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Abstract
Class imbalance is a widespread problem in graph-
structured data. The existing studies tailored for
class-imbalanced graphs are typically categorized
into generative and re-weighting methods. How-
ever, the former merely focuses on quantity balance
rather than learning balance. The latter performs
the fine-tuning in a majority-minority paradigm,
overlooking the authentic-generative one. In fact,
their collaboration is capable of relieving respec-
tive limitations. To this end, we propose a Mutual-
Guidance method for class-imbalanced graphs,
namely GraphMuGu. Specifically, we first de-
sign an uncertainty-aware method to quantify the
number of synthesized samples for each category.
Furthermore, we devise a similarity-aware method
to re-weight the importance of the authentic and
generative samples. To the best of our knowl-
edge, the proposed GraphMuGu is the first try to
incorporate the generative and re-weighting meth-
ods into a unified framework. The experimental
results on five class-imbalanced datasets demon-
strate the superiority of the proposed method. The
source codes are available at https://github.com/
ZZY-GraphMiningLab/GraphMuGu.

1 Introduction
Graph Neural Networks (GNNs) have demonstrated impres-
sive success across a range of graph analyzing tasks, includ-
ing fraud detection, transportation analysis, disease diagno-
sis, and so on [Zhang et al., 2024; Rahmani et al., 2023; Sun
et al., 2020]. Their remarkable performance is typically under
the assumption of class balance, i.e., samples across various
categories are unbiased in quantity [Ju et al., 2024]. However,
the above assumption barely holds, as the class imbalance
exists inherently in real-world scenarios [Dou et al., 2020;
Liu et al., 2021]. It refers to a few classes holding enormous
labeled nodes (i.e., majority class), while most classes con-
tain limited labeled nodes (i.e., minority class). For instance,
in fake account detection, the majority of users are benign,
while only a few of them are bots. Analogously, in financial

∗Corresponding Authors.

(a) Generative perspective. (b) Re-weighting perspective.

Figure 1: The exploration of potential problems in generative and
re-weighting perspectives on Cora-LT dataset.

fraud detection, the quantity of compliant users far exceeds
that of fraudsters. Once trapped in the problem of class im-
balance, the GNN-based models over-fit the majority classes
and under-represent the minority ones.

The studies tailored for the class-imbalanced graphs are
categorized into generative and re-weighting methods. The
former intends to synthesize new samples for minority
classes, thereby balancing the distribution of samples across
various categories. For example, GraphSMOTE first ex-
tends the existing over-sampling methods to graph-structured
data [Zhao et al., 2021]. GraphSHA explores the subspace
squeeze issue of minority classes and enlarges the decision
boundaries of minority classes by synthesizing harder minor-
ity samples [Li et al., 2023]. The latter aims to fine-tune the
weight of each sample, thus compelling the model to focus on
minority ones. For instance, ReNode provides a unified per-
spective on analyzing the quantity and topology imbalance
jointly by taking into account the node influence shift [Chen
et al., 2021]. TAM adjusts margins node-wisely according to
the extent of deviation from connectivity patterns [Song et al.,
2022]. However, both generative and re-weighting methods
only adhere to their standpoints and ignore potential collabo-
ration. To this end, we revisit the generative and re-weighting
methods to explore the underlying problems with an empiri-
cal study in Figure 1. It tells us two inspiring observations.

(1) Generative Perspective. The generative methods fo-
cus on synthesizing samples for each category until matching
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the majority. Thus, a question arises: Does the generated
equal quantity balance the learning ability of the model for
each category? To answer this question, we plot the mean
loss of each category in Figure 1 (a). It can be observed that
even if the number of samples in each category is balanced,
the model still exhibits differences in its learning ability. This
observation demonstrates that generative methods still lack
the supervision to quantify the number of synthesized sam-
ples for each category.

(2) Re-weighting Perspective. The re-weighting methods
are designed to increase the significance of minority samples,
thereby compelling the model to allocate greater attention to
these instances. In general, the authentic and generative sam-
ples are treated equally. Nevertheless, can the model learn
them impartially? Analogously, we visualize the mean loss
of authentic and generative samples for each category, respec-
tively. The results are shown in Figure 1 (b). It can be seen
that the model generalizes well on the authentic samples but
struggles with the generative ones. This phenomenon indi-
cates that it is essential to re-weight the authentic and gener-
ative samples to balance the concern of the model.

