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Haoran Yang , Yinan Zhang∗ , Qunshan He , Yuqi Ye , Jing Zhao and Wenhai Wang∗

College of Control Science and Engineering, Zhejiang University, Hangzhou, China
{22332111, zhangyinan, heqs, 0923144, zdzzlab}@zju.edu.cn, zhaojing9532@163.com,

Abstract
As Industrial 4.0 unfolds and digital twin technol-
ogy rapidly advances, modeling techniques that can
abstract real-world industrial objects into accurate
and robust models, referred to modeling for indus-
trial objects (MIO) tasks, have become increasingly
crucial. However, existing works still face two ma-
jor limitations. First, each of these works primar-
ily focuses on modeling a specific industrial object.
When the industrial objects change, the proposed
methods often struggle to adapt. Second, they fail
to fully consider latent relationships within indus-
trial data, limiting the model’s ability to leverage
the data and resulting in suboptimal performance.
To address these issues, we propose a novel model-
ing paradigm tailored for MIO tasks, named Ultra-
Model. Specifically, a twin model graph module is
designed to construct a customized graph based on
the mechanisms of industrial objects and employ
graph convolution to generate high-dimensional
representations. Then, a multi-scale feature ab-
straction module and a spatial attention-based fea-
ture fusion module are proposed to complement
each other in performing multi-scale feature ab-
straction and fusion on high-dimensional represen-
tations. Finally, the outputs are obtained by pro-
cessing the fused representations through a feedfor-
ward network. Experiments on two different indus-
trial objects demonstrate our UltraModel outper-
forms existing methods, offering a novel perspec-
tive for addressing industrial modeling challenges.

1 Introduction
In the industrial field, modeling techniques play an important
role in optimizing the design, operation, and maintenance of
industrial systems [Leng et al., 2021; Zhang et al., 2024].
The process of using various modeling techniques to abstract
real-world industrial objects into models can be referred to
modeling for industrial objects (MIO) tasks. Although indus-
trial objects are diverse, they can be broadly categorized into
two main types from modeling perspective. The first type is

∗Corresponding author

Figure 1: Schematic of modeling for distillation column. It also
serves as the industrial background for the first dataset, DIS-COL,
in the Experiment section of this paper.

tangible industrial equipment from the real world, such as the
distillation column shown in Fig. 1. This type of industrial
objects represent the most important and common targets in
the industrial field and the models developed for such objects
are often called digital surrogates within the context of digital
twins [Shao and Kibira, 2018]. The second type comprises
certain abstract variables within industrial processes. These
variables are difficult to measure directly through sensors but
are crucial to the overall process. Therefore, it is necessary
to develop a model to predict them as accurately as possible.
Additionally, as Industry 4.0 unfolds, industries face increas-
ing pressure to improve efficiency, reduce costs, and mitigate
environmental harm [Borowski, 2021], making the develop-
ment of accurate and robust models more critical than ever1.

Many previous works on modeling for industrial objects
have focused on the development of mechanistic models.
These models leverage domain knowledge and industry-
specific mechanisms to rigorously represent industrial pro-
cesses [Velten et al., 2024]. However, mechanistic mod-
els typically come with high modeling costs and significant
computational efforts [McBride et al., 2020; Elsheikh et
al., 2023]. On the other hand, machine learning (ML) tech-
niques, especially deep learning (DL), are advancing at an un-
precedented pace [Sarker, 2021; Sharifani and Amini, 2023].
Data-driven models have the potential to break free from the
constraints of mechanistic approaches, which are highly de-

1Appendix is available at https://github.com/SpriteAndMango/
UltraModel/blob/main/Appendix.pdf
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pendent on prior knowledge and unavoidable assumptions,
allowing for more flexible and adaptable modeling for indus-
trial objects. Nevertheless, current efforts to model industrial
objects using machine learning or deep learning techniques
still face two key limitations.

