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Abstract
Graph generation is essential in social network
analysis, particularly for modeling information
flow and user interactions. However, existing prob-
abilistic diffusion models face challenges when ap-
plied to social propagation graphs. The contin-
uous noise does not apply to the discrete nature
of graph generation tasks, and the random Gaus-
sian initialization in the reverse process can intro-
duce biases that deviate from real-world propaga-
tion patterns. To address these issues, this paper
introduces a Prior-based Discrete Diffusion Model
(PDDM) for social graph generation. PDDM re-
defines the forward process as a discrete process
for node denoising and edge generation, and the
task of the denoising module is transformed into
the connection probability learning of node-level
tasks. Further, PDDM employs a new starting point
of the reverse process by incorporating user sim-
ilarity as the probability matrix, which can bet-
ter leverage the social context. These develop-
ments mitigate reverse-starting bias and enhance
model robustness. Moreover, PDDM integrates
lightweight deep graph networks such as GAT,
demonstrating both scalability and applicability to
graph generation scenarios. Comprehensive ex-
periments on real-world social network datasets
demonstrate PDDM’s superiority in terms of the
MMD metric and downstream tasks. The code is
available at https://github.com/cgao-comp/PDDM.

1 Introduction
Generating graphs based on a target distribution is a funda-
mental problem in various domains [Liu et al., 2023a]. In the
context of social network propagation [Vosoughi et al., 2018],
graph generation plays a pivotal role in uncovering hidden
patterns of information flow and influence spread, which are
crucial for tasks like source localization [Xu et al., 2024a] and
user behavior prediction [Zhou et al., 2020]. Understanding
the graph generation process in social network propagation
sets the foundation for subsequent downstream tasks.

Recent advancements in deep generative models have sig-
nificantly improved social network analysis, especially com-

pared to traditional random graph models [Leskovec and
Faloutsos, 2007]. Deep models, such as Variational Au-
toencoders (VAEs) [Kingma, 2013], Generative Adversar-
ial Networks (GANs) [Goodfellow et al., 2014], diffusion
model [Ho et al., 2020], and other deep generative ap-
proaches, learn to capture complex structural patterns in
graph data and generate new graphs with desired properties.

v1

v6

v1

v6v5

v2 v3v4

influence evaluation
(a) unconstrained (b) influenced 

v1

v6v5

v2 v3
v4

Figure 1: Comparison of unconstrained and influenced graph con-
nectivity. (a) Unconstrained graph connectivity: The graph is fully
connected without prior knowledge, leading to a dense but unstruc-
tured network. (b) Influenced graph connectivity: Edge formation is
guided by influence evaluation, utilizing user similarity to introduce
probability into the graph, which ensures more practical connections
and enhances the overall quality of the graph generation.

Among them, probabilistic diffusion models have received
widespread attention due to their unique ability to handle
noise through forward and reverse processes. This noise-
based framework allows for flexible customization in learning
the complex distributions of social propagation using various
social context information, such as user profiles [Jiang et al.,
2023], and the propagation structure [Zhu et al., 2024]. Con-
sequently, diffusion models are extensively researched and
applied in the generation of propagation graphs within social
networks [Cao et al., 2024].

However, existing diffusion models present certain chal-
lenges when applied to graph data. Firstly, the forward pro-
cess in traditional probabilistic diffusion models is inherently
continuous, which limits their effectiveness in capturing the
discrete nature of graph structures in social networks. Sec-
ondly, the reverse process of probabilistic diffusion models
typically begins with Gaussian noise, and the iterative recon-
struction process often fails to fully eliminate the inherent er-
ror, leading to the persistence of bias. Such a biased distribu-
tion may not align well with the true underlying distributions
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of social network graphs.
To overcome these limitations, we propose a Prior based

Discrete Diffusion Model (PDDM) for social graph genera-
tion. Firstly, PDDM redefines the forward process to adhere
to a discrete Markovian process, in which the denoising mod-
ule learns the node sequence. Secondly, PDDM establishes
a new starting point for the reverse process by utilizing user
similarity as the probability matrix to mitigate reverse start-
ing bias. These improvements for forward and reverse pro-
cesses enhance the flexibility and realism of diffusion mod-
els for social graph generation. Moreover, it is worth not-
ing that PDDM ensures that the denoising module focuses on
node-level tasks, specifically the edge probabilities between
new nodes and previously denoised nodes. This enables the
convenient use of lightweight models, such as Graph Atten-
tion Network (GAT), within the framework, demonstrating
the model’s generalizability and scalability. The main contri-
butions are as follows.

