Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Efficient Dynamic Graph Learning with Refined Batch Parallel Training

Zhengzhao Feng' , Rui Wang'** | Longjiao Zhang' , Tongya Zheng??, Ziqi Huang', Mingli Song'3*
1Zhejiang University
2High-Performance Intelligent Computing Research Center for Ultra-Large Scale Graph Data, School of
Computer and Computing Science, Hangzhou City University
3State Key Laboratory of Blockchain and Data Security, Zhejiang University
“Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security
{fengzhengzhao,rwang21,zhljJoan,ziqi,brooksong } @zju.edu.cn, doujiang_zheng @ 163.com

Abstract

Memory-based temporal graph neural networks
(MTGNN) use node memory to store historical in-
formation, enabling efficient processing of large
dynamic graphs through batch parallel training,
with larger batch sizes leading to increased train-
ing efficiency. However, this approach overlooks
the interdependency among edges within the same
batch, leading to outdated memory states and re-
duced training accuracy. Previous studies have
attempted to mitigate this issue through methods
such as measuring memory loss, overlap train-
ing, and additional compensation modules. De-
spite these efforts, challenges persist, including im-
precise coarse-grained memory loss measurement
and ineffective compensation modules. To address
these challenges, we propose the Refined Batch
parallel Training (RBT) framework, which accu-
rately evaluates intra-batch information loss and
optimizes batch partitioning to minimize loss, en-
hancing the training process’s effectiveness and ef-
ficiency. RBT also includes a precise and effi-
cient memory compensation algorithm. Experi-
mental results demonstrate RBT’s superior perfor-
mance compared to existing MTGNN frameworks
like TGL, ETC, and PRES in terms of training effi-
ciency and accuracy across various dynamic graph
datasets. Our code is made publicly available at
https://github.com/fengwudi/RBT.

1 Introduction

Dynamic graphs are crucial in real-world applications like so-
cial networks, financial transactions, traffic monitoring, and
e-commerce platforms [Feng et al., 2024; Chen et al., 2024;
Zheng et al., 2022]. These graphs continuously update node
and edge states, providing opportunities for graph learning
tasks. Temporal graph neural networks (TGNNs) [Kazemi
et al., 2020; Skarding et al., 2021; Zhu et al., 2022; Jin
et al., 2023; Longa et al., 2023; Zheng et al., 2023] use
a time-aware messaging mechanism to learn node repre-
sentations over time, facilitating tasks such as link predic-
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tion [Zhang and Chen, 20181, node classification [Wu et al.,
2020], and attribute prediction. Memory-based TGNNs (MT-
GNNG) [Rossi et al., 2020; Wang et al., 2021; Zhang ef al.,
2023; Han et al., 2023; Luo and Li, 2022] store compressed
historical node information to maintain critical context during
training, resulting in exceptional performance.

To boost training efficiency, the batch parallel training
strategy is often employed to simultaneously train a batch
of dynamic edges, with larger batch sizes improving effi-
ciency [Zhou et al., 2022; Zhou et al., 2023; Gao et al., 2024;
Chen et al., 2023b; Sheng et al., 2024; Chen et al., 2021].
However, this method can introduce memory state staleness
challenges for MTGNNSs in practical applications. Without
insight into earlier interactions within the current batch, the
memory states can become stale due to missed updates from
past interactions in related batches. Outdated historical em-
beddings in memory may fail to accurately represent histori-
cal information, impacting subsequent training and tasks.

Prior research has tackled memory staleness challenges by
measuring memory loss, optimizing data batch allocations to
reduce information loss [Gao er al., 2024; Lampert et al.,
2024], overlapping batch training to capture missed events
from previous batches [Chen er al., 2023a; Zhou et al., 2022;
Chen et al., 2023b], and introducing new modules to im-
prove the ability to capture temporal information, combat-
ing memory aging [Chen er al., 2021; Zhou et al., 2023;
Zhang et al., 2023; Sheng et al., 2024; Su et al., 2024].