First, existing research focuses predominantly on one spe-
cific industrial object. For instance, Chen and Ierapetritou
applied artificial neural networks (ANNs) and support vector
regression (SVR) in a hybrid modeling framework to model
the Continuous Stirred Tank Reactor (CSTR) [Chen and
Ierapetritou, 2020]. Similarly, Li et al. used a surrogate
model based on deep convolutional neural networks (CNNs)
to model the degradation process of bandsaw blades [Li et al.,
2020]. Liu et al. designed a fault diagnosis model based on
CNNs for electric machine [Liu et al., 2016]. Su et al. devel-
oped a model for predicting the critical properties of chemi-
cals using deep neural networks (DNNs) and long-short-term
Memory (LSTM) [Su et al., 2019]. All the aforementioned
works share a common limitation: the proposed modeling ap-
proaches are restricted to the specific object described in their
respective studies. When the modeling object changes, these
models fail to adapt effectively, significantly undermining the
generalizability of the proposed approaches.

Second, existing research fails to fully consider the latent
relationships among variables in industrial data, which lim-
its the model’s ability to leverage the data and further results
in suboptimal performance [Liu et al., 2016; Chen and Ier-
apetritou, 2020; Li et al., 2020]. Since many industrial ob-
jects can be modeled using the aforementioned mechanistic
modeling approach, such mechanistic models can be viewed
as a set of equations or functions that represent the behavior
of industrial objects. For this type of industrial object, there
are clear functional mapping relationships between different
variables. This functional mapping is one type of the latent
relationships among variables. In addition, there are variables
that, while lacking a clear functional mapping relationship,
are interdependent and coupled. Such coupled relationships
can also be regarded as a form of latent relationships. There-
fore, this characteristic distinguishes industrial data for MIO
tasks from other datasets. To fully utilize such data, it is cru-
cial to grasp their unique characteristics, thereby maximizing
their potential.

To address these limitations, in this paper, we propose
an effective modeling paradigm called UltraModel. Ultra-
Model is dedicated to providing a generalizable modeling
pipeline capable of solving the majority of MIO tasks. Specif-
ically, UltraModel consists of three main components: twin
model graph (TwG) module, multi-scale feature abstraction
(MSFA) module and spatial attention-based feature fusion
(SAFF) module. The TwG module defines the method for
graph construction and, based on the constructed graph, em-
ploys graph convolution to generate high-dimensional repre-
sentations for each node. Furthermore, to fully utilize the
latent relationships among variables, the MSFA module inge-
niously leverages the adjacency matrix of TwG to aggregate
information for each node. It then employs a CNN-based
network to perform multi-scale feature abstraction on these
nodes. Subsequently, the SAFF module fuses the multi-scale
features of each node using spatial attention mechanism, re-

sulting in fused representations. Finally, UltraModel gener-
ates the model’s output by processing the fused representa-
tions through a feedforward network. We highlight the con-
tributions of this work as follows:

• To the best of our knowledge, we are the first to de-
velop a modeling paradigm that can effectively address
the challenge of modeling different types of industrial
object.

• We propose the TwG module, which enables flexible
graph construction that dynamically adapts to various
industrial objects and task scenarios, thereby enhancing
the universality of our approach.

• Building upon TwG, we propose the MSFA and SAFF
modules, which complement each other in performing
multi-scale feature abstraction and fusion, enabling a
thorough exploration of the latent relationships between
variables.

• We conduct extensive experiments on two distinct in-
dustrial objects, demonstrating that UltraModel outper-
forms baseline methods and validates its effectiveness
for MIO tasks.

2 Preliminary
MIO tasks can be summarized as the design of models ca-
pable of predicting outputs for real-world industrial objects
based on their inputs. However, for different industrial ob-
jects, the meaning of the inputs and what needs to be achieved
in the end are different. For tangible industrial equipment,
the inputs correspond to the operational variables in the phys-
ical world, such as temperature, pressure, the rate of material
inflow and outflow, and other variables that can be directly
controlled by operators [Zhu and Zhao, 2022]. The ultimate
goal in this case is to develop a digital twin model that accu-
rately simulates the behavior of the equipment under identi-
cal operational variables. For abstract variables in industrial
processes, the input data typically consist of other variables
that are closely related and easy to obtain. There may or may
not be a clear functional mapping between these input vari-
ables and the abstract variables to be predicted. Ultimately,
the goal is to develop a model capable of accurately predict-
ing the values of the target abstract variables using these ac-
cessible variables. For simplicity, we collectively refer to the
models developed for industrial objects as twin models.