• To address the limitations of continuous forward pro-
cesses in traditional diffusion models for the discrete
graph generation task, we propose a discrete Markovian
forward process. This reformulation enables the denois-
ing module to effectively learn the connection probabil-
ities between new and previously denoised nodes, mak-
ing the model better suited for capturing discrete struc-
ture characteristics.

• To mitigate the bias introduced by Gaussian noise in the
reverse process, we introduce a novel reverse process
starting point based on user similarity as the probabil-
ity matrix. The prior guidance of social context ensures
that the reverse denoising process more accurately re-
flects the true structure of social networks, decreasing
the bias influence from the random noise.

• PDDM allows for the easy integration of lightweight
deep graph models, demonstrating the flexibility and ap-
plicability to a wide range of graph generation tasks.

2 Related Work
Graph generation is the task of generating graph-structured
data that can serve various applications, including molecular
design, social network modeling, and recommendation sys-
tems [You et al., 2018a; Jin et al., 2018]. With the advance-
ment of deep learning, researchers have employed deep gen-
erative models (such as variational autoencoders, generative
adversarial networks, and autoregressive models) for graph
data generation [Faez et al., 2021; You et al., 2018b]. For
instance, GraphVAE employs the encoder to map a graph
to a latent space and the decoder to reconstruct the graph
from this representation [Simonovsky and Komodakis, 2018].
This allows for the generation of novel graph instances by
sampling from the learned latent space. MolGAN combines
graph structures with generative adversarial networks to gen-
erate molecular graphs [De Cao and Kipf, 2018]. DAVA
adopts a variational autoencoder with exponential distribu-
tion sampling for graph-level generation and focuses on user
attributes for edge-level generation, allowing for a more nu-
anced approach to capture user-driven dynamics in the social
graphs [Hou et al., 2024].

Denoising diffusion probabilistic models have demon-
strated significant potential in various generation fields such
as image and video [Ho et al., 2020]. Compared to the afore-
mentioned methods, diffusion-based graph generative models
are capable of modeling complex dependencies and generat-
ing diverse graph structures [Liu et al., 2023b]. Jo et al. in-
troduce a continuous-time generative model, using stochastic
differential equations to model the joint distribution of nodes
and edges in the graph diffusion process [Jo et al., 2022].
However, this continuous encoding disrupts the sparsity of
the graph. Therefore, DiGress gradually adds noise through
independent graph edits (addition/deletion/modification) and
trains a graph transformer network to learn the noise process,
simplifying the learning of graph structure data distribution
into a general classification task [Vignac et al., 2023]. Fur-
ther, Kong et al. propose an autoregressive diffusion model
for graph generation, defining absorbing node states on dis-
crete graphs. In the forward process, each step involves a
node autoregressively decaying to the absorbing state, while
in the reverse process, a denoising network learns the reverse
node absorption diffusion process to reconstruct the graph
structure [Kong et al., 2023]. However, the reverse process
in these models usually starts with Gaussian noise, and the it-
erative reconstruction often fails to completely eliminate the
inherent errors, resulting in the persistence of bias. This bi-
ased distribution may not accurately match the true underly-
ing distributions of social network graphs.

3 Method
This section presents the prior based discrete diffusion model
for graph generation. First, we introduce the problem defini-
tion and a unified strategy for the graph automorphism. Then,
we describe the modifications made to the probabilistic diffu-
sion model for a discrete closed-form solution of social graph
generation.

3.1 Problem Definition
Consider a directed acyclic graph G = (V,E, F ), which rep-
resents a propagation graph from social platforms. In this
graph, V denotes the set of users, E = {(vi, vj)} represents
the propagation paths, where each directed edge from vi to vj
indicates that information flows from user vi to user vj . The
feature set F contains user-specific attributes, such as pro-
filing and behaviors. In our setting, F includes description,
blue verification status, location, registration date, number of
posts, number of fans, and number of followings.

The objective is to design a generative model that can gen-
erate a new network G′ = (V ′, E′, F ′), where V ′, E′, and
F ′ are the sets of users, propagation paths, and user fea-
tures in the newly generated network. The generated network
G′ should exhibit statistical characteristics that closely match
those of the observed network G.