Despite recent advancements, MTGNN frameworks still
face limitations, such as inaccurate measurement of coarse-
grained memory loss. Current approaches rely on the num-
ber of repeating nodes within a batch to assess intra-batch
information loss, which ignores the impact of memory aging
and changes on memory loss over time [Lampert et al., 2024;
Gao et al., 2024], hindering optimal batch allocation. An-
other limitation is the struggle to balance training efficiency
and memory staleness with current batch split strategies,
which focus only on loss within a single batch without con-
sidering cumulative memory staleness across batches [Gao et
al., 2024]. Furthermore, current model compensation mecha-
nisms have difficulty balancing accuracy and efficiency, of-
ten requiring high computational costs or sacrificing accu-
racy compensation [Zhou et al., 2023; Sheng et al., 2024].
Lightweight general correction strategies often overlook ex-
plicit temporal encoding information [Su ez al., 2024].
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Ours: In this paper, we introduce RBT, a refined batch
parallel training framework designed for efficient dynamic
graph learning. RBT incorporates fine-grained memory loss
measurement, information loss-aware batch splitting, and op-
timized memory compensation. This framework enables a
more accurate measurement of memory loss, addressing the
issue of memory staleness. By optimizing the batch splitting
strategy, RBT ensures that information integrity is preserved
within a defined threshold. Moreover, RBT introduces an en-
hanced memory compensation mechanism to strike a balance
between efficiency and accuracy. Our contributions can be
summarized as follows:

* We introduce a novel fine-grained memory loss mea-
surement approach, which takes into account various
types of information (such as message, memory, and
time) in calculating memory loss within batches, thus
enhancing the precision of measuring information loss.

We propose an information loss aware batch splitting
method, that utilizes memory loss measurement to dy-
namically adjust batch division, thus enhancing compu-
tational efficiency while ensuring that information loss
is kept within a specified threshold.

e We present an optimized memory compensation
method, which compensates for the staleness of the
memory state by correcting the time encoding, allowing
the memory state to acquire explicit time information.

L]

We implement RBT and conduct extensive experiments
to demonstrate its effectiveness. Our results demonstrate
that RBT achieves significantly higher accuracy com-
pared to state-of-the-art MTGNN training frameworks
such as TGL [Zhou et al., 2022] and ETC [Gao et al.,
2024], with training speeds improved by several times.

2 Background and Motivation

2.1 Memory-Based TGNNs

Memory-based temporal graph neural networks (MTGNNs)
leverage memory to retain historical information about nodes,
enabling them to capture long-term dependencies of each
node in the graph. Assuming nodes ¢ and j interact at times-
tamp ¢, the computation of memory information for node %
can be represented as follows:
Message: msg;(t) = s;(t7)||s; (t7)||ei;||TE(AL), (1)
Memory: s;(t) = mem(msg;(t), si(t™)), )
where s;(t~) denotes the memory information of node i be-
fore timestamp ¢, and e;; signifies the edge feature informa-
tion between nodes ¢ and j. The function T E(-) represents a
time encoding function. Equation 2 is utilized to update the
memory using the message, where mem(-) is an updatable
function like GRU [Chung et al., 2014] and LSTM [Hochre-
iter and Schmidhuber, 1997].
Once the memory information is obtained, it can be used
to derive the final node embedding as follows:

Embedding: emb;(t) = emb(s;(¢)||V;||Attn(N;(¢))), (3)
where emb(+) is a learnable function that incorporates histor-

ical features s;(t), node feature V;, and aggregated features
Attn(N;(¢)) of neighbor N, (t) to generate embeddings.

2.2 Memory Staleness Issue in Batch Training

The ideal training process for MTGNN involves sequentially
processing each edge event in chronological order to main-
tain strict dependencies between events. Consider an exam-
ple shown in Figure 1(a), where two events occur, i.e., nodes
a and b interact at ¢5, and nodes b and ¢ interact at t5. We
first generate memory information for nodes a and b (©®),
followed by generating embeddings for the event at times-
tamp t5 (@). Subsequently, the memory is updated based on
the event (®). This process is then repeated for events oc-
curring at timestamp tg (®®@®). This sequential processing
meticulously maintains dependencies between events, and in-
corporates the latest memory state from all previous events of
the corresponding nodes in each event processing.

However, this sequential training processing is particularly
slow and poses serious efficiency problems, so batch par-
allel training methods are commonly employed to improve
training efficiency [Zhou et al., 2022; Zhou et al., 2023;
Gao et al., 2024; Chen et al., 2023b; Sheng et al., 2024;
Chen et al., 2021]. In this approach, multiple consecutive
edge events are grouped into a batch and trained simultane-
ously and in parallel. For example, Figure 1(b) shows the
bach parallel training process of the above two events. Simi-
larly, the steps (@@O®®) are processed to generate messages,
memory, and embeddings, and update the memory based on
these events. However, under the batch strategy, only the lat-
est message for the same node is retained for subsequent up-
dates, while messages from other events are dropped. This
difference leads to the memory staleness issue due to the in-
ability to update the memory as in the ideal sequential pro-
cessing (@), and finally results in degraded training accuracy.

2.3 Existing Efforts and Remaining Limitations

Several efforts have been made to address the memory stale-
ness issue caused by batch training methods, including mea-
suring memory loss to optimize data batch allocations [Gao et
al., 2024; Lampert et al., 2024], overlapping batch training to
capture missed events [Chen et al., 2023a; Zhou et al., 2022;
Chen et al., 2023b], and introducing new memory com-
pensation modules [Chen et al., 2021; Zhou et al., 2023;
Zhang et al., 2023; Sheng et al., 2024; Su et al., 2024]. De-
spite these efforts, some limitations remain:

Limitation#1: Inaccurate measurement of coarse-grained
memory loss. When nodes are repeated in a batch, it can
lead to imprecise generation of memory and embedding due
to staleness. The existing approach in state-of-the-art work
ETC [Gao er al., 2024] calculates the number of repeated
nodes within a batch to measure this intra-batch information
loss. However, simply counting repeated nodes does not ac-
curately capture the true memory loss, as missed information
can impact messages, memory states, time embeddings, and
other aspects. This approach overlooks the influence of mem-
ory aging nodes resulting from connectivity relationships and
the evolving dynamic graph on changes in memory loss over
time. For example, as shown in Figure 5, different times
introduce varying levels of staleness. The imprecise mea-
surement of coarse-grained memory loss results in inefficient
batch allocation, hindering improving training efficiency.
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Figure 1: An illustration of streaming MTGNNs with two incoming events a Lsy b,b Loy ¢, where a, b, ¢ are nodes, s(-) denotes the memory
module, msg(-) denotes the message generation function, and emb(-) denotes the embedding generation function. Single-step training on
the left side is accurate but inefficient, while batch-parallel training on the right side is efficient but may result in information loss.

Limitation#2: Trade-off in accuracy and efficiency for
batch splitting. Guiding batch splitting based on memory
loss measurement presents a challenge in balancing training
efficiency and memory staleness. TGL [Zhou erf al., 2022]
uses a random batch scheduling strategy to enable cross-
training batches between epochs, but it only compensates for
the number of times the final information is captured and does
not fully resolve memory staleness. NeutronStream [Chen et
al., 2023a] adopts a sliding window training method, adjust-
ing adaptively to the longest window length without depen-
dencies, but this introduces significant computational over-
head. ETC [Gao et al., 2024] introduces a trade-off batch split
strategy that prioritizes minimizing loss within each batch.
Specifically, by setting the maximum value of pre-generated
batches as a threshold, ETC allows batches with predicted
memory loss below this threshold to increase in size. How-
ever, this strategy overlooks the overall impact of cumulative
memory staleness across all batches.

Limitation#3: Limited capacity in memory compen-
sation. To implement a memory compensation strategy,
TIGER [Zhang et al., 2023] improves precision with dual
memory modules but at the cost of high computational
and storage overhead. In contrast, DistTGL [Zhou et al.,
2023] and MSPipe [Sheng er al., 2024] focus on perfor-
mance optimization, neglecting accuracy compensation and
adding preprocessing computational expenses. Conversely,
EDGE [Chen ef al., 2021] disregards accuracy consider-
ations in memory modules altogether. Moreover, current
lightweight general correction strategies overlook explicit
temporal encoding information. PRES [Su et al., 2024] uti-
lizes an iterative prediction-correction scheme to continually
correct information loss in memory:

§1(t) = Si(t_) + 63,”
5(t) = (1 —7)3i(t) +vsi(t), )

ds, = 5(t) — 8;(t),
where ¢, represents the predictive model for correction, and
v is a learnable variable that balances the prediction and cur-
rent memory state. However, this method computes predicted

values for all nodes at each iteration, which may be impracti-
cal for dynamic graphs with a large number of nodes.