The purpose of this study is to propose an effective mod-
eling paradigm to develop twin models for different types of
industrial objects. Thus, this work can be summarized as fol-
lows:

X =

{
OV, if T is a industrial equipment,
EV, if T is an abstract variable,

(1)

Y = TWIN(X), (2)
where, T represents the industrial object to be modeled, OV
denotes operational variables used for modeling industrial
equipment, EV refers to easily accessible variables used for
modeling abstract variables, and TWIN(·) is the twin model
we aim to develop.
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Figure 2: Overall framework of the UltraModel consists of three main modules: twin model graph (TwG) module, multi-scale feature
abstraction (MSFA) module, spatial attention-based feature fusion (SAFF) module.

3 Proposed Method
3.1 Overview
Fig. 2 illustrates the framework of the proposed UltraModel,
which consists of three main components: TwG module,
MSFA module, and SAFF module. The TwG module in-
volves two steps. First, it constructs a graph G for the
twin model based on functional mapping or coupled re-
lationships among the input variables. Then, it performs
graph convolution on the constructed graph G to obtain high-
dimensional representations X ′ for each node. The MSFA
module also consists of two steps. First, it aggregates the
high-dimensional representations obtained through the graph
convolution operation using the adjacency matrix E derived
from the TwG module, producing the input Z for the MSFA
block. Subsequently, the MSFA block performs multi-scale
feature abstraction on Z. The SAFF module is designed to
fuse the abstracted multi-scale features into fused represen-
tations F . Finally, the fused representations F are processed
through a feedforward network to produce the model’s output
Y .

3.2 TwG: Twin Model Graph
The input data used to model industrial objects are typically
sparse and low-dimensional. For example, operational vari-
ables such as temperature, pressure, material inflow and out-
flow are all one-dimensional real numbers. Building an accu-
rate digital twin model of a highly complex industrial object
based solely on such sparse and low-dimensional raw input
data is extremely difficult. Therefore, appropriate prepro-
cessing of these raw data is a critical step. Here, we adopt
a dimensional enhancement strategy.

As mentioned previously, the variables in industrial data
used for MIO tasks often exhibit latent relationships, which
can be either clear functional mappings or coupled relation-
ships. If we can enhance the dimensionality of the vari-
ables while simultaneously incorporating information from

other variables that have a latent relationship with the current
one, the resulting high-dimensional representations will be
more meaningful compared to those obtained solely through
dimensional enhancement methods. Motivated by this, we
propose the TwG module based on graph neural networks
(GNNs).

Graph Construction for the Twin Model
A key characteristic of GNNs is their ability to aggregate in-
formation from neighboring nodes while processing the cur-
rent node [Xu et al., 2018; Du et al., 2021]. This aligns
with the aforementioned motivation, prompting us to adopt
graph neural network methods to more effectively address
MIO tasks. Suppose our input data used to model industrial
objects consists of N variables. The values of these vari-
ables are one-dimensional real numbers, denoted as xi ∈ R,
where i = 1, 2, . . . , N . Thus, for each sample, we have
X = [x1, x2, . . . , xN ] and we treat different variables as
nodes, represented as V = {v1, v2, . . . , vN}. The construc-
tion of graphs for the twin model is determined based on the
varying mechanisms of the corresponding industrial objects
and can be categorized into three cases: Fully clear mech-
anisms of industrial object (A1); Partially clear mecha-
nisms of industrial object (A2); Unclear mechanisms of
industrial object (A3). More details can be found in Ap-
pendix A.1. We denote the graph construction process as
G = G(X) in the following. It is worth noting that, in all
the aforementioned cases, the weight of any edge connect-
ing nodes is a learnable parameter. Subsequently, we further
explore how to leverage GNNs to obtain high-dimensional
representations.