3.2 Graph Automorphism
Existing diffusion-based generative models assign a unique
ID to each node in the initial graph in order to obtain the
unique decay ordering [Chen et al., 2021; Kong et al., 2023].
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However, this strategy could limit reusability across differ-
ent graphs. Therefore, a unified influence evaluation strategy
based on user profiles is employed.

The six categories of user profiles are collected into F ∈
R|V |×7. A label vector y of length |V | is constructed, where
each entry indicates whether the corresponding cascade is
rumor-associated or non-rumor-associated. To avoid scale bi-
ases in the chi-square test, we normalize F to F ′ using Min-
Max normalization, ensuring each feature is within the [0,1]
range [Patro and Sahu, 2015]. This enables a fair comparison
of feature importance. Next, we perform the Chi-Squared
test on F ′ and y to compute the Chi-Squared statistic for
each feature. A smaller p-value indicates a stronger asso-
ciation between the feature and cascade classification. The
Chi-Squared statistic for the j-th feature is defined as [Moore,
2017]:

χ2
fk

=
∑
c

∑
v

(
(f ′k(c, v)− µ0

fk
)2

µ0
fk

+
((f ′k(c, v)− µ1

fk
)2

µ1
fk

)
,

(1)
where f ′k(c, v) is the k-th normalized feature of the user v in
the c-th cascade, and µ0

fk
and µ1

fk
are the expected values for

all non-rumor and rumor-associated cascades, respectively.
After sorting the importance of different features {f ′1, f ′2, ...},
a unique one-hot encoding representation I(v) for each user
based on the sorted dimension{f ′1, f ′2, ...} can be obtained.

3.3 Discrete Forward Process of PDDM
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Figure 2: The illustration of the discrete forward process. After
addressing the graph automorphism using influence evaluation, the
graph is encoded sequentially from the observation state to the noise
state based on the node ordering of influence increment. Selected
nodes are transitioned to absorbing states and connected to all pre-
viously denoised nodes. Subsequently, models such as GNNs are
employed to predict the transferred noise, treating it as a discrete
node classification problem.

The forward process of the diffusion model is mathemati-
cally described by the following equations [Ho et al., 2020]:

q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
, (2)

q (x1:T | x0) =
T∏

t=1

q (xt | xt−1) . (3)

These equations define the probabilistic progression from any
state xt−1 to xt, where βt are variance parameters that control
the noise level at each step.

To eliminate the bias from the random Gaussian noise, we
introduce the similarity matrix P as the new starting point to
guide the reverse process with the underlying probability of
the nodes. Therefore, we use P as a guiding component to
adjust the latent distribution space of G, i.e., G̃:

q(G̃t | Gt−1)=

Cat
(
G̃t;

√
1− βt (Gt−1 − ψt−1)+(1−

√
1− βt)P

)
,

(4)
where P can be conveniently fetched using the variational
strategy and attention mechanism. G̃t is viewed from a prob-
abilistic perspective, ensuring the smoothness of reverse pro-
cess and the diversity of the graph generation.

Here, to enhance the applicability of probabilistic diffusion
models to the discrete space, we modify the Gaussian noise
matrix I. Instead of continuous noise, the variance in graph
is transformed into a learnable single interaction matrix ψt,
corresponding to the propagation edge from node i to node j
set to 1. And an operator ⊙ is defined in a discrete way to
handle the perturbations on the graph. However, predicting a
single interaction matrix ψt with extremely spare topology is
infeasible. To address this, we reformulate the problem into a
classification task, as shown in Fig. 2. By leveraging GNNs,
we can effectively solve this classification problem without
the need to directly predict the interaction matrix. Therefore,
in this framework, the sparse matrix is utilized solely for de-
riving a closed-form solution, rather than being directly pre-
dicted as noise.
Theorem 1. As T →∞, G̃T → P in Eq. (4).
Proof: Without loss of generality, we define αt = 1 − βt,
and ᾱt =

∏t
i=1 αi. Starting from the iterative diffusion equa-

tion:

G̃t =
√
αt (Gt−1 − ψt−1) + (1−√αt)P

=
√
αtαt−1(Gt−2 − ψt−1 ⊙ ψt−2)+(1−√αt

√
αt−1)P

= · · ·
=
√
ᾱt(G0 −ψ) + (1−

√
ᾱt)P,

where ᾱt =
∏t

i=1 αi, ψt−1, ψt−2, · · · is the single interaction
matrix at each step, ψt−1 ⊙ ψt−2 sums the single interaction
matrix cumulatively, ψ̄t−1 = ⊙t−1

i=0ψt−1. G−ψ can be inter-
preted from a discrete perspective, as shown in Fig. 2. There-
fore, the operations involving G and graph variance ψ are
strictly discrete, involving only discrete 0 or 1 updates. In the
spatial domain, this corresponds to progressively learning the
graph structure by incrementally adding edges as the forward
process progresses. As t increases, the cumulative interaction
matrix ψ gradually approximates G, reflecting the original
graph’s topology.

As T → ∞, the product
√
ᾱT tends to zero due to the

properties of the parameters αt which are designed such that
0 ≤ αt < 1. This leads to

√
ᾱT (G0 − ψ) vanishing, and the

expression simplifies to:

lim
T→∞

E[G̃T ] = (1−
√
ᾱT )P.

lim
T→∞

Var(G̃T ) =
√
ᾱtψ
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Since (1 −
√
ᾱT ) → 1 and

√
ᾱT → 0 as T → ∞, GT

converges to P . Therefore, G̃T → P as T →∞. ■
Theorem 2. PDDM ensures a 95% confidence interval for
optimal performance when min |V | ≥ 15.
Proof: To achieve a 95% confidence interval, the perturba-
tions introduced by the cumulative interaction matrix ψ must
be constrained within the region around 0, consistent with the
properties of standard Gaussian noise, which has a mean of
0. This ensures that the original graph information is retained
during the generation process. Consider a propagation graph
with |V | nodes, the average edge density is given by:

|V | − 1

|V |2
< ϕ.

where ϕ is the threshold derived from the z-value correspond-
ing to the 95% confidence interval, which represents a 95%
confidence that the desired threshold ϕ does not deviate far
from the mean (i.e., 0). From the CDF of the standard nor-
mal distribution, the z-value corresponding to a cumulative
probability of 0.525 is approximately z = 0.063. Using this
z-value as ϕ, we can solve the quadratic inequality and get
|V | ≥ 15. This condition is easily achievable in social net-
works, which typically involve more than 15 users.

■

Algorithm 1 Training for PDDM

Input: A total of K propagation graphs Gk = (Vk, Ek, Fk).
Output: Optimized parameters θ.

1: repeat
2: V,E, F ∼ q (Gk)
3: Determine the number of the diffusion step T = |V |
4: Sort user influence I in ascending order based on F

using the Chi-Squared statistic
5: Deploy a deep module θ1 to learn similarity matrix P
6: for t = 1 . . . T do
7: Select the smallest influence node vt = I[t]
8: G(V,E, F )← (V \ vt, E \ vt, F \ vt)
9: Gt ← Absorb

(
G, vt

)
//Absorb node vt by con-

necting it to all nodes in G
10: Yt ←

{
binary label

(
vt, w

)
| (w, v) ∈ E

}
11: Define a denoising module Ŷt = θ2

(
P,Gt

)
12: Take gradient descent step on: ∇θ

∥∥∥Yt − Ŷt∥∥∥2
13: end for
14: until converged
15: return optimized parameters θ

3.4 Reverse Process of PDDM
As defined in Sec. 3.3, the optimized forward process es-
tablishes a discrete framework for graph structures and con-
verges to the prior similarity matrix P . Further, PDDM re-
constructs the original graph by iteratively denoising these
perturbations. As shown in Fig. 3, the reverse mechanism
leverages P to guide the denoising steps, effectively mitigat-
ing the bias introduced by random Gaussian noise and ensur-
ing that the generated graph accurately mirrors the underlying

social network structure. Similarly to the forward process,
by transforming the denoising task into a binary classifica-
tion problem, the reverse process uses the trained lightweight
models to predict edge probabilities.

It is worth mentioning that in the reverse process, di-
rectly using the autoregressive step for graph generation is
feasible. However, this strategy can lead to issues such as
overfitting and a lack of diversity in the generated graphs.
In contrast, PDDM employs a closed-form solution based
on q(Gt−1|Gt, G), leveraging a robust probabilistic founda-
tion. By deriving a discrete version, the reverse process is
grounded in a well-defined probabilistic framework, ensuring
that the generation process adheres to statistical principles.
This results in more diverse graph generation and a closer re-
flection of real-world social graph distributions.

(GT, T)εθ  

10 recovery

ε 
...

