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Abstract
Splitting techniques in knowledge representation
help focus on relevant parts of a belief base and
reduce the complexity of reasoning generally. In
this paper, we propose a generalization of safe con-
ditional syntax splittings that broadens the appli-
cability of splitting postulates for inductive infer-
ence from belief bases. In contrast to safe condi-
tional syntax splitting, our generalized notion sup-
ports syntax splittings of a belief base ∆ where the
subbases of ∆ may share atoms and nontrivial con-
ditionals. We illustrate how this new notion over-
comes limitations of previous splitting concepts,
and we identify genuine splittings, separating them
from simple splittings that do not provide benefits
for inductive inference from ∆. We introduce ad-
justed inference postulates based on our general-
ization of conditional syntax splitting. We evaluate
several inductive inference operators with respect
to these postulates, and show that generalized safe
conditional syntax splitting is a strictly stronger re-
quirement for inductive inference operators, cover-
ing more syntax splitting applications.

1 Introduction
For epistemic reasoning, both from a cognitive point of view
and also from the point of view of effective implementa-
tions, it is often vital to focus on the relevant parts, and leav-
ing aside facts and knowledge irrelevant for the question at
hand, thus enabling local reasoning [Pearl, 1988]. This is
the basic motivation underlying the concept of syntax split-
ting [Parikh, 1999; Peppas et al., 2015; Kern-Isberner and
Brewka, 2017], and of the related idea of minimum irrele-
vance [Weydert, 1998]. Under the motto “syntax splitting =
relevance + independence”, respecting syntax splitting was
formalized for inductive inference from conditional belief
bases [Kern-Isberner et al., 2020], taking splittings over a be-
lief base ∆ into account where the subbases ∆1,∆2 are given
over disjoint subsignatures of ∆. This condition is a severe
restriction in practice because full disjointness is often not

the case. The concept of conditional syntax splitting [Heyn-
inck et al., 2023] is an approach to overcome this restriction
by allowing ∆1 and ∆2 to overlap syntactically. A safety
condition ensures that semantic (conditional) independence
holds given the joint atoms, enabling local reasoning within
the subbases. Furthermore, the postulate of conditional in-
dependence (CInd) for safe conditional splittings precisely
characterizes avoiding the drowning effect [Pearl, 1990;
Benferhat et al., 1993], yielding the first formal definition of
the notorious drowning problem that had been described be-
fore only by specific examples [Heyninck et al., 2023]. How-
ever, it has been shown recently that the safety condition in
[Heyninck et al., 2023] has the undesirable consequence that
every conditional in the intersection of ∆1 and ∆2 is a triv-
ial self-fulfilling conditional, meaning that it cannot be fal-
sified [Beierle et al., 2024b], thus imposing a strong restric-
tion on possible splitting benefits for inference. We develop a
generalization of this safety condition, allowing the intersec-
tion of ∆1 and ∆2 to contain more meaningful conditionals.
This greatly broadens the application possibilities of syntax
splitting by increasing both the amount of splittings and the
amount of belief bases where splittings can be exploited for
inductive reasoning. The main contributions of this paper are:

• Generalization of safe conditional syntax splitting for
belief bases;

• Identification of the subclass of genuine splittings, sepa-
rating them from the large class of simple splittings that
have no benefits for inductive inference because existing
postulates cannot be meaningfully applied to them;

• Adapted postulates (CRelg), (CIndg), and (CSynSplitg)
for generalized safe conditional syntax splitting;

• Showing that (CSynSplitg) implies (CSynSplit), but not
the other way around;

• Evaluation of several inductive inference operators with
respect to generalized safe conditional syntax splitting
(CSynSplitg).

After recalling the needed background in Sec. 2, we point
out the limitations of safe conditional splittings (Sec. 3), in-
troduce generalized and genuine splittings (Sec. 4), adapt the
postulates for inference (Sec. 5), and evaluate inductive infer-
ence operators (Sec. 6) before concluding in Sec. 7.
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2 Formal Basics
Let L be a finitely generated propositional language over
a signature Σ with atoms a, b, c, . . . and with formulas
A,B,C, . . . We may write AB instead of A ∧ B, and over-
line formulas to indicate negation, i.e., A means ¬A. Let Ω
denote the set of possible worlds over L, taken here simply
as the set of all propositional interpretations over L. ω |= A
means that the propositional formula A ∈ L holds in ω ∈ Ω;
in this case ω is called a model of A, and the set of all mod-
els of A is denoted by Mod (A). For propositions A,B ∈ L,
A |= B holds iff Mod (A) ⊆ Mod (B), as usual. We will use
ω both for the model and the corresponding complete con-
junction of all positive or negated atoms, allowing us to use
ω both as an interpretation and a proposition.

For Θ ⊆ Σ, let L(Θ) or short LΘ denote the propositional
language defined by Θ, with associated set of interpretations
Ω(Θ) or short ΩΘ. Note that while each formula of L(Θ)
can also be considered as a formula of L, the interpretations
ωΘ ∈ Ω(Θ) are not elements of Ω(Σ) if Θ ̸= Σ. But each
interpretation ω ∈ Ω can be written uniquely in the form
ω = ωΘωΘ with concatenated ωΘ ∈ Ω(Θ) and ωΘ ∈ Ω(Θ),
where Θ = Σ\Θ. The world ωΘ is called the reduct of ω
to Θ [Delgrande, 2017]. If Ω′ ⊆ Ω is a subset of models,
then Ω′|Θ = {ωΘ|ω ∈ Ω′} ⊆ Ω(Θ) restricts Ω′ to a subset of
Ω(Θ). In the following, we will often denote subsignatures of
Σ by Σ1,Σ2, . . . and write ωi instead of ωΣi to ease notation.