Graph-Level Processing
To be general, we begin with the input X ∈ RN×1. Ini-
tially, the input undergoes a linear transformation without
bias to map them into a higher-dimensional space, yielding
X ∈ RN×D, where D is the dimensionality of the trans-
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formed space. Subsequently, we construct the twin model
graph G though G = G(X). Then, we apply graph convo-
lution to X based on G. The graph convolution operates as
follows:

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
, (3)

here, Ã = Aw + IN is the adjacency matrix of the graph
G with added self-connections. IN is the identity matrix,
Aw is the weighted adjacency matrix reflected by E in the
graph. D̃ii =

∑
j Ãij , and W (l) ∈ RD×D is a layer-specific

trainable weight matrix. σ(·) denotes an activation function,
such as the ReLU(·). H(l) ∈ RN×D is the matrix of activa-
tions in the lth layer, H(0) = X . The above graph-level pro-
cessing can be denoted as X ′ = GraphConv(X). The re-
sulting X ′ = [x′

1, x
′
2, . . . , x

′
N ] denotes the high-dimensional

representation obtained from the TwG Module, where x′
i ∈

RD, i = 1, 2, . . . , N .

3.3 MSFA: Multi-Scale Feature Abstraction
After obtaining the high-dimensional representation X ′ from
the TwG module, it is essential to design a network architec-
ture capable of thoroughly exploring and abstracting the high-
level information embedded within these representations.

Constructing Input Data based on the Adjacency Matrix
The ultimate goal of the MSFA module is to use MSFA blocks
to perform deeper feature abstraction on the high-dimensional
representation X ′ generated by the TwG module. However,
before this step, X ′ needs to be processed to ensure com-
patibility with the subsequent MSFA blocks. Following the
design philosophy of the TwG module, we propose an input
data construction method based on the adjacency matrix. The
detailed process is as follows.

The inputs to the MSFA module are X ′ and the binary ad-
jacency matrix Ab, derived from E . Unlike the weighted ad-
jacency matrix Aw used in graph convolution, Ab is a binary
matrix that only indicates connectivity between nodes. Based
on Ab, we construct input data for each node according to the
following rules. For any node vi, the high-dimensional rep-
resentations x′

j ∈ RD of all nodes vj ∈ N (vi) are stacked
along the 0th dimension to form Zi, where i = 1, 2, . . . , N :

Zi = STACK(x′
j , dim = 0), x′

j ∈ N (vi), (4)

if N (vi) contains K nodes, then Zi ∈ RK×D. Subsequently,
an additional dimension is added to Zi to facilitate subsequent
convolution operations, resulting in Zi ∈ RK×D×1. A 2D
convolutional layer , Conv1(·), with a kernel size of 1 and
a channel size of 1 is applied to Zi to obtain the aggregated
representation for node i, Zi ∈ R1×D×1,

Zi = Conv1(UNSQUEEZE(Zi, dim = −1)). (5)

Finally, the aggregated representations of all nodes are con-
catenated along the channel dimension to form the input Z
for the MSFA block, Z ∈ RN×D×1.

Z = STACK(Zi, dim = 0), i = 1, 2, . . . , N. (6)

Figure 3: The structure of the multi-scale feature abstraction
(MSFA) block. In this work, we design two MSFA blocks with con-
volutional kernel sizes of (3,1) and (1,1), respectively, to abstract
features from the input. Z(l)

in,k denotes the input to the lth convolu-
tional layer (l = 0, 1, 2, . . . , L) in the block (k = 1, 3). Regarding
the details of each layer, k represents the size of the convolutional
kernel, and c represents the number of channels.

For nodes with unclear mechanisms, as illustrated in Fig. 2,
we adopt the strategy of directly using the high-dimensional
representations obtained from the TwG module as their final
aggregated representations without any additional processing.