To this end, we propose a Mutual-Guidance method for the
class-imbalanced graphs. To the best of our knowledge, it
is the first try to incorporate the generative and re-weighting
method into a unified framework. Specifically, we present an
uncertainty-aware method to quantify the number of synthe-
sized samples for each category. It first measures the mean
loss of samples for each category to identify the uncertainty
of the model. Then, it leverages the uncertainty to quantify
the number of synthesized samples for each category adap-
tively. Furthermore, we devise a similarity-aware method
to re-weight the importance of the authentic and generative
samples. It summarizes the pacesetter feature by averaging
the features of labeled samples belonging to the same cate-
gory. Subsequently, it re-weights the generative samples by
evaluating the similarity of their features and the correspond-
ing pacesetter features. We conduct experiments under two
imbalanced settings on five datasets. The experimental re-
sults demonstrate that our method outperforms ten competi-
tive methods.

The main contributions of this work are as follows.
• We propose a mutual-guidance method for class-

imbalanced graphs. It is the first try to incorporate
the generative and re-weighting method into a unified
framework.

• We design an uncertainty-aware method to quantify the
number of synthesized samples for each category.

• We devise a similarity-aware method to re-weight the
importance of the authentic and generative samples.

• We conduct extensive experiments on five class-
imbalance datasets to verify the effectiveness of the pro-
posed method.

2 Related Work
2.1 Graph Neural Networks
Graph Neural Networks are deep learning models designed
to learn and reason directly on graph-structured data [Wu et

al., 2020]. They can be categorized into Spectral Graph Neu-
ral Networks and Spatial Graph Neural Networks based on
their implementation manners. Spectral Graph Neural Net-
works aim to define the graph convolution through spectral
graph theory and the convolution operation. Bruna et al. first
formalized the definition of spectral graph convolution and
emphasized its high computational complexity [Bruna et al.,
2014]. To this end, Defferard et al. introduced the k-order
Chebyshev polynomial to approximate the graph convolution
kernel [Defferrard et al., 2016]. Kipf et al. advanced it by
leveraging the limited 1-order Chebyshev polynomial and re-
normalization technique, giving rise to Graph Convolutional
Networks (GCN) [Kipf and Welling, 2017]. Spatial Graph
Neural Networks incorporate structural and node feature in-
formation by defining neighborhood aggregation functions.
Gilmer et al. proposed the Message Passing Neural Network
(MPNN), a general framework for spatial graph convolution
[Gilmer et al., 2017]. Veličković et al. presented the Graph
Attention Network (GAT), which defines the aggregation
function using a learnable attention mechanism [Veličković et
al., 2018]. Hamilton et al. introduced GraphSAGE, a model
that leverages neighbor sampling and a variety of aggrega-
tion functions to explore the fusion of neighboring informa-
tion [Hamilton et al., 2017]. Furthermore, researchers also
investigated some interesting techniques for GNNs, such as
graph transformer [Yun et al., 2019], graph diffusion [Li et
al., 2024], graph foundation model [Mao et al., 2024], etc.

2.2 Class-Imbalance Problem
Class imbalance is a ubiquitous challenge in graph represen-
tation learning [Liu et al., 2023]. The existing countermea-
sures can be classified into generative and re-weighting meth-
ods. The former is devoted to synthesizing minority samples
to balance the training set. For example, Zhao et al. extended
the over-sampling methods for i.i.d data to the graph [Zhao
et al., 2021]. They utilized the feature extractor to construct
an intermediate embedding space, then proceeded to train an
edge estimator and the GNN-based classifier on top of that.
Park et al. proposed GraphENS to relieve the neighbor mem-
orization problem encountered by existing generative meth-
ods [Park et al., 2021]. It synthesizes an ego network for mi-
nor classes with neighbor sampling and saliency-based node
mixing. Li et al. explored the problem of squeezed minority
[Li et al., 2023]. Hence, they presented GraphSHA, which
synthesizes harder samples to avoid invading the spaces of
neighbor classes. The re-weighting methods intend to tilt the
training focus towards minority samples. For instance, Cui
et al. leveraged the number of effective samples among each
class to re-weight the classes[Cui et al., 2019]. Wang et al.
introduced a class prototype-driven training paradigm to bal-
ance the loss between majority and minority classes [Wang et
al., 2022]. Park et al. explored the decision boundary in class-
imbalance scenarios and presented a novel influence-balance
loss to solve the overfitting problem of majority classes. Song
et al. proposed a topology-aware loss to re-weight margins
node-wisely according to the extent of deviation from con-
nectivity patterns [Song et al., 2022]. In addition, researchers
also explored contrastive-based methods to mitigate the class
imbalance on graphs [Zeng et al., 2023].
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Figure 2: The overall framework of the proposed GraphMuGu.

3 Proposed Method
3.1 Preliminaries
In this section, we first define the attributed graph and imbal-
ance ratio. Then, we formulate the Graph Neural Networks.
Finally, we clarify the task of node classification.

Definition 1. Attributed Graph. Suppose G = (V ,E ,X)
is an attributed graph, where V = {v1, v2, ..., