
by reducing the ratio to perform a structure update. By setting
the timescale ratio (Ts/Ta) from 0 to 1, we conduct the same
experiment using algorithm 1 up to 200, 000 episodes. Figure
3 shows the percentage of cooperation among the population
at the end of the simulation across different timescale ratios
from 10−3 to 100. Results are averaged over 200 simulations,
and the x-axis is presented in log scale.

As shown in Figure 3, the trend in emerging cooperation

rates can be distinctly divided into two parts. When the
timescale ratio is larger than 10−2, the cooperation percent-
age increases monotonically from around 40% to 100% as
the timescale increases. At the range of 10−2 to 6 × 10−2,
the cooperation level remains at 40%, as agents have fewer
opportunities to modify their network connections. They are
not able to cut ties with defectors fast enough, therefore the
majority of agents learn to defect. As the timescale ratio
grows, the cooperation level increases sharply. Full cooper-
ation emerges when the timescale ratio reaches 10−1. This
indicates that when agents can rapidly adapt their network
connections, they are more likely to form a network structure
that reinforces mutual cooperation and suppresses defectors.
This is fully in line with [Pacheco et al., 2006].

Surprisingly though, when the timescale ratio is less than
10−2, the percentage of cooperation grows gradually from
40% to around 95% as the timescale ratio declines to 10−3.
This is an interesting finding, which was not observed in
[Pacheco et al., 2006] and related contributions, which, on the
other hand, never employed learning agents across the board.
The reason for this is that when the timescale ratio becomes
very low, the network structure will evolve into a graph with
a low average degree. In the case of a timescale ratio of 10−3,
for example, only one link is updated per episode. Interest-
ingly, networks with low average degrees favour the emer-
gence of cooperation, as demonstrated in previous research
[Santos and Pacheco, 2005]. We will expand on this point in
the next section, where we look at network evolution closely.

To conclude, we note that without dynamical linking, i.e.,
in random matching, the cooperation rate is kept below 20%.
The above results highlight the critical role of timescale ratios
in shaping the dynamics of cooperation.

5.4 Charting the Network Evolution
In this section, we analyse how the network evolves when
agents can perform dynamical linking. Figure 4 presents the
evolution of the network structure of a simulation at timescale
ratio Ts/Ta = 1 for episodes 500, 7000, 10000 and 20000,
which corresponds to the four learning phases. The ver-
tices are coloured with the strategy type identified for the
PD game. We can see the population is dominated by defec-
tors in the earlier phase. As learning proceeds, cooperators
learn OFT and cut links so that they will not be exploited by
defectors. Thus, towards the middle of the simulation, co-
operators become more isolated. As more and more agents
learned the TFT strategy and interacted with defectors, the ex-
pected rewards for defectors dropped, forcing them to switch
to consider other strategies. In the end almost all agents have
learned the All-C and TFT strategies at episode 20, 000.

In Figure 5, we show the change of average degree
for different game strategies across episodes with various
timescales. We can observe that the overall mean degree
drops dramatically for all timescales during the learning pro-
cess. In the cases of higher timescales (0.01, 0.1, 1), the aver-
age degree for All-C agents visibly drops below other types.
This is consistent with the observation in Figure 4 that co-
operators tend to isolate themselves. At timescales 1, since
all defectors switch to adopt All-C or TFT at the end of sim-
ulations, we can see the average degree for All-C rises and
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Figure 4: Network structure evolution at timescale ratio Ts/Ta = 1 during the learning process. Each node represents the agent and is
coloured by the strategy type in PD the agent adopts. And the edges represent the neighbourhood relationships. The population is dominated
by defectors at first, causing cooperators to cut their links with them. In the later stage, TFT agents are able to force the defectors to switch to
other strategies.

Figure 5: Average degree corresponding to PD strategy types between different timescales across episodes. Displayed results are for
timescales 0.001, 0.01, 0.1, and 1 as representative examples. In all situations, the average degree of the network drops sharply in the
earlier phase of learning. Later on, the average degree stabilises.

matches that of TFT. For timescales 0.01 and 0.1, where full
cooperation does not emerge, the average degree of All-C is
kept at a lower value compared to other types. We observe
that defectors have fewer and fewer neighbours during the
learning, and at a lower timescale (0.01), agents seem not to
be learning to get rid of defectors. The persistence of the rel-
atively high average degree of All-D seems to suppress the
development of cooperation and result in a low percentage of
cooperation at the end of training.

At a very low timescale (0.001), the average degree for the
population is significantly lower than at a higher timescale.
Agents generally learn to cut the links and be isolated, with
TFT agents keeping relatively more connections. The low av-
erage degree for All-C and All-D agents separates their con-
nections and this causes the defector to switch their strategy
in the end, leading to high cooperation rates.

With random matching (timescale 0), the average degree
for any type of agent is kept at 99 throughout the whole sim-
ulation, as no one can adjust their ties. This explains why en-
abling even a faint possibility of dynamical linking is bound
to promote (significantly) higher levels of cooperation.

6 Discussion
We studied networks of agents playing a social dilemma with
their neighbours, while being able to perform dynamical link-
ing and modify the network structure itself. Building on a

seminal model showing that cooperation can emerge when
agents are endowed with cooperation-promoting heuristics
[Pacheco et al., 2006], we were able to obtain a fully co-
operative society relying on RL agents only. We have also
identified the co-evolutionary strategies that emerge to sup-
port such outcomes, as well as the evolution of the network
structure, confirming the fundamental role of timescales in
the emergence of cooperation [Santos et al., 2006a; Pacheco
et al., 2006; Leung et al., 2024].

Our findings pave the way for numerous opportunities for
future research. The next natural step is to study the ro-
bustness of the hyperparameters, such as the learning rate,
the temperature, and the discount factor, among others. An-
other important direction is the extension of the study to an
n-player Prisoner’s Dilemma on social networks, as well as
working with games where rewards are based on collective
behaviour. The theoretical understanding of the dynamics
of two-dimensional timescales remains a big challenge, as
spatio-temporal aspects are not considered in the classic repli-
cator equation [Roca et al., 2009], which is tightly linked with
the policy gradient dynamics of RL algorithms [Börgers and
Sarin, 1997; Tuyls et al., 2003; Bloembergen et al., 2015].
Yet, discovering the analytical solution of restricted instances
might shed the needed light on the robustness of cooperation
emergence in complex networks with dynamical linking.
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