Performing Multi-Scale Feature Abstraction
Motivated by advances in computer vision where CNN-based
networks are utilized to abstract high-level information from
images [Alpay et al., 2024], we designed the MSFA block.
The structure of the MSFA block is illustrated in Fig.3. To
perform deeper feature abstraction at various receptive fields,
we design a parallel, cascaded CNN network with different
convolutional kernel sizes and we adopt residual dense block
[He et al., 2016; Zhang et al., 2018] into the MSFA. To fa-
cilitate deep feature aggregation, we design a recursive fea-
ture abstraction mechanism where the input of each layer is
constructed by concatenating the outputs of all preceding lay-
ers and the original input feature. Formally, the input Z(l)

in,k

and output Z(l)
out,k at layer l are defined as follows, where

l = 0, 1, . . . , L:

Z
(l)
in,k =

{
Z, if l = 0,

CAT (Z
(j)
(out,k)|j = 0, 1, . . . , l − 1, Z), if l ≥ 1,

(7)

Z
(l)
out,k = σ(Conv(Z

(l)
in,k), (8)

where CAT (·) denotes the concatenation operation, Conv(·)
represents a convolutional transformation, and σ(·) is
ReLU(·) activation function. This mechanism allows the
model to progressively incorporate multi-level features while
preserving the original input information.
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Figure 4: The structure of spatial attention-based feature fusion
(SAFF) module. F (l) represents the fused hierarchical features at
layer l, while F is the final output of the SAFF module. GAP and
GMP refer to Global Average Pooling and Global Max Pooling, re-
spectively. Linear num denotes a fully connected layer, where num
specifies the number of neurons in the layer (num=8,16).

3.4 SAFF: Spatial Attention-based Feature Fusion
After processed by MSFA module, we abstract multi-scale,
high-level features of the data at different receptive fields. To
fully leverage these high-level features, an effective feature
fusion network is essential. To this end, we further propose
the SAFF module. The structure of the SAFF module is illus-
trated in Fig.4. Inspired by the channel attention mechanism
[Woo et al., 2018], this module takes the high-level features
Z

(l)
in,3 and Z

(l)
in,1 from the same level but different receptive

fields as inputs, and performs feature fusion through a 1 × 1
convolution. Subsequently, based on the logic of channel at-
tention, it generates channel attention scores for the fused fea-
tures and applies weighting. Finally, the corresponding hier-
archical feature F (l) is obtained, where l = 1, 2, . . . , L, as
follows:

Z(l) = CAT (Z
(l)
in,3, Z

(l)
in,1), (9)

score = σ(L(GAP (Z(l))) + L(GMP (Z(l)))), (10)
F (l) = P(Z(l))⊙ score, (11)

where GAP (·), GMP (·) denote global average pooling[ref]
and global max pooling, respectively; L(·) refers to a series
of linear transformation with activation function ReLU [Nair
and Hinton, 2010]; σ(·) denotes the Sigmoid activation func-
tion [Kyurkchiev and Markov, 2015]; P(·) refers to a series
of 1× 1 convolutional operations for feature fusion; ⊙ is the
elementwise multiplication operation; and F (l) is the fused
hierarchical feature at the lth layer. Finally, the SAFF mod-
ule performs further fusion of the hierarchical features F (l)

from all layers to obtain the final output, F , as follows:

F = Conv1(CAT (F (l))), (12)
Finally, F undergoes dimensionality reduction and is then fed
into a feedforward network to obtain the output Y of the in-
dustrial object’s twin model, as shown below:

Y = FFN(SQUEEZE(F )), (13)

where FFN(·) represents the feedforward network.