G0
denoising +

GT user list

prior matrix

Figure 3: The illustration of the reverse process. The process be-
gins by utilizing a similarity matrix P as a prior, which serves as
the starting point for the reverse diffusion. The denoising module
evaluates the probabilities of candidate users against all previously
denoised nodes. These probabilities are then represented as a single
interaction matrix, facilitating closed-form mathematical operations.
And at each step of the reverse process, modified smoothing noise
is introduced. This addition enhances the stability of the denoising
iterations by mitigating discrete influence.

Consistent with the traditional diffusion model [Ho et al.,
2020], the variational lower bound (VLB) for PDDM is given
by:

LVLB =Eq(G0:T )

[
log

q(G1:T | G0)

pθ(G′
0:T )

]
=Eq

[
DKL

(
q(GT | G0) ∥ pθ(G

′
T )

)
+

T∑
t=2

DKL

(
q(Gt−1 | Gt, G0) ∥ pθ(G

′
t−1 | G′

t)
)
−log pθ(G

′
0 | G′

1)

]
(5)

where G0 is the original graph G, and G1:T represents the
graph denoising the node in a user influence increment order.
Here, LVLB serves as the objective function to be maximized
during training, ensuring that the generated graph G′

0 closely
resembles the original graph G. Among them, the summa-
tion

∑T
t=2 KL

(
q(Gt−1 | Gt, G)∥pθ(G′

t−1 | G′
t)
)

represents
the cumulative KL divergence between the true reverse dis-
tribution q and the model’s reverse distribution pθ across all
diffusion steps. Minimizing this term aligns the model’s pre-
dictions with the true data distribution. The conditional prob-
ability distribution of the reverse process is as follows:
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q(Gt−1 | Gt, G) =
q(G)q(Gt−1 | G)q(Gt | Gt−1, G)

q(G)q(Gt | G)

= q(Gt | Gt−1, G)
q(Gt−1 | G)
q(Gt | G)

.

(6)

Given that the forward process is a Markov chain, q(Gt |
Gt−1, G) is independent of G, thus we can get:

q(Gt−1 | Gt, G) = q(Gt | Gt−1)
q(Gt−1 | G)
q(Gt | G)

. (7)

Theorem 3. For a |V | × |V | sparse matrix G with exactly
t elements equal to 1 and all other elements equal to 0, and
a |V | × |V | Gaussian matrix X where each element Xij is
independently sampled from the standard normal distribution
N (0, 1), scalingX by a factor of

√
t

|V | ensures that the variance

of each element in the scaled matrix X̃ =
√
t

|V |X matches the
variance of the corresponding element in G.
Proof. Consider the sparse matrix G ∈ {0, 1}|V |×|V | where
exactly t elements are 1 and the remaining |V |2 − t elements
are 0. For large |V |, the mean µG and variance σ2

G of each
element Gij are approximately:

µG = E[Gij ] =
t

|V |2

σ2
G = E[G2

ij ]− (E[Gij ])
2 =

t

|V |2
−
(

t

|V |2

)2

≈ t

|V |2
Since the number of nodes in a social network is large,

the above equality condition is easily established. Now, con-
sider the Gaussian matrix X ∈ R|V |×|V | where each element
Xij ∼ N (0, 1). We can get the variance Var(Xij) = 1.

To match the variance of the sparse matrix G, we scale the
Gaussian matrixX by a factor c =

√
t

|V | , resulting in the scaled

matrix X̃ = cX . The variance of each element in X̃ is then:

Var(X̃ij) = Var
(√

t

|V |
Xij

)
=

(√
t

|V |

)2

· Var(Xij) =
t

|V |2

Thus, by setting c =
√
t

|V | , we ensure that:

Var(X̃ij) =
t

|V |2
= Var(Gij)

Therefore, the scaled Gaussian matrix X̃ has consistent
variances that match those of the sparse matrix G.

■
Based on Theorem 1, we can get the three forward equa-

tions q(Gt | Gt−1), q(Gt−1 | G), and q(Gt | G) in Eq. (7).
And through scaling, Theorem 3 ensures that the variance re-
mains consistent across different diffusion steps and guaran-
tees smoothness. Based on the probability density function,
Eq. (7) can be further expanded as follows:

q(Gt−1|Gt, G) ∝ exp{
−
1

2

((
1+

1

(t − 1)ᾱt−1

)
G

2
t−1+

(
1

αt

(−2
√
αtGt + 2(

√
αt − αt)P ) +

1

(t − 1)ᾱt−1

(
−2

√
ᾱt−1G − 2(1 −

√
ᾱt−1)P

))
Gt−1+C(Gt, G)

)}
.

(8)

After the single interaction matrix is evaluated, the pertur-
bation coefficient can be determined as follows:

σ2
t−1|t =

(
1+

1

(t− 1)ᾱt−1

)−1

= σ2
t−1|t =

(t− 1)ᾱt−1

(t− 1)ᾱt−1 + 1
.

(9)

And the mean can be determined as follows:

µt−1|t = σ2
t−1|t ·

(√
αt

αt
Gt +

√
ᾱt−1

(t− 1)ᾱt−1
G

−
(√

αt

αt
− 1− (1−

√
ᾱt−1)

(t− 1)ᾱt−1

)
P

)
.

(10)

Based on q(Gt | G) =
√
ᾱt(G −

√
1− ᾱtψt−1) + (1 −√

ᾱt)P , we can get:

G =
Gt − (1−

√
ᾱt)P√

ᾱt
+
√
1− ᾱtψt−1. (11)

Then, Eq. (10) for µt−1|t can be demonstrated as follows:

µt−1|t =
(t− 1)ᾱt−1 + 1√
αt(t− 1)ᾱt−1

Gt + (

√
αt − 1
√
αt

+

√
αt − 1

√
αt(t− 1)ᾱt−1

)P

+

√
ᾱt−1

(t− 1)ᾱt−1
·
√
1− ᾱtψt−1.

(12)

Thus, the variance σ2
t−1|t of the posterior conditional dis-

tribution from a probabilistic perspective is given by Eq. (9),
and the mean µt−1|t is expressed by Eq. (12). With these
closed-form solutions established, we can predict the edge
appearance discretely and the graph sampling continuously,
which ensures the discreteness required for graph generation
tasks while also enhancing the diversity.

The training process of PDDM is demonstrated in Alg. 1.
In lines 2–5, the algorithm solves the graph permutation prob-
lem based on the user influence evaluation and deploys a deep
module θ1 to learn the similarity matrix P . Then, lines 7–12
iterates over the discrete absorbing process and the denoising
module θ2 predicts the constructed binary label Yt. This pro-
cedure repeats until convergence, ensuring that PDDM learns
to handle the discrete structure of social networks while cap-
turing rich propagation characteristics. However, discrete
learning for the edge consistently replicates the original graph
edge connection distribution. This coarse-grained replication
lacks transferability in unseen continuous spaces and cannot
guarantee the diversity of the generative capacity.

Therefore, the closed-form reverse diffusion process in
Alg. 2 from T to t1 corrects the coarse-grained replication.
After T iterations, the cumulative interaction matrix ψ is
guided by the prior P from a probabilistic perspective, while
the variance introduced in line 7 is correctly scaled according
to Theorem 3. Finally, edges with the highest probabilities are
selected based on a permutation influence order, reconstruct-
ing Ĝ with diversity by robustly introducing randomness.

4 Experiments
4.1 Datasets and Baselines
We use real-world propagation graphs on Weibo and Twit-
ter platforms for graph generation, namely Weibo [Ma et al.,
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Algorithm 2 Graph generation process of PDDM

Input: The optimized denoising module θ; A candidate user
set (V, F ).

Output: The generative graph G̃.
1: Determine the number of the diffusion step T = |V |
2: Sort user influence I in ascending order
3: P = θ1(V, F ), G̃t ← P
4: Compute Y1 · · ·Yt and construct ψ̄t−1 · · · ψ̄0

5: for t = T, . . . , 1 do
6: z ∼ N (0, I) if t > 1, else z = 0

7: σ2
t−1|t =

t
|V |2 ·

(t−1)ᾱt−1

(t−1)ᾱt−1+1 //Eq. (9)

8: µt−1|t = (t−1)ᾱt−1+1√
αt(t−1)ᾱt−1

G̃t + (
√
αt−1√
αt

+
√
αt−1√

αt(t−1)ᾱt−1
)P +

√
ᾱt−1

(t−1)ᾱt−1
·
√
1− ᾱtψt−1 //Eq. (12)

9: G̃t−1 = µt−1|t + σt−1|t · z
10: end for
11: return G̃ = argmaxv∈permutation G̃0(v)

2017], Twitter15, and Twitter16 [Liu et al., 2015; Ma et al.,
2016]. Further, based on the user IDs that participated in
propagation cascades of the Twitter platform, we collect the
user profiles to enrich the individual characteristics of prop-
agation, including user description, blue verification status,
location, registration date, number of posts, number of fans,
and number of followings. The relevant information of the
three datasets is shown in Tab. 1.