By making use of a conditional operator |, we introduce
the language (L|L) = {(B|A) | A,B ∈ L} of conditionals
over L. Conditionals (B|A) are meant to express plausible,
defeasible rules “If A then plausibly (usually, possibly, prob-
ably, typically etc.) B”. For a world ω a conditional (B|A) is
either verified by ω if ω |= AB, falsified by ω if ω |= AB, or
not applicable to ω if ω |= A. A conditional (F |E) is called
self-fulfilling, or trivial, if E |= F , i.e., there is no world
that can falsify it. A popular semantic framework for inter-
preting conditionals are ordinal conditional functions (OCFs)
κ : Ω → N∪{∞} with κ−1(0) ̸= ∅. OCFs, also called rank-
ing functions, introduced, in a more general form, by [Spohn,
1988]. Intuitively, less plausible worlds are assigned higher
numbers. Formulas are assigned the rank of their most plau-
sible models, i.e., κ(A) := min{κ(ω) | ω |= A}. The
rank of (B|A) is κ(B|A) = κ(AB) − κ(A). A condi-
tional (B|A) is accepted by κ, written as κ |= (B|A), iff
κ(AB) < κ(AB), i.e., iff AB is more plausible than AB.
This is lifted to belief bases via κ |= ∆ if κ |= (B|A) for
all (B|A) ∈ ∆. Belief bases ∆ (over Σ) consist of finitely
many conditionals from (L | L). Consistency of such a be-
lief base ∆ can be defined in terms of OCFs [Pearl, 1990]:
∆ is (strongly) consistent iff there is an OCF κ such that
κ |= ∆ and κ(ω) < ∞ for all ω ∈ Ω. We focus on
(strongly) consistent belief bases in the sense of [Pearl, 1990;
Goldszmidt and Pearl, 1996] in order to elaborate our ap-
proach without having to deal with distracting technical par-
ticularities. The nonmonotonic inference relation |∼κ in-
duced by an OCF κ is [Spohn, 1988]

A |∼κ B iff A ≡ ⊥ or κ(AB) < κ(AB). (1)

The marginal of κ on Θ ⊆ Σ, denoted by κ|Θ, is defined by

κ|Θ(ωΘ) = κ(ωΘ) for any ωΘ ∈ Ω(Θ). Here ωΘ is treated
as a world in κ|Θ(ωΘ) but as a formula in κ(ωΘ). Note that
this marginalization is a special case of the general forget-
ful functor Mod(σ) from Σ-models to Θ-models [Beierle and
Kern-Isberner, 2012] where σ is the inclusion from Θ to Σ.

An inductive inference operator [Kern-Isberner et al.,
2020] is a mapping C that assigns to each belief base ∆ ⊆
(L | L) an inference relation |∼∆ on L, i.e., C : ∆ 7→ |∼∆,
such that the following two properties hold:
Direct Inference (DI): If (B|A) ∈ ∆ then A |∼∆ B, and
Trivial Vacuity (TV): A |∼∅ B implies A |= B.
Examples for inductive inference operators are:
p-entailment |∼p [Goldszmidt and Pearl, 1996]: Consid-

ers all ranking models of ∆; coincides with System
P-inference [Lehmann and Magidor, 1992; Dubois and
Prade, 1994].

System Z |∼z [Goldszmidt and Pearl, 1996]: Uses an OCF
based on the tolerance partition of ∆; coincides with ra-
tional closure [Lehmann and Magidor, 1992].

c-inference |∼c [Beierle et al., 2018; Beierle et al., 2021]:
Considers all c-representations of ∆ [Kern-Isberner,
2001; Kern-Isberner, 2004].

System W |∼w [Komo and Beierle, 2020; Komo and
Beierle, 2022] Also considers the tolerance partition of
∆; extends both c-inference and system Z.

3 Limitations of Conditional Syntax Splitting
Syntax splittings describe that a belief base contains com-
pletely independent information about different parts of the
signature. According to [Kern-Isberner et al., 2020], a belief
base ∆ splits into subbases ∆1,∆2 if {Σ1,Σ2} is a partition
of Σ such that ∆ = ∆1 ∪∆2, ∆i ⊂ (Li|Li),Li = L(Σi) for
i ∈ {1, 2}, Σ1 ∩ Σ2 = ∅, and Σ1 ∪ Σ2 = Σ, denoted as

∆ = ∆1

⋃
Σ1,Σ2

∆2. (2)

Syntax splittings are very useful for formalizing the idea that
independent information about different topics should not af-
fect each other in reasoning. Syntax splittings were gener-
alized in [Heyninck et al., 2023] to conditional syntax split-
tings, which allow subbases to share some atoms in a given
subsignature Σ3.
Definition 1 ([Heyninck et al., 2023]). A belief base ∆ splits
into subbases ∆1,∆2 conditional on Σ3, if there are Σ1,Σ2 ⊆
Σ such that ∆i = ∆∩(L(Σi∪Σ3) | L(Σi∪Σ3)) for i = 1, 2,
and {Σ1,Σ2,Σ3} is a partition of Σ. This is denoted as

∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3. (3)

Unlike syntax splitting, conditional syntax splitting does
not require the subbases ∆1 and ∆2 to be disjoint. For the
remainder of this paper, we will use the notation introduced
in the following straightforward proposition.
Proposition 2. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3 and let

∆3 = ∆1 ∩∆2 (4)
∆1\3 = ∆1 \∆3 (5)
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∆2\3 = ∆2 \∆3. (6)

Then ∆1\3,∆2\3,∆3 are pairwise disjoint and

∆ = ∆1\3∪∆2\3∪∆3. (7)

Note that in Proposition 2, ∆3 = ∆ ∩ (L(Σ3)|L(Σ3)),
implying that ∆3 ⊆ (L(Σ3)|L(Σ3)), and, for i ∈ {1, 2},
∆i′\3⊆ (L(Σi ∪ Σ3)|L(Σi ∪ Σ3)).