3 Methodology

3.1 Observations and Overview

We identify three key observations that affect memory stale-
ness during batch parallel training. Using node b in Figure 1
as an example, we illustrate specific differences in Figure 2.

Observation#1: Lack of update times for memory
states leads to memory staleness. In sequential training
(batch=1), the learnable function mem(-) related to ® is up-
dated. However, in batch parallel training (batch size=2), the
mem(-) function @ is not updated for the ¢4 event.

Observation#2: Inaccurate time embeddings also impact
memory staleness. When utilizing batch parallel training,
the time difference At varies for different batch sizes, leading
to inaccuracies in stale memory. For instance, the calculation
of msgy(tg) involves the following time differences:

At =tg —ts, At =t — to,
where At is for batch size=1 and At’ is for batch size=2.

Observation#3: Stale memory leads to stale messages
from both source and target nodes. The message calcu-
lation connects the source node to the target node. Therefore,
for an event at time tg, if the memory s;(¢ ™) is outdated, this
staleness will be transmitted to msg,(t) and msg.(t).

Batch Size=1

Batch Size=2

Aemb = 6(sp(ts) — 8p(t2))

emb(-)

Figure 2: Memory loss for node b. In the ideal scenario of batch
size=1, node b undergoes two updates to reach the final result at
time t6. In the batch parallel training scenario of batch size=2, only
need one update for the final result, leading to less variation. This
difference affects memory retention and generated embedding.
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Based on our observations, we first propose a fine-grained
memory loss measurement method that comprehensively
evaluates information loss by considering node repetition
frequency and timestamps. Additionally, we introduce an
information-aware splitting strategy to minimize information
loss by setting thresholds based on dynamic graph informa-
tion and loss scores from training batches. We also present an
optimized memory compensation strategy that corrects time
encoding, adapts to batch strategy corrections, and adjusts
to changes in batch sizes while incorporating temporal infor-
mation. By integrating these strategies, we implement RBT,
which ensures information integrity for balanced efficiency
and accuracy. We will detail these three techniques next.

3.2 Fine-Grained Memory Loss Measurement

Information loss. We propose a strategy to assess the loss
caused by batch training. The loss of memory information
encompasses memory loss, message loss, and the count of
missing memory updates as indicated in Equation 2. In con-
trast to prior methodologies that primarily focus on the total
count of loss events within a single batch [Gao et al., 2024],
we assess the impact of including each event in the current
batch separately. Let 3(-) denote the score of information

loss:
B(Bi)= > B(E By, )
E€B;
where B; is the events set that assigned to ¢-th batch and
B(Ey, B;) represents the information loss score of a single
event E}, that assigned to B;. 5(B;) can be formulated as the

sum of the information loss scores of all events assigned to
the i-th batch. 8(E), B;) can be formulated as:

ﬂ(Ekaz) == Z

ae{mem,msg}

Ea(Ek;Bi) X C<Ek7B1)a (6)

where §(Ey, B;) is driven by memory 10ss (Lyem (+)), mes-
sage 10ss (Ly,s4(+)), and the count of missing memory update
times (C(-)). Figure 3 illustrates how staleness is generated.
Next, we will discuss the equation in detail for the memory
loss, message loss and the count of missing memory updates.

Memory loss. We introduce the memory loss score of an
event node within a batch. Let x be an endpoint in the k-th
event in batch 7. It contributed to batch memory loss if and
only if x, has appeared in a previous event.

Blxg, B;) = 1([{a(t)|a(t) € B,z € at),a(t) < k| > 0),
@)
where «(t) represents the set of events within i-th batch.
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Figure 3: Memory staleness comes from pre-update memory, old
messages, and lack of updates. Message staleness consists of pre-
update memory of source/target and time difference.
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Figure 4: For node b, the final memory time is t¢ regardless of
whether the batch strategy is used. The difference is that the mem-
ory time is directly from to — ts when the batch size=2, and
ta — t5 — te¢ when the batch size=2.

For memory 108s (Lnem () of By, € B; (the k-th event of
B;), if the source node v, or target node vg, have already
occurred before, we use it as a measure of memory loss:

‘Cmem(Ek; Bz) = 6(UskaBi) + B(waBi)' (8)

Message loss. For message 10ss (Ly,54(+)), which consists
of three parts: the memory loss of the source and target nodes,
and the loss caused by the time difference. Since the message
passes between the source and target nodes, for nodes that
have already occurred, the information loss is calculated once
for each source and target. However, the message does not
directly cause information loss, so we have halved the impact
of this loss. For information loss due to time difference, we
use cos(-) corresponding time encoding function:

ﬁmsg(Eka Bz) = £mem(E’/’z.n Bz) + Z COS(Atj),
j€{sre,dst}

Aty = st~ e,
JInow Jmem

)
The explanation of the time difference is shown in Figure 4.
We take the event at time ¢g of node b as an example. 5 __
indicates the stale time of memory storage when using batch
strategy. tp,, ., indicates the ideal time of node b without batch
strategy. t, ., is the time of the current event. Using the time
difference equation, we can measure the difference between

the ideal time and the actual time.

Missing update times. We amplify the information loss
score according to the number of missing memory updates
(C(-)) using In(-). Generally, more repeats of nodes present
in the current batch, more information loss is generated:

C(Ex, B;) = In([{a(t)|a(t) € By,
v, € a(t)||va, € alt),alt) < k}|).

This fine-grained memory loss measurement considers fac-
tors like errors in time difference, previous memory state,
and the impact of the learnable function, denoted by L.,
Lomem, and C. Specifically, L,,sq is influenced by both the
previous memory state and time difference, L, is affected
by the previous memory state alone, and C is impacted by
the update frequency of the learnable function. Errors in the
previous memory state directly worsen staleness in memory
retention, affecting both £,,,54 and Ly,

(10)
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Figure 5: For the left figure, we should put the two events in the same
batch, otherwise a message leak issue may occur. But for the right
figure if we place them in the same batch, it will lead to staleness.

Besides, staleness is avoided for repeated nodes within a
batch when they share the same timestamp, as demonstrated
in Figure 5. In dynamic graphs with numerous identical
timestamps, it is recommended to batch events occurring si-
multaneously for the same node to prevent information leak-
age. Exploring techniques to merge events with identical
timestamps into a single batch while maintaining event de-
pendencies offers a promising research direction.

3.3 Information Loss-aware Batch Splitting

Since some batches will inevitably experience significant in-
formation loss, we can improve system efficiency by ensur-
ing that the loss value of all batches does not exceed a certain
threshold while keeping the loss within each batch within an
acceptable range. We believe that the information on the en-
tire loss list and the entire dataset should be considered in a
comprehensive way. Our equation is as follows:

threshold = mean(Ly) + (1 — 226) X (max(Ly)—
mean(Ly)), L, ={B(B1),5(B2), - ,B(Bn)},

where L, represents the calculated loss list, n represents the
number of nodes, and e represents the number of events,
mean(Ly) represents the information loss value considering
the entire loss list, while the latter half is an extension of the
threshold value based on the repetition rate of the entire dy-
namic graph. For dynamic graphs with higher repetition rates,
we allow a larger threshold, whereas for dynamic graphs with
low repetition rates, a larger threshold is unacceptable.

an

3.4 Optimized Memory Compensation

The previous correction strategy used all nodes for correc-
tion and only implied time information. This is inefficient
not only on large-scale graphs, but also fails to characterize
time changes in greater detail. Our time encoding correc-
tion strategy adapts to the batch training pattern and improves
the ability to capture temporal information, which strengthens
the expression ability of the correction model without signif-
icantly increasing the complexity of the model, we use ()
to represent the temporal correction model:

where ¥(At) actually represents a time difference encoder
adapted from a positional encoder of transformer:

b(At) = PE(AY), (13)
AL
PEat2i) = Sm(m)’

At (14)

PEat2iv1) = COS(W)'

Equation 13 indicates that the model can perceive the time
difference information. Equation 14 shows our time differ-
ence encoder. We explicitly encode temporal information by
using time differences where the original location is embed-
ded. We do not use the time encoding used in msg(-), be-
cause we believe that implicit time coding has taken its cur-
rent form and that by changing the way explicit time coding
is performed, other potential information may be captured.

4 Experiment

4.1 Experiment Setups

Test Setup. Experiments are executed on Ubuntu 22.04.3
LTS machine, utilizing an Intel Xeon Gold 6342 CPU
@2.80GHz and a Nvidia A40 48GB GPU, equipped with
1TB of memory and 40TB of disk space.

Datasets. We employ seven dynamic graph datasets:
Wikipedia, Reddit, MOOC, LastFM (from JODIE [Kumar et
al., 2019]), Flights (a flight traffic network [Poursafaei erf al.,
2022]), and user interaction data from WikiTalk [Leskovec,
2023b] and StackOverflow [Leskovec, 2023al. Details are
described in the appendix. The data partitioning followed a
70%-15%-15% split for training, validation, and testing, re-
spectively, in line with previous studies [da Xu et al., 2020;
Rossi et al., 2020; Gao et al., 2024; Li et al., 2023]. The
specific information of each dataset is shown in Table 1.

Baselines. To evaluate the effectiveness of RBT, we com-
pare it with the original TGL and the state-of-the-art ETC.
To evaluate the impact of the batch strategy on efficiency
and accuracy, we ensure consistency by using the same de-
redundancy and inter-batch pipelines across these baselines.

Parameter Configurations. The batch sizes are set to 600
and 1000 for testing, while other settings remain at their de-
fault values. Each dataset is trained for five epochs with five
repetitions, and the mean of the final results is taken.

4.2 Main Results

We first provide an overall comparison between RBT and
baselines, the results are summarized in Table 2. For small
datasets like Wikipedia, Reddit, and MOOC, RBT performs a
slight improvement upon TGL and ETC. Due to the relatively
small scale of these datasets, the accuracy advantages of RBT
were not fully evident, but RBT significantly boost computa-
tional efficiency while maintaining accuracy. In larger dataset
like LastFM, RBT shows the most significant accuracy im-
provement. With a batch size of 1000, RBT boosts precision
by around 3% compared to the higher-accuracy TGL method

Dataset src dst V] [E]
Wikipedia 8,227 1,000 9,227 157,474
Reddit 10,000 984 10,984 672,447
MOOC 7,047 97 7,047 411,749
LastFM 980 1,000 1,980 1,293,103
Flights 11,574 12,939 13,169 1,927,145
WikiTalk 251,153 1,120,716 1,140,149 7,833,139
StackOverflow | 2,226,243 2,296,666 2,601,977 63,497,049

Table 1: Summary of dataset. src and dst are the number of source
and target nodes. |V'| and |E| are the number of nodes and edges.
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(%) Wikipedia Reddit MOOC LastFM Flights WikiTalk StackOverflow
batch size:1000 | AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
TGL 96.78 96.86 | 99.32 9947 | 99.1 99.51 | 81.35 83.72 | 90.94 91.93 | 89.65 87.88 | 91.24 88.19
ETC 96.75 96.81 | 99.32 99.47 | 99.01 99.48 | 79.29 81.55 | 89.52 90.7 | 90.14 88.74 | 91.09 88.01
RBT 97.24 9742 | 99.38 99.54 99 99.48 | 84.54 86.23 | 90.05 91.37 | 90.49 88.88 | 91.02 88.37
batch size:600 AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
TGL 97.61 97.85 | 99.37 99.51 | 99.36 99.6 | 82.46 84.73 | 90.89 92.34 | 87.34 855 | 90.02 87.11
ETC 977 97.96 | 99.48 99.59 | 99.36 99.61 | 833 8537 | 90.89 9195 | 90.79 89.35 | 90.94  88.1
RBT 97.8 98.02 | 9948 99.61 | 99.35 99.6 | 8524 86.91 | 90.01 9132 | 89.6 8791 | 92.46 90.29

Table 2: Main results of RBT and baselines. We show the results for batch sizes 1000 and 600, with the optimal results highlighted in bold.
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Figure 6: Performance of accuracy and efficiency, with the x-axis indicating the average train time (s) per epoch and y-axis being the AP (%).

and approximately 5% compared to ETC. Even with a smaller
batch size of 600, there is still a 2-3% accuracy enhancement,
highlighting the effectiveness of RBT. RBT may not achieve
optimal results in datasets with high frequencies of identical
timestamps, such as Flights, where it could introduce noise
and impede performance. However, in more general datasets
with lower occurrences of identical timestamps, RBT’s mem-
ory compensation strategy is effective in enhancing perfor-
mance. While WikiTalk and StackOverflow datasets do not
exhibit exceptional acceleration due to their large scale, there
is still a notable efficiency enhancement.