Statistic Twitter15 Twitter16 Weibo
#users 480,987 289,675 2,856,741

#users in G 480,405 289,504 2,856,519
#relations in G 565,948 334,603 3,508,596

#tweets 1490 818 4664

Table 1: Statistics of the datasets. G is the largest component of the
joint historical relationship network based on UIDs.

To highlight the generative performance of the proposed
methods, we choose seven SOTA methods for comparison.
And we compare the SOTA methods of DAVA [Hou et al.,
2024], GRAPHARM [Kong et al., 2023] (denoted as ARM),
DAGG [Han et al., 2023], GVAE MM [Zahirnia et al., 2022],
D-VAE [Zhang et al., 2019], GraphVAE [Simonovsky and
Komodakis, 2018], GraphRNN [You et al., 2018b].

4.2 Experimental Setting
We use two strategies to evaluate the performance of data
generation. (1) Following the SOTA settings, we use 80% of
the graphs as training set and the rest 20% as test sets [Kong
et al., 2023] for each dataset. We measure generation qual-
ity using the maximum mean discrepancy (MMD) [Kawai et
al., 2019] as a distribution distance between the generated
graphs and the test graphs. We generate the same number of
samples as the test set for each dataset, based on the users in
each graph of the test set. Specifically, we compute the MMD
of degree distribution and the normalized minimum number
of graph edit distances required to transform the generated

graphs into real-world graphs in the test set. (2) To demon-
strate the practicality of the generated data in real-world sce-
narios, we use source localization as an example to explore
whether utilizing generated data can enhance the model’s pre-
dictive ability in real-world contexts. We also report the gen-
eration time of different methods.

4.3 Overall Performance

MMD Based Metric Evaluation
Tab. 2 summarizes the MMD evaluation results for the gener-
ated propagation graph across all social platforms. To ensure
the generalizability and reusability of the proposed frame-
work, we employ convenient GCNs and GATs as the denois-
ing module. It can be seen that PDDM consistently outper-
forms existing methods, achieving an average 15.60% reduc-
tion in MMD compared to the best baseline across datasets,
both in terms of degree distribution and normalized graph edit
distances. The improved generation capability of PDDM can
be attributed to three main factors. (1) The developed dis-
crete forward diffusion process enhances the learning ability
to capture discrete structure characteristics from the perspec-
tive of edge connection probability, which provides a suit-
able strategy for topology generation. (2) The employed new
reverse starting point mitigates random Gaussian noise bias,
leveraging user similarity as the probability matrix to ensure
more accurate structure generation aligned with social con-
text. (3) The application of the reverse diffusion process in a
probabilistic distribution space not only corrects the coarse-
grained generation but also introduces robustness to enhance
the diversity of generated graphs.

Metrics Deg. Dis. Time

Dataset T15 T16 Wb T15 T16 Wb 2000

DAGG 0.155 0.146 0.122 0.296 0.276 0.288 -
GVAE MM 0.171 0.183 0.180 0.320 0.281 0.266 0.83

D-VAE 0.214 0.204 0.219 0.282 0.223 0.272 -
GraphVAE 0.225 0.234 0.271 0.358 0.355 0.306 0.33
GraphRNN 0.154 0.147 0.177 0.265 0.247 0.351 0.5

DAVA 0.064 0.066 0.114 0.188 0.170 0.213 0.08
ARM 0.077 0.083 0.108 0.201 0.160 0.235 0.25

PDDM 0.058 0.052 0.065 0.176 0.166 0.189 0.16
SD ±0.005 ±0.005 ±0.008 ±0.014 ±0.013 ±0.018

Table 2: The generation performance evaluation of different meth-
ods based on MMD metric. The time signifies the approximate hours
needed for the model to generate a single graph of 2,000 nodes. The
bold values represent the best results (the smaller the better).

We further incorporate diversity-related metrics, includ-
ing Uniqueness and Novelty [Vignac et al., 2023; Xu et
al., 2024b]. Specifically, Uniqueness reports the fraction of
generated non-isomorphic graphs, and Novelty reports the
fraction of the generated graphs that are not isomorphic to
any graph from the training set. The Unique and Novelty
columns in Table 3 show that PDDM consistently maintains
high diversity.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Metrics Unique Novelty
Dataset T15 Wb T15 Wb
DAVA 0.98 1.00 0.89 0.96
PDDM 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)

Table 3: The generation performance based on the Uniqueness and
Novelty metrics.