For ω ∈ Ω and A ∈ L(Σi) we have

ω1ω3ω2 |= A iff ωiω3 |= A. (8)

Given some Σ3 ⊆ Σ, every belief base has at least one
syntax splitting conditional on Σ3.
Proposition 3. Let ∆ be a belief base over a signature Σ. For
every Σ3 ⊆ Σ, there exists the conditional syntax splitting
∆ = ∆1

⋃
Σ\Σ3,∅ ∆2 | Σ3.

Note that for a splitting adhering to this form we have
∆1 = ∆ and ∆2 = ∆3 = ∆ ∩ (L(Σ3)|L(Σ3)).

Given a complete conjunction over Σ3, i.e., a formula
uniquely describing a world in Ω(Σ3), conditional syntax
splittings in general do not ensure complete independence of
∆1 and ∆2 (for details see [Heyninck et al., 2023], Ex. 6).
To fix this, safe conditional syntax splittings were introduced.
Definition 4 ([Heyninck et al., 2023]). A belief base ∆ =
∆1

⋃
Σ1,Σ2

∆2 | Σ3 can be safely split into subbases ∆1, ∆2

conditional on a subsignature Σ3, writing

∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 (9)

if the following safety property holds for i, i′ ∈ {1, 2}, i ̸= i′:

for every ωiω3 ∈ Ω(Σi ∪ Σ3), there is ωi′ ∈ Ω(Σi′)

s.t. ωiω3ωi′ ̸|=
∨

(F |E)∈∆i′

E ∧ ¬F. (10)

The safety condition demands, in essence, that no complete
conjunction over Σ3 may force the falsification of a condi-
tional in ∆ when considering Σ as a whole.
Example 5 (∆sun). Consider the belief base ∆sun = {(s|r),
(r|s), (b|sr), (g|b), (o|sr), (o|r), (u|or)} describing the fol-
lowing: If it is (r)ainy, then usually it is not (s)unny and vice
versa. If it is rainy and sunny at the same time, then we can
usually observea rain(b)ow. Maybe superstitiously, we be-
lieve that there is usually some (g)old to be found at the end
of the rainbow. Unrelated to this, we usually spend some time
(o)utside if it is sunny and not rainy. If it is rainy, then we usu-
ally do not spend time outside. If, despite our normal habits,
we do spend time outside and it is rainy, then we usually have
an (u)mbrella. ∆sun has a safe conditional syntax splitting

∆sun = ∆sun
1

⋃s
{g},{s,r,o,u} ∆

sun
2 | {b} (11)

where Σ1 = {g},Σ2 = {s, r, o, u},Σ3 = {b},∆sun
1 =

{(g|b)}, ∆sun
2 = {(s|r), (r|s), (b|sr), (o|sr), (o|r), (u|or)},

and ∆sun
3 = ∅. This splitting is safe: We can extend any

ω1 ∈ Ω(Σ1∪Σ3) by any ω′ ∈ Ω(Σ2) with ω′ |= s∧ r∧o∧u
without falsifying a conditional in ∆sun

2 . Similarly we can ex-
tend any ω2 ∈ Ω(Σ2 ∪Σ3) by any ω′′ ∈ Ω(Σ1) with ω′′ |= g
without falsifying a conditional in ∆sun

1 .

Safe conditional syntax splitting provides similar benefits
for inductive inference as syntax splitting. Reasoning in the
language of ∆1 is independent of the conditionals in ∆2, and
vice versa, given we have full knowledge over the atoms in
Σ3. However, it has been shown recently that the safety prop-
erty (10) imposes a strong, undesired restriction on ∆3.
Lemma 6 ([Beierle et al., 2024b]). Let ∆ = ∆1

⋃s
Σ1,Σ2

∆2 |
Σ3, then ∆3 = ∆1 ∩ ∆2 contains only self-fulfilling condi-
tionals.

While it is true that ∆3 can not contain “meaningful” in-
formation, the elements in Σ3 are still relevant and can occur
in conditionals of both ∆1 and ∆2.

A generalization of the safety property to avoid the effect
described in Lemma 6 would be advantageous. Recall that
Σ3 represents a sort of global knowledge, that should be con-
sidered in both subbases. However it is not always possible
to find a safe splitting, given some intuitive or in practice de-
sirable allocation of signature elements to Σ3.
Example 7 (∆sun cont.). Assume we want to reason based
on ∆sun, under the assumption that we have full knowledge
about s and r. A conditional syntax splitting reflecting our
knowledge about the weather is

∆sun = ∆sun
1

⋃
{b,g},{o,u} ∆

sun
2 | {s, r} (12)

where Σ1 = {b, g},Σ2 = {o, u},Σ3 = {s, r},∆sun
1 =

{(s|r), (r|s), (b|sr), (g|b)},∆sun
2 = {(s|r), (r|s), (o|sr),

(o|r), (u|or)}, and ∆sun
3 = {(s|r), (r|s)}. Assume that we

know that it is sunny and rainy at the same time, and we would
like to know if there will usually be a rainbow, i.e., whether
sr |∼∆sunb holds. Employing the splitting (12), it suffices
to consider ∆sun

1 to answer this query because we have full
knowledge about {s, r}. However, because the conditionals
in ∆sun

3 are not self-fulfilling the splitting (12) is not safe.
Comparing the splittings (11) and (12), we can see that

there are situations where (12) provides benefits not provided
by (11). For instance, as it will be shown formally in the fol-
lowing sections, answering the query sr |∼∆sunb can be done
using the subbase ∆sun

1 from (12) while the splitting (11)
does not provide any advantage for answering this query.

Another limitation of safe conditional syntax splittings is
that there exist belief bases where all safe conditional syntax
splittings involve a subset relationship between the subbases.
Example 8 (∆rain). Starting from ∆sun, we get rid of
our superstitious beliefs by removing the signature ele-
ment g and all associated conditionals, yielding ∆rain =
{(s|r), (r|s), (b|sr), (o|sr), (o|r), (u|or)}. ∆rain has a split-
ting conditional on {s, r}

∆rain = {(s|r), (r|s), (b|sr)}⋃
{b},{o,u}{(s|r), (r|s), (o|sr), (o|r), (u|or)} | {s, r} (13)

which, however, is not safe. In fact, every safe splitting of
∆rain = ∆rain

1

⋃s
Σ1,Σ2

∆rain
2 | Σ3 satisfies ∆rain

1 ⊆ ∆rain
2

or ∆rain
2 ⊆ ∆rain

1 .
Every conditional syntax splitting ∆ = ∆1

⋃
Σ1,Σ2

∆2 |
Σ3 with ∆1 ⊆ ∆2 or ∆2 ⊆ ∆1 is of little use for inductive in-
ference. Suppose ∆1 ⊆ ∆2. Then answering any query over
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Σ2∪Σ3 requires considering ∆ as a whole because ∆2 = ∆.
Furthermore, any query over Σ1 ∪ Σ3 can also not benefit
from the splitting. This is because atoms of Σ1 can not ap-
pear in ∆1, since all conditionals of ∆1 are defined over Σ3

as ∆1 = ∆1∩∆2 = ∆3 and full knowledge of Σ3 is required
to make use of the splitting.

The observations above give rise to two points. First, we
will extend the notion of safety to cover conditional splittings
like (12) and (13). Second, we will identify splittings that are
useful for inductive inference.

4 Generalized Safe Conditional Syntax
Splitting

We first introduce generalized safe splittings as a general-
ization of safe splittings to cover cases where the subbases
may share non-trivial conditionals, and we introduce genuine
splittings, which identify splittings that provide benefits for
inductive inference.
Definition 9. A belief base ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3 can be
generalized safely split into subbases ∆1, ∆2 conditional on
a subsignature Σ3, writing

∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3 (14)

if the following generalized safety property holds for i, i′ ∈
{1, 2}, i ̸= i′:

for every ωiω3 ∈ Ω(Σi ∪ Σ3), there is ωi′ ∈ Ω(Σi′)

s.t. ωiω3ωi′ ̸|=
∨

(F |E)∈∆i′\3

E ∧ ¬F. (15)

The deciding difference in (15) compared to (10) is that
only conditionals in ∆i′\3 are considered for the generalized
safety property as opposed to all conditionals in ∆i′ for the
safety property.
Proposition 10. Let ∆ be a belief base over Σ with a condi-
tional syntax splitting S : ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3.

1. If S is safe, S is generalized safe.

2. If ∆3 = ∆1∩∆2 = ∅, S is safe iff S is generalized safe.
Generalized safety allows for more splittings adhering to

a notion of safety. For example, the conditional syntax split-
tings in Proposition 3 are always generalized safe. Thus, for
every Σ3 ⊆ Σ, there always exists a generalized safe syn-
tax splitting conditional on Σ3. Observe that generalized safe
splittings allow for non-trivial conditionals in ∆3.
Example 11 (∆sun,∆rain cont.). While not safe, the condi-
tional syntax splittings in Examples 7 and 8 are generalized
safe. For instance, in both examples, the conditional (r|s)
can be falsified by rs ∈ Ω(Σi ∪ Σ3), thus making the split-
tings not safe, but since (r|s) ∈ ∆sun

3 and (r|s) ∈ ∆rain
3 ,

this fact does not lead to a violation of generalized safety.
With Example 11 and Proposition 10 we can see that there

exists more generalized safe conditional syntax splittings than
safe conditional syntax splittings. Thus, generalized safety
properly extends the amount of belief bases that can be con-
ditionally split while adhering to a notion of safety.

For governing inductive inference, we are only interested
in (generalized) safe conditional syntax splittings. Example 8
shows that there exists belief bases that have safe conditional
syntax splittings, but some ∆i is a subset of ∆j and therefore,
even though the splitting is safe, it does not provide any mean-
ingful information for inductive inference. We now identify
splittings that are meaningful with respect to inductive infer-
ence as so-called genuine splittings.

Definition 12. Let ∆ be a belief base over a signature Σ. A
conditional syntax splitting ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3 of ∆ is
called genuine, if ∆1 ̸⊆ ∆2 and ∆2 ̸⊆ ∆1

Note that genuine splittings can be equivalently character-
ized by ∆1\3 ̸= ∅ and ∆2\3 ̸= ∅. Intuitively, we call a split-
ting genuine if each subbase contains information that can not
be found in the other subbase. Especially, the following types
of splittings are not genuine.

〈trivial〉 (i) ∆ = ∆
⋃s

Σ,∅ ∅ | ∅ or (ii) ∆ = ∆
⋃gs

∅,∅ ∆ | Σ.

〈set-empty〉 ∆1 = ∅ or ∆2 = ∅.

〈sig-empty〉 Σ1 = ∅ or Σ2 = ∅.

While the 〈trivial〉 splitting (i) is safe, the splitting (ii) is not
safe, unless ∆ contains self-fulfilling conditionals only. How-
ever, splitting (ii) is generalized safe. Furthermore, in the
case that Σ contains no elements that do not appear in ∆, the
not genuine splittings are exactly the 〈sig-empty〉 splittings.
If ∆3 = ∅, then the not genuine splittings are exactly the
〈set-empty〉 splittings. We give an example to illustrate the
importance of identifying genuine splittings.