We also show the relationship between AP and time per
epoch in Figure 6. In both the 1000 and 600 batch sizes, the
RBT method significantly improves efficiency. Regardless
of the dataset, the RBT method always achieves the fastest
speed while ensuring the accuracy of the model. The speed
gains are particularly noticeable on the Flights dataset. This
substantial improvement is due to the fact that the timestamps
in the Flights dataset represent days and that there are many
flights departing at the same time on the same day. Using the
RBT method to group a large number of events from the same
day into the same batch, the efficiency is greatly enhanced
without causing significant fluctuations in accuracy. In addi-
tion, we record the time proportion of correction strategies in
the entire training at a batch size of 1000, as shown in Ta-

RBT [Wikipedia]RedditfMOOC [LastFM [Flights[WikiTalk[StackOverflow

C/T 9% 9% | 10% | 12% | 11% 9% 8%
Correction|  0.11 0.52 | 031 | 1.05 | 0.53 | 281 26.85

Total 1.16 5.66 | 324 | 9.19 | 498 | 3252 321.34

Table 3: C/T (%) is the proportion of the correction strategy in the
total time. Correction is the average correction time of per-epoch,
and Total is the average training time of each epoch. Unit: seconds.

ble 3. The time cost of correction only accounts for a small
part, which is completely acceptable.

4.3 Ablation Experiment

In this section, we use ablation experiments to demonstrate
the effectiveness of our module. We set up two contrasts,
using the PRES correction and without correction on batch
sizes of 1000 and 600, to validate the effectiveness of our time
encoding correction strategy, the results are shown in Table 4.

In Wikipedia, Reddit, MOOC, and LastFM datasets, our
time encoding correction strategy achieved improvements in
accuracy. Our correction strategy did not work for the Flights
dataset, possibly because the Flights dataset has a large num-
ber of events with the same timestamp, making it difficult to
capture explicit time changes. We will present a complete ta-
ble in the appendix. Due to space constraints, we only present
time comparisons of ablation experiments performed on the
WikiTalk and StackOverflow datasets. For small data sets,
the correction strategy has a lower overhead, so it can be di-
rectly selected to enable. The corresponding time comparison
results are shown in Table 5.

Considering both the effectiveness and efficiency of Wik-
iTalk and StackOverflow datasets in Table 4 and Table 5, we
think that for large datasets, the time encoding correction
strategy becomes less effective. Firstly, the graphs are too
large, and explicit temporal information is difficult to capture
effectively. Although the strategy may improve accuracy, the
performance overhead introduced by the correction module
outweighs its benefits. Therefore, for large datasets, a ver-
sion without the correction strategy may be a better choice.

4.4 Batch Split Analysis

In this section, we use the LastFM dataset as an example to
analyze the impact of our batch strategy on accuracy. We set
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(%) Wikipedia Reddit MOOC LastFM Flights WikiTalk StackOverflow
batch size:1000 AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
RBT w/o PRES | 9628 96.29 | 993 99.45 | 98.84 9943 | 83.04 84.96 | 89.86 91.18 | 90.79 89.72 | 91.08 87.9
RBT w/PRES | 96.63 96.65 | 99.31 99.47 | 98.85 99.44 | 82.51 84.33 | 90.19 914 | 89.77 87.92 | 8943 87.08
RBT 9724 9742 | 99.38 99.54 99 99.48 | 84.54 86.23 | 90.05 91.37 | 9049 88.8 | 91.02 88.37
batch size:600 AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
RBT w/o PRES | 97.24 9741 [ 9939 99.52 | 9934 99.6 | 82.18 84.03 | 89.85 91.2 | 89.78 88.34 | 91.26 88.17
RBT w/PRES | 9747 97.67 | 99.43 99.57 | 99.32 99.59 | 84.68 86.41 | 90.23 91.39 | 89.37 87.67 | 91.15 88.57
RBT 97.8 98.02 | 99.48 99.61 | 99.35 99.6 | 8524 86.91 | 90.01 9132 | 89.6 8791 | 92.46 90.29

Table 4: Ablation results of RBT and two contrasts. ”w/0”” means “without”,

w/o PRES w/PRES RBT [w/o PRES w/PRES RBT

Time(s) batch size:1000 batch size:600
WikiTalk 29.15 32.01 3252 | 37.67 40.09 41.23
StackOverflow | 288.45  311.11 321.34| 340.31 370.64 380.68

Table 5: Comparison of ablation experiment times on WikiTalk and
StackOverflow datasets with batch size 1000 and 600.