4 Experiment
4.1 Experimental Setting
Datasets. We conducted experiments on two fundamentally
different types of industrial objects to validate the effective-
ness and generalization capabilities of our UltraModel. The
first type involves tangible industrial equipment, specifically
the distillation column, which is widely used in the chemi-
cal industry [Choi et al., 2023]. The second type focuses
on abstract variables that are difficult to measure directly yet
are critical to industrial processes. Here, we choose the acen-
tric factor, a key parameter that describes the extent to which
real gases deviate from ideal gas behavior, playing a signifi-
cant role in thermodynamics and fluid mechanics [Biswas et
al., 2023]. Furthermore, these two industrial objects exhibit a
key distinction: the former belongs to industrial objects with
unclear mechanisms, while the latter pertains to those with
fully clear mechanisms. Consequently, we employ two en-
tirely different types of industrial object to validate the gen-
eralizability of the proposed method and leverage these two
distinct mechanism scenarios to demonstrate its effectiveness.
We refer to the distillation column dataset as DIS-COL and
the acentric factor dataset as ACE-FAC. A detailed introduc-
tion to these two industrial objects and their datasets can be
found in Appendix B.1.
Baselines. To ensure a comprehensive comparison, we se-
lected three different types of models as baselines. These
include decision tree-based machine learning models: XG-
Boost [Chen and Guestrin, 2016] and LightGBM [Ke et al.,
2017]; sequence-based deep learning models: Transformer
[Vaswani, 2017]; and graph-based deep learning models:
GCN [Kipf and Welling, 2016], GAT [Veličković et al.,
2017], RADA [Chen et al., 2024], DGDL [Zhu and Zhao,
2022], and TGCN-S [Kong et al., 2023]. Additionally, for
the ACE-FAC dataset, where the mechanism is fully clear,
we include not only the aforementioned baselines but also its
mechanistic model, the Lee-Kesler method [Lee and Kesler,
1975; Boublia et al., 2023]. The results derived from this
method serve as the benchmark for model comparison.
Metrics. We use three metrics to evaluate the performance
of all models: MAE, RMSE and R2 [Chicco et al., 2021].
Specifically, on the ACE-FAC dataset, we use the results of
its mechanistic model as benchmark. To more intuitively il-
lustrate the performance improvements of other models over
the benchmark, we further introduce a metric called Model
Improvement Rate (MIR), which is calculated as follows:

MIR =
1

2
× (

MAEb − MAE
MAEb

+
RMSEb − RMSE

RMSEb
)× 100%,

(14)
where, MAEb and RMSEb represent the MAE and RMSE of
the benchmark, respectively.

The experimental setup and implementation details can
be found in Appendix B.
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Dataset Model MAE RMSE R2 MIR(%)

DIS
-

COL

XGBoost [Chen and Guestrin, 2016] 0.0096±0.0001 0.0255±0.0003 0.9766±0.0007
LightGBM [Ke et al., 2017] 0.0108±0.0001 0.0279±0.0002 0.9651±0.0005
Transformer [Vaswani, 2017] 0.0064±0.0014 0.0116±0.0033 0.9948±0.0025

GCN [Kipf and Welling, 2016] 0.0152±0.0004 0.0464±0.0007 0.9059±0.0033
GAT [Veličković et al., 2017] 0.0152±0.0001 0.0456±0.0003 0.9085±0.0015

RADA [Chen et al., 2024] 0.0156±0.0006 0.0442±0.0028 0.9144±0.0099
DGDL [Zhu and Zhao, 2022] 0.0111±0.0014 0.0238±0.0031 0.9698±0.0077
TGCN-S [Kong et al., 2023] 0.0167±0.0012 0.0440±0.0013 0.9149±0.0021

UltraModel(Ours) 0.0044±0.0013 0.0064±0.0015 0.9984±0.0006

ACE
-

FAC

Lee-Kesler∗[Lee and Kesler, 1975] 0.0951 0.2044 0.8924 0.00
XGBoost [Chen and Guestrin, 2016] 0.0415±0.0097 0.0577±0.0145 0.9906±0.0028 64.07

LightGBM [Ke et al., 2017] 0.0552±0.0162 0.0869±0.0248 0.9786±0.0080 49.72
Transformer [Vaswani, 2017] 0.0322±0.0142 0.0414±0.0181 0.9947±0.0035 72.94

GCN [Kipf and Welling, 2016] 0.0158±0.0034 0.0207±0.0037 0.9988±0.0007 86.63
GAT [Veličković et al., 2017] 0.0150±0.0014 0.0218±0.0014 0.9986±0.0006 86.78

RADA [Chen et al., 2024] 0.0143±0.0007 0.0194±0.0008 0.9989±0.0003 87.74
DGDL [Zhu and Zhao, 2022] 0.0261±0.0113 0.0323±0.0112 0.9969±0.0025 78.38
TGCN-S [Kong et al., 2023] 0.0192±0.0056 0.0250±0.0054 0.9982±0.0007 83.79

UltraModel(Ours) 0.0052±0.0011 0.0089±0.0023 0.9998±0 95.09

Table 1: Overall prediction performance on DIS-COL and ACE-FAC, where the best results are highlighted in bold, the second best scores
are underlined, and the benchmark model is denoted as benchmark∗.