Example 13 (∆rain cont.). We continue Example 8. The be-
lief base ∆rain has a total of 37 conditional syntax splittings,
out of which 32 are generalized safe splittings, but only 16
are safe splittings. Only 5 of the 36 splittings are genuine.
For this belief base all genuine splittings are generalized safe,
while no safe splitting is genuine.

While in Example 13 the set of genuine and generalized
safe splittings coincide, this does not hold in general. Ex-
ample 13 shows that there exist belief bases for which no
genuine, safe conditional syntax splitting exists, but a gen-
uine, generalized safe splitting exists. Indeed, conditional
syntax splittings that are both genuine and generalized safe
are those splittings, where the properties of conditional rel-
evance and conditional independence for inductive inference
may be meaningfully applied.

5 Inductive Inference Respecting Generalized
Safe Conditional Syntax Splitting

We will now introduce postulates to evaluate inductive infer-
ence operators with respect to generalized safe conditional
syntax splitting. For this, we adjust the notions of conditional
relevance and conditional independence from [Heyninck et
al., 2023] to include also generalized safe splittings. The idea
of these postulates is that for a belief base with (generalized
safe conditional) syntax splitting, inference over one subsig-
nature should be independent from the information about the
other subsignature (given that the valuation of the shared sub-
signature is fixed).
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(CRelg) (adapted from [Heyninck et al., 2023]) An induc-
tive inference operator C satisfies (CRelg) if for any
∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3, for i ∈ {1, 2} and any
A,B ∈ L(Σi), and a complete conjunction E ∈ L(Σ3),

AE |∼∆B iff AE |∼∆i
B.

Thus, (CRelg) restricts the scope of inference by requiring
that inferences in the sub-language Σ1 ∪Σ3 can be made tak-
ing only ∆1 into account.
(CIndg) (adapted from [Heyninck et al., 2023]) An induc-

tive inference operator C satisfies (CIndg) if for any
∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3, for i, j ∈ {1, 2}, j ̸= i,
and any A,B ∈ L(Σi), D ∈ L(Σj), and a complete
conjunction E ∈ L(Σ3), such that DE ̸|∼∆ ⊥ we have

AE |∼∆B iff AED |∼∆B.

Thus, an inductive inference operator satisfies (CIndg) if,
for any ∆ that safely splits into ∆1 and ∆2 conditional on
Σ3, whenever we have all the necessary information about
Σ3, inferences from one sub-language are independent from
formulas over the other sub-language.

Syntax splitting (CSynSplitg) is the combination of the two
properties (CIndg) and (CRelg).
(CSynSplitg) (adapted from [Heyninck et al., 2023]) An in-

ductive inference operator C satisfies conditional syntax
splitting (CSynSplitg) if it satisfies (CRelg) and (CIndg).

The difference between (CSynSplit) and our new variant
(CSynSplitg) is that (CSynSplit) was defined regarding safe
conditional syntax splittings only, while our adjusted variant
(CSynSplitg) takes into account all generalized safe condi-
tional syntax splittings. Thus, an inductive inference operator
satisfing (CSynSplitg) respects an increased number of con-
ditional splittings.
Example 14 (∆rain cont.). Recall the splitting (13) for
∆rain from Example 8. Let C : ∆ 7→ |∼rain

∆ be an induc-
tive inference operator that satisfies (CSynSplitg). Applying
(CRelg), we obtain that the inference sr |∼rain

∆ b holds iff the
inference sr |∼rain

∆1
b holds. Thus, if we want to know whether

the inference holds in ∆, it is sufficient to consider only ∆1,
reducing the amount of conditionals we need to take into ac-
count from 6 to 3. By applying (CIndg), we additionally know
that the inferences sro |∼rain

∆ b and sro |∼rain
∆ b hold if the in-

ference sr |∼rain
∆ b holds. In this way, we can localize our rea-

soning tasks for the entire belief base to a smaller subbase,
given that our reasoning mechanism satisfies (CSynSplitg).

The postulate (CSynSplitg) covers and indeed properly
generalizes (CSynSplit):
Proposition 15. The following relationships hold:

1. (CSynSplitg) implies (CSynSplit).
2. (CSynSplit) does not imply (CSynSplitg).
While the first part of Proposition 15 holds trivially,

the second part can be shown by constructing an induc-
tive inference operator satisfying (CSynSplit) but violating
(CSynSplitg). Such an operator can be obtained by applying
an inference operator satisfying (CSynSplit) if the input be-
lief base ∆ has a genuine safe conditional syntax splitting,
and an inference operator violating (CSynSplitg) otherwise.

6 Evaluating Inductive Inference Operators
with respect to (CSynSplitg)

In this section we consider several inductive inference opera-
tors and evaluate whether they satisfy (CSynSplitg).

6.1 System Z and System W
System Z is an OCF-based inductive inference operator
based on the ranking function κz [Pearl, 1990]. The defi-
nition of κz crucially relies on the notion of tolerance. A
conditional (B|A) is tolerated by a set of conditionals ∆ =
{(B1|A1), . . . , (Bn|An)} if there is a world ω ∈ Ω such
that ω |= AB and ω |=

∧n
i=1(Ai ∨ Bi), i.e., iff ω verifies

(B|A) and does not falsify any conditional in ∆. For every
consistent knowledge base, the notion of tolerance yields a
unique inclusion-maximal ordered partition, in the following
denoted by OP(∆) = (∆0, . . . ,∆k), of ∆ where each ∆i is
the (with respect to set inclusion) maximal subset of

⋃k
j=i ∆j

that is tolerated by
⋃k

j=i ∆j . Intuitively, general conditionals
of ∆ are placed in the first sets of OP(∆) while more spe-
cific conditionals are placed in later parts of the partition. The
system Z ranking function κz(ω) is defined as follows. If ω
does not falsify any conditional in ∆, then let κz(ω) = 0.
Otherwise, let ∆j be the latest part in the tolerance partition
containing a conditional falsified by ω, and let κz(ω) = j+1
[Goldszmidt and Pearl, 1996]. System Z yields the inference
relation induced by κz , i.e., Cz : ∆ 7→ |∼κz .

Just like safe splittings, generalized safe splittings are re-
spected by the notion of tolerance.

Proposition 16. Let ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3. Then, for any
i ∈ {1, 2}, ∆i tolerates (B|A) ∈ ∆i iff ∆ tolerates (B|A).

Proof. First, assume (B|A) is tolerated by ∆i. Then there
must be some ωiω3 such that ωiω3 |= AB and there is no
(D|C) ∈ ∆i such that ωiω3 |= CD. In particular, there is no
such conditional in ∆3. Due to generalized safe ty there is an
extension ωi′ such that there is no conditional (F |E) ∈ ∆i′\3

with ωiω3ωi′ |= EF . Since ∆ = ∆i ∪ ∆i′\3, (B|A) is
tolerated by ∆. The other direction is immediate.

For System Z we can then show the following result.

Proposition 17. System Z satisfies (CRelg), but does not sat-
isfy (CIndg) and thus does not satisfy (CSynSplitg).

Crucial to showing that System Z satisfies (CRelg) is
Proposition 16 which can be used to show that the ordered
partition of ∆i is respected by ∆ and vice versa. The fact that
System Z does not satisfy (CIndg) follows from the fact, that
it does not satisfy (CInd) [Heyninck et al., 2023].

System W is an inference operator also using the tolerance
partition OP(∆), but while System Z considers only which
parts of OP(∆) contain falsified conditionals, system W also
takes into account the structural information about which
conditionals are falsified [Komo and Beierle, 2020; Komo
and Beierle, 2022]. For this, System W uses the preferred
structure on worlds <w

∆ which compares worlds according
to the set of conditionals in ∆ they falsify, giving preference
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to the more specific conditionals according to OP(∆). Us-
ing this ordering, B is a system W inference from A, de-
noted A |∼w

∆B, if for every ω′ ∈ Mod Σ(AB) there is an
ω ∈ Mod Σ(AB) with ω <w

∆ ω′. For details we refer to
[Komo and Beierle, 2020; Komo and Beierle, 2022].
Proposition 18. System W satisfies (CRelg) and (CIndg) and
thus (CSynSplitg).

The proof of Proposition 18 is based on the observations
that for ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3 the order ω <w
∆ ω′ of two

worlds coinciding on Σ2 ∪ Σ3 depends only on ∆1 and that
the order ω <w

∆1
ω′ of worlds induced by ∆1 does not change

if we change the valuation over Σ2 in the worlds.

6.2 Inference with Single c-Representations
Among the OCF models of ∆, c-representations are special
ranking models obtained by assigning individual integer im-
pacts to the conditionals in ∆ and generating the world ranks
as the sum of impacts of falsified conditionals.
Definition 19 (c-representation [Kern-Isberner, 2001;
Kern-Isberner, 2004]). A c-representation of ∆ =
{(B1|A1), . . . , (Bn|An)} is an OCF κ constructed from
non-negative impacts ηj ∈ N0 assigned to each (Bj |Aj)
such that κ accepts ∆ and is given by:

κ(ω) =
∑

1⩽j⩽n

ω|=AjBj

ηj (16)

c-Representations can conveniently be specified using a
constraint satisfaction problem (for detailed explanations, see
[Kern-Isberner, 2001; Kern-Isberner, 2004]):
Definition 20 (CR(∆), [Kern-Isberner, 2001; Beierle et al.,
2018]). The constraint satisfaction problem CR(∆) for c-
representations of ∆ = {(B1|A1), . . . , (Bn|An)} is given by
the conjunction of the constraints, for all j ∈ {1, . . . , n}:

ηj ⩾ 0 (17)

ηj > min
ω|=AjBj

∑
k ̸=j

ω|=AkBk

ηk − min
ω|=AjBj

∑
k ̸=j

ω|=AkBk

ηk (18)

Note that (17) expresses that falsification of condition-
als should make worlds not more plausible, and (18) en-
sures that κ as specified by (16) accepts ∆. A solution
of CR(∆) is a vector #»η = (η1, . . . , ηn) of natural num-
bers. Sol(CR(∆)) denotes the set of all solutions of CR(∆).
For #»η ∈ Sol(CR(∆)) and κ as in Equation (16), κ is the
OCF induced by #»η and is denoted by κ#»η . CR(∆) is sound
and complete [Kern-Isberner, 2001; Beierle et al., 2018]:
For every #»η ∈ Sol(CR(∆)), κ#»η is a c-representation with
κ#»η |= ∆, and for every c-representation κ with κ |= ∆, there
is #»η ∈ Sol(CR(∆)) such that κ = κ#»η . For #»η , we will sim-
ply write #»η 1 and #»η 2 for the corresponding projections #»η |∆1

and #»η |∆2
, and ( #»η 1, #»η 2) for their composition.

A fundamental property of c-representations is that for any
syntax splitting ∆ = ∆1

⋃
Σ1,Σ2

∆2 the composition of any

impact vectors for the subbases yields an impact vector for
∆, and vice versa [Kern-Isberner et al., 2020]. This property

was also shown to extend to safe conditional syntax splittings
[Beierle et al., 2024b]. However, a key part in showing this
was Lemma 6 which no longer holds for generalized safe con-
ditional syntax splittings. Indeed the composition property no
longer holds, as the impacts assigned to the conditionals in
∆3 can be vastly different between the two subbases. Thus,
we show a slightly weaker property here. While it still states
that any impact vector for ∆ can be split into impact vectors
for the subbases, impact vectors for the subbases may only
yield an impact vector for ∆ if they match on the impacts
assigned to the conditionals in ∆3.
Proposition 21. Let ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3. The following
two properties hold for i, i′ ∈ {1, 2}, i ̸= i′:

• For every #»η ∈ Sol(CR(∆)) there are #»η i ∈
Sol(CR(∆i)), #»η i′ ∈ Sol(CR(∆i′)) and #»η 3 ∈
Sol(CR(∆3)) with #»η i|∆3 = #»η i′ |∆3 = #»η 3, such that
#»η = ( #»η i|∆i\3 ,

#»η i′ |∆i′\3 ,
#»η 3).