Utility of Generated Data in Downstream Tasks
Many downstream tasks, such as information cascade predic-
tion, influence maximization, fake news detection, and source
localization, rely on propagation models [Hou et al., 2024].
To analyze whether generated data can enhance model per-
formance in downstream tasks, we use source localization
as a case study. The convenient localization models GC-
NSI [Dong et al., 2019] and TGASI [Hou et al., 2023] can
easily use the generated snapshots for training and source pre-
diction. In the experiment, we use four groups to ensure the
rigor of the study.

• The original group trains the localization models on
90% of the Twitter propagation data and tests on the re-
maining 10%.

• The augmentation group of PDDM additionally gen-
erates 1,000 propagation graphs using PDDM and adds
the generated graph to the training set.

• The augmentation group of SOTA models addition-
ally generates 1,000 propagation graphs using DAVA
and GRAPHARM for training.

• The control group simulates 1,000 snapshots using tra-
ditional SI, SIR, IC, and LT models.

As shown in Tab. 4, training on simulated data from tradi-
tional models leads to reduced performance on downstream
tasks in real-world propagation scenarios, indicating limited
applicability of these models to actual tasks. In contrast, aug-
menting with real generated data results in improved perfor-
mance, with the best results observed when using propagation
data generated by PDDM. This highlights the significance of
realistic graph generation and underscores PDDM’s effective-
ness in enhancing model performance.

Strategy Original Augmented (PDDM/SOTA) Control
GCNSI 0.532 0.642/0.625 0.512
TGASI 0.787 0.855/0.834 0.755

Table 4: Source detection accuracy of localization methods under
different groups of training sets.

4.4 Ablation Study
We further study the effectiveness of the components to ver-
ify their contributions to graph generation tasks. The critical
ablation settings include:

• “P → N(0, I)” uses the standard Gaussian noise in the
DDPM instead of the user similarity matrix at the T step.

• “Discrete→ DDPM” uses the Vanilla DDPM [Ho et al.,
2020] instead of the proposed discrete forward process.

• “-Reverse” removes the reverse diffusion process of the
probabilistic distribution perspective.

• “-Att” removes the graph attention module, and only the
GCNs are available.

• “-PE” does not consider the time step index in the de-
noising module.

As shown in Tab. 5, it will lead to a performance de-
crease no matter removing or exchanging any critical mod-
ules. Among the changes, the most significant performance
drop occurs when the discrete forward process is omitted.
This suggests that the discrete forward process plays a piv-
otal role in capturing the inherent topology characteristics of
the graph generation task. Without the discrete process, the
model struggles to effectively learn the edge connection dis-
tribution, leading to distinct degraded performance. Further-
more, the influence of the diffusion framework is found to be
greater than that of the denoising module. This highlights the
crucial role of the proposed diffusion framework in ensur-
ing effective graph generation. The results indicate that the
PDDM framework benefits most from its novelly designed
forward and reverse processes. Additionally, the attention
mechanism has the greatest impact on the generation time,
as it is involved in every step of the computation, resulting in
significant overhead.

Modules Variants Deg. Dis. Time (h)

Diffusion
P → N(0, I) 0.125 0.206 0.14

Discrete→DDPM 0.161 0.294 0.25
-Reverse 0.114 0.212 0.1

Denoising -Att 0.103 0.205 0.08
-PE 0.077 0.195 0.15

Origin PDDM 0.058 0.176 0.16

Table 5: The generation performance evaluation of the variant model
from PDDM based on MMD metric in Twitter15.

5 Conclusion
In social graph generation tasks, existing probabilistic diffu-
sion models may face challenges such as the limited ability
to handle discrete topology characteristics and the introduced
bias at the reverse starting point sampling by the random
Gaussian. In this paper, we introduce a prior-based discrete
diffusion model to address these limitations. By redefining
the forward process as a discrete Markovian process, PDDM
transfers the random noise learning task to the edge connec-
tion probability learning task from a discrete generative per-
spective of social propagation graphs. Furthermore, by intro-
ducing a novel reverse process starting point based on user
similarity as the probability matrix, PDDM mitigates reverse
starting bias and aligns better with the true structure of so-
cial networks. Not only does PDDM outperform in terms
of MMD metrics, but the generated data also leads to im-
provements in downstream tasks, proving the practical sig-
nificance.
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