Method
TGL
RBT

Batch size
1000 1500 2000 2500 3000 3500 4000 4500 5000
1810 2579 3187 3787 4595 5202 5878 6330 7184

Table 6: Comparison of the actual batch size in TGL and RBT.

the batch size to range from 1000 to 5000, with a step size
of 500, and calculate the average batch size based on our par-
titioning strategy. The calculated average batch size is then
used as the input for the TGL model, ensuring consistency
with the batch size in our RBT method. Table 6 presents the
corresponding batch sizes and their associated data.

After standardizing the batch size, we compare the TGL
and RBT methods. To ensure fairness, it is important to note
that we used the version without the calibration module, and
the final results are shown in Figure 7(a). As shown in the
figure, at each time step, the RBT method almost consistently
maintains a higher accuracy level than the TGL method. This
indicates that, even with the same average batch size, our
method performs better in batch division on LastFM com-
pared to traditional approaches, demonstrating that the RBT
method effectively reduces memory loss within the batch.
The TGL results reveal that a larger batch size may not al-
ways lead to a lower AP score due to internal memory stale-
ness, impacting performance. In contrast, RBT uses a batch
re-partitioning method to adjust batch sizes while maintaining
consistent memory loss between batches, resulting in stable
memory staleness and smoother curves. This highlights the
difference in memory stability between RBT and TGL, with
the latter showing more pronounced fluctuations in the curve.

801 RBT w/o RES RBT w/o RES
¥ TGL ® 8 T6L
~ 781 o
> £
e =
< 761 < 81
[
'_
741 4]
2000 4000 6000 8000 2000 4000 6000

(a) AP VS Batch Size (b) Time VS Batch Size

Figure 7: (a) Compare AP of TGL and RBT in different batches, (b)
corresponding AP (%) of per-epoch train times for RBT.
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w/” means “with”.

In addition, the main purpose of showing Figure 7(b) is to il-
lustrate that, although the RBT method effectively constrains
memory loss within the batch, it still cannot address the in-
herent issue in MTGNN training — that overly large batches
remain difficult to train. This is an inherent limitation of the
TGNN architecture, which is orthogonal to the RBT method.

5 Related Works

To address the issue of memory staleness, certain tech-
niques [Gao et al., 2024; Lampert et al., 2024] focus on mea-
suring memory loss and adjusting data batch assignments by
limiting the information loss per batch prevent performance
degradation. ETC [Gao et al., 2024] sets a threshold on
missed events per batch. LFIL [Lampert er al., 2024] uses
a time window-based method to reduce time biases.Other
techniques use overlapping batch training to capture missed
events in previous batches and reduce memory staleness.
NeutronStream [Chen ef al., 2023a] employs sliding window
training to capture cross-batch dependencies. TGL [Zhou et
al., 2022] and SPEED [Chen et al., 2023b] partition training
edges and randomly select chunks as the starting point, en-
abling the capture of large-scale events missed during differ-
ent training iterations. Additionally, some techniques [Chen
et al., 2021; Zhou et al., 2023; Zhang et al., 2023; Sheng et
al., 2024; Su et al., 2024] enhance MTGNN’s structure by
introducing new modules or mechanisms to improve its abil-
ity to capture time information. EDGE [Chen et al., 2021]
and DistTGL [Zhou et al., 2023] combine static and dynamic
node memory to address latency. Meanwhile, TIGER [Zhang
et al., 2023] and MSPipe [Sheng et al., 2024] use neighbor-
hood information to minimize memory obsolescence. More-
over, PRES [Su ef al., 2024] proposes an iterative predictive
correction scheme with memory coherent learning objectives.

6 Conclusion

This paper introduces RBT, a methodology for dynamic
graph learning that minimizes information loss in batch train-
ing. It utilizes a refined memory loss metric to measure mem-
ory staleness and adjusts batch splitting strategy to keep in-
formation loss within acceptable levels in each batch. Addi-
tionally, to balance efficiency and accuracy, an effective com-
pensation mechanism is proposed to enhance memory preci-
sion. Experimental results show efficiency gains while pre-
serving stable accuracy. A promising future direction is to
explore batch reordering for large-scale dynamic graphs with
the same timestamp, potentially reducing event dependencies
without violating the temporal order.
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