• For every #»η i ∈ Sol(CR(∆i)),
#»η i′ ∈ Sol(CR(∆i′))

and #»η 3 ∈ Sol(CR(∆3)) with #»η i|∆3
= #»η i′ |∆3

=
#»η 3 there is #»η ∈ Sol(CR(∆)) such that #»η =

( #»η i|∆i\3 ,
#»η i′ |∆i′\3 ,

#»η 3).

Due to the condition that #»η i|∆3
= #»η i′ |∆3

= #»η 3, we have
that #»η i = ( #»η i|∆3

, #»η 3) and #»η i′ = ( #»η i′ |∆3
, #»η 3). And thus

#»η = ( #»η i, #»η i′ |∆i′\3) for both points of Proposition 21.

Example 22. For the belief base ∆ = {(c|a), (b|a)}, a
possible c-representation κ#»η is given by #»η 1 = (1, 1) ∈
Sol(CR(∆)), yielding the following OCF:

κ(abc) = κ(abc) = κ(abc) = κ(abc) = κ(abc) = 0,

κ(abc) = κ(abc) = 1, κ(abc) = 2.

Because ∆ = {(b|a)}
⋃gs

{b},{c}{(c|a)} | {a} and ∆3 = ∅ we
can obtain #»η 1 by combining #»η 1

1 = (1) and #»η 2
1 = (1) and

vice versa utilizing Proposition 21.
To show that nonmonotonic reasoning with c-

representations satisfies (CSynSplitg) we employ the
concept of conditional κ-independence.
Definition 23 ([Heyninck et al., 2023],[Spohn, 2012]). Let
Σ1,Σ2,Σ3 ⊆ Σ where Σ1,Σ2 and Σ3 are pairwise dis-
joint and let κ be an OCF. Σ1,Σ2 are conditionally κ-
independent given Σ3, in symbols Σ1 ⊥⊥κ Σ2|Σ3, if for all
ω1 ∈ Ω(Σ1), ω

2 ∈ Ω(Σ2), and ω3 ∈ Ω(Σ3), it holds that
κ(ω1|ω2ω3) = κ(ω1|ω3).
Proposition 24 (adapted from [Beierle et al., 2024b]). Let
∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3, and κ a c-representation with κ |=
∆. Then Σ1 ⊥⊥κ Σ2|Σ3.

Now we introduce an alternative characterization of (CInd)
and (CRel) based on OCFs, adapted to our new notion of gen-
eralized safe splittings.
Proposition 25 (adapted from [Heyninck et al., 2023]). An
inductive inference operator for OCFs Cocf : ∆ 7→ κ∆ sat-
isfies (CIndg) iff for any ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3 we have
Σ1 ⊥⊥κ∆

Σ2|Σ3.
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Proposition 26 (adapted from [Heyninck et al., 2023]). An
inductive inference operator for OCFs Cocf : ∆ 7→ κ∆

satisfies (CRelg) iff for any ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3 and
i ∈ {1, 2} we have κ∆i = κ∆ |Σi∪Σ3 .

We will now define model-based inductive inference oper-
ators assigning a c-representation κ to each ∆, by employing
the concept of selection strategies.

Definition 27 (selection strategy σ, [Beierle and Kern-Is-
berner, 2021]). A selection strategy (for c-representations) is
a function σ : ∆ 7→ #»η assigning to each conditional belief
base ∆ an impact vector #»η ∈ Sol(CR(∆)).

Each selection strategy yields an inductive inference oper-
ator Cc-rep

σ : ∆ 7→ κσ(∆) where |∼κσ(∆)
is obtained via Equa-

tion (1) from κσ(∆). Note that each |∼κσ(∆)
satisfies both (Di-

rect Inference) and (Trivial Vacuity). A recent example for a
specific selection strategy are minimal core c-representations
[Wilhelm et al., 2024].

In principle, for every ∆, a selection strategy may choose
some impact vector independently from the choices for all
other belief bases. The following property characterizes se-
lection strategies that preserve the impacts chosen for sub-
bases if ∆ splits into these subbases.

(IP-CSPg) (adapted from [Beierle et al., 2024b]) A selec-
tion strategy σ is impact preserving w.r.t. conditional
belief base splitting if, for every generalized safe condi-
tional belief base splitting ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3, for
i ∈ {1, 2}, we have σ(∆i) = σ(∆)|∆i

.

In [Beierle et al., 2024b] it is shown that any induc-
tive inference operator based on an impact preserving selec-
tion strategy satisfies (CSynSplit); we extend this result to
(CSynSplitg).

Proposition 28. Let σ be a selection strategy satisfying (IP-
CSPg). Then Cc-rep

σ satisfies (CRelg) and (CIndg) and thus
(CSynSplitg).

After showing that inference based on a single c-
representation satisfies (CSynSplitg) if the underlying selec-
tion strategy satisfies (IP-CSPg), we next consider inference
with respect to all c-representations of a belief base.

6.3 c-Inference
c-Inference was introduced in [Beierle et al., 2016; Beierle
et al., 2018] as the skeptical inference relation obtained by
taking all c-representations of a belief base ∆ into account.

Definition 29 (c-inference, |∼c-sk
∆ , [Beierle et al., 2016]). Let

∆ be a belief base and let A, B be formulas. B is a (skeptical)
c-inference from A in the context of ∆, denoted by A |∼c-sk

∆ B,
iff A |∼ κB holds for all c-representations κ of ∆, yielding the
inductive inference operator

Cc-sk : ∆ 7→ |∼c-sk
∆

Before proving that c-inference satisfies conditional syn-
tax splitting, we show a lemma stating the following observa-
tions. Consider a generalized safe conditional syntax splitting
of ∆ into ∆1 and ∆2, and a c-representation κ#»η determined

by a solution vector #»η ∈ Sol(CR(∆)) together with its pro-
jections κ#»η 1 and κ#»η 2 to ∆1 and ∆2, respectively. Then the
rank of any formula Fi over the language L(Σi ∪ Σ3) of ∆i

under the projection κ#»η i coincides with the rank of the for-
mula rank determined by κ#»η .
Proposition 30 (adapted from [Beierle et al., 2024b]). For
any ∆ = ∆1

⋃gs
Σ1,Σ2

∆2 | Σ3, for all #»η ∈ Sol(CR(∆)), and
for i ∈ {1, 2}, Fi ∈ L(Σi∪Σ3), we have κ#»η (Fi) = κ#»η i(Fi).

The related proposition in [Beierle et al., 2024b] addition-
ally states that the rank of the formulas Fi is zero in the OCF
κ#»η j . This no longer holds for generalized safe splittings be-
cause conditionals in ∆3 can be falsified by Fi.

Next we can show that for every generalized safe condi-
tional syntax splitting and every solution vector for ∆i, we
can actually find matching solution vectors for ∆i′ and ∆3.
Proposition 31. Let ∆ be a belief base with ∆ =
∆1

⋃gs
Σ1,Σ2

∆2 | Σ3. Then for i ∈ {1, 2}, and for every
#»η i ∈ Sol(CR(∆i)) there are #»η i′ ∈ Sol(CR(∆i′)) and
#»η 3 ∈ Sol(CR(∆3)), such that #»η i|∆3

= #»η i′ |∆3
= #»η 3.

With Propositions 21, 30, and 31 we can show:
Proposition 32. c-Inference satisfies (CRelg) and (CIndg)
and thus (CSynSplitg).

Thus also the inference taking all c-representations into ac-
count fully complies with (CSynSplitg).

7 Conclusions and Future Work
In this paper, we generalized the notion of safety for condi-
tional syntax splittings, allowing the subbases to share non-
trivial conditionals, and thus broadened the application scope
of the beneficial splitting techniques. Moreover, we identi-
fied genuine splittings as the subclass of meaningfull con-
ditional syntax splittings. We showed that this notion of
safety properly generalizes the previous notion of safety and
and gave illustrative examples of belief bases that have no
safe conditional syntax splitting, but a generalized safe con-
ditional syntax splitting. We adjusted postulates for condi-
tional syntax splitting based on the generalized notion and
showed that System W and inductive inference with a single
c-representation based on a selection strategy, as well as in-
ference with all c-representations fully comply with this new
property. While System Z fails to satisfy syntax splittings, we
showed that it fulfills (CRelg). Furthermore, we showed that,
while (CSynSplitg) implies (CSynSplit), the other direction
does not hold.

In future work, we will investigate further inference op-
erators like lexicographic inference [Lehmann, 1995] with
respect to (CSynSplitg), and we will study the exact re-
lationship of our approach to syntactic contextual filtering
[Dupin de Saint-Cyr and Bisquert, 2024] and to proposi-
tional forgetting [Lang et al., 2003; Sauerwald et al., 2022;
Sauerwald et al., 2024]. We will exploit the beneficial prop-
erties of splitting techniques for implementations of inductive
inference [Beierle et al., 2024a] and we will adapt the con-
cepts shown here to include also belief bases that satisfy a
weaker notion of consistency (cf. [Haldimann et al., 2023;
Haldimann et al., 2024]).
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Öztürk-Escoffier, and Nico Potyka, editors, Scalable Un-
certainty Management - 15th International Conference,
SUM 2022, volume 13562 of LNCS, pages 92–106.
Springer, 2022.

[Sauerwald et al., 2024] Kai Sauerwald, Christoph Beierle,
and Gabriele Kern-Isberner. Propositional variable forget-
ting and marginalization: Semantically, two sides of the
same coin. In FoIKS 2024, Proceedings, volume 14589 of
LNCS, pages 144–162. Springer, 2024.

[Spohn, 1988] W. Spohn. Ordinal conditional functions: a
dynamic theory of epistemic states. In W.L. Harper and
B. Skyrms, editors, Causation in Decision, Belief Change,
and Statistics, II, pages 105–134. Kluwer Academic Pub-
lishers, 1988.

[Spohn, 2012] Wolfgang Spohn. The Laws of Belief: Rank-
ing Theory and Its Philosophical Applications. Oxford
University Press, 2012.

[Weydert, 1998] E. Weydert. System JZ - How to build a
canonical ranking model of a default knowledge base. In
A.G. Cohn, L.K. Schubert, and S.C. Shapiro, editors, Proc.
of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), pages
190–201. Morgan Kaufmann, 1998.

[Wilhelm et al., 2024] Marco Wilhelm, Gabriele Kern-
Isberner, and Christoph Beierle. Core c-representations
and c-core closure for conditional belief bases. In Arne
Meier and Magdalena Ortiz, editors, Foundations of
Information and Knowledge Systems - 13th International
Symposium, FoIKS 2024, Sheffield, UK, April 8-11, 2024,
Proceedings, volume 14589 of LNCS, pages 104–122.
Springer, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