4.2 Experimental Results

Performance Comparison on DIS-COL Dataset

This dataset is for modeling real-world industrial equipment,
distillation tower. Due to the complexity of the internal mech-
anisms and the severe coupling of various operational vari-
ables affecting the equipment, we regard it as the A3 case
and conduct relevant experiments. The experimental results
are shown in Table 1. Overall, among the three different types
of baselines, the sequence-based deep learning models per-
form best on this dataset. Compared with the other two types
of baselines, it shows a more obvious advantage in all met-
rics. The second is the decision tree-based machine learning
model, and the third is the graph-based deep learning model.
Although, Transformer performs best among all baselines,
our UltraModel has a 38.04% performance improvement over
Transformer. In this dataset, a fully connected strategy is
adopted for the connections between nodes, causing graph-
based models to aggregate information from all other nodes
indiscriminately when generating high-dimensional represen-
tations for each node. This prevents them from fully lever-
aging their advantages, resulting in the performance of the
graph-based models not surpassing that of other baselines.

As shown in Fig. 1, the twin model of distillation col-
umn constructed in this study is designed to separate a mix-
ture of benzene, toluene, and xylene. To provide a clearer
presentation of the experimental results, we calculate the
MAE and RMSE between the predicted percentage composi-
tions (y1, y2, y3) of the three substances and their respective
ground truths. The results of all baselines are summarized in
Fig. 5, with additional detailed experimental data provided in
Appendix C.1.

Figure 5: Comparison of prediction errors for the three substances
across all models on the DIS-COL dataset.

Performance Comparison on ACE-FAC Dataset
As mentioned earlier, unlike DIS-COL, the mechanisms here
are fully clear, enabling us to construct the graph neural net-
work using the A1 method. For graph-based baselines, the
graph is no longer fully connected across all nodes; instead, it
is constructed based on the functional mapping relationships
between different variables. The advantage of this approach
lies in the subsequent graph convolution process, where the
network aggregates information only from nodes directly re-
lated to the current node, rather than adopting an indiscrimi-
nate aggregation strategy. Consequently, this type of baseline
performs better than other baseline models, with 80% of such
models achieving MIR exceeding 80%. This observation fur-
ther validates the significance of our proposed TwG module
from baselines perspective. Among the baselines, RADA per-
formed the best, achieving an MIR of 87.74%. However,
our UltraModel still shows a remarkable 58.88% performance
improvement over RADA.
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Dataset TwG MSFA SAFF MAE RMSE R2 MIR(%)

DIS-COL

✗ ✗ ✗ 0.0141±0.0007 0.0397±0.0032 0.9431±0.0094 0.00
✓ ✗ ✗ 0.0096±0.0021 0.0201±0.0046 0.9848±0.0070 40.64
✗ ✓ ✓ 0.0048±0.0011 0.0098±0.0009 0.9965±0.0007 70.64
✓ ✓ ✓ 0.0044±0.0013 0.0064±0.0015 0.9984±0.0006 76.34

ACE-FAC

✗ ✗ ✗ 0.0112±0.0017 0.0206±0.0066 0.9988±0.0007 0.00
✓ ✗ ✗ 0.0073±0.0019 0.0114±0.0008 0.9996±0.0001 39.74
✗ ✓ ✓ 0.0064±0.0016 0.0105±0.0025 0.9997±0.0001 45.94
✓ ✓ ✓ 0.0052±0.0011 0.0089±0.0023 0.9998±0 55.18

Table 2: Evaluation of the significance of different components of the proposed framework.

4.3 Ablation Studies
We conducted a comprehensive ablation study to assess the
individual contributions of each component in our model.
The results are summarized in Table 2. To facilitate a more ef-
fective comparison between models, we introduced the MIR
metric in the ablation study as well. Unlike the previously de-
scribed setup, the benchmark here refers to the model with-
out the TwG, MSFA, and SAFF modules. Additionally, the
MSFA and SAFF modules in our work are designed to com-
plement each other. Therefore, in the ablation studies, we
always include or exclude them together. For clarity, we refer
to them collectively as the MSFA-SAFF module.

Overall, compared to the case where no modules are in-
cluded, UltraModel with all modules achieves a 76% perfor-
mance improvement on the DIS-COL dataset and a 55% im-
provement on the ACE-FAC dataset. This demonstrates the
significant contribution of the TwG and MSFA-SAFF mod-
ules to the overall model architecture, as well as their ef-
fectiveness. Specifically, when the MSFA-SAFF module is
missing, the model is unable to abstract and fuse features
in greater depth. Even with the TwG module present, the
overall performance of the model remains suboptimal, with
improvements of 41% and 40% on the two datasets, respec-
tively. On the other hand, when the MSFA-SAFF module
is present but the TwG module is missing, the model can
perform in-depth feature abstraction and fusion, resulting in
a significant performance improvement. However, without
the TwG module, the model cannot generate more meaning-
ful high-dimensional representations prior to feature abstrac-
tion, which limits its ability to achieve further breakthroughs.
Thus, although the model shows considerable improvement,
it does not reach its full potential. In conclusion, the abla-
tion study reveals that the MSFA-SAFF module provides a
coarse-grained, substantial performance enhancement, while
the TwG module operates at a finer-grained level, comple-
menting the MSFA-SAFF module and enabling further ad-
vancements in model performance.

4.4 Visualization
We take the benzene prediction results (y1) on the DIS-COL
dataset as an example to visualize its predicted values against
true values, as shown in Fig. 6. More visualization results can
be found in the Appendix C.2. In the figure, the x-axis repre-
sents the model’s predicted values, and the y-axis represents
the real values. The closer the distribution of the model’s

Figure 6: Visualization of benzene prediction results y1 on the DIS-
COL dataset.

predictions is to the line y = x, the better the model’s per-
formance. As shown in the figure, our UltraModel (repre-
sented by red circles) demonstrates a clear advantage over
other baselines.

5 Conclusion

In this work, we propose a novel modeling paradigm for var-
ious industrial objects (named UltraModel), which is the first
attempt to address the challenge of modeling different types
of industrial objects. Equipped with the TwG module, our Ul-
traModel can flexibly adapt to various industrial objects with
different underlying mechanisms. Furthermore, the collabo-
ration between the MSFA module and the SAFF module en-
hances the model’s feature abstraction and fusion capabilities,
significantly improving its data mining capability. We vali-
date UltraModel on two datasets representing distinct indus-
trial objects: the distillation column and acentric factor, both
of which are representative but fundamentally different and
the results demonstrate UltraModel’s superior performance in
the MIO task. Hope our research can provide inspiration and
assistance to relevant researchers and contribute to filling the
gap in the field of industrial modeling.
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Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Velten et al., 2024] Kai Velten, Dominik M Schmidt, and
Katrin Kahlen. Mathematical modeling and simulation:
introduction for scientists and engineers. John Wiley &
Sons, 2024.

[Woo et al., 2018] Sanghyun Woo, Jongchan Park, Joon-
Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 3–19, 2018.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826, 2018.

[Zhang et al., 2018] Yulun Zhang, Yapeng Tian, Yu Kong,
Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2472–2481, 2018.

[Zhang et al., 2024] Yinan Zhang, Wenhai Wang, Qiang
Yang, Xiaoyu Tang, Wei Ruan, Yingze Li, Surong Dao-
erji, Xiang Zhang, Yuqi Ye, Jiawei Huang, et al. Promoting
digital twin technology application for process industry: A
novel generation modelling platform and its implementa-
tions. Digital Twins and Applications, 1(1):51–74, 2024.

[Zhu and Zhao, 2022] Kun Zhu and Chunhui Zhao. Dy-
namic graph-based adaptive learning for online industrial
soft sensor with mutable spatial coupling relations. IEEE
Transactions on Industrial Electronics, 70(9):9614–9622,
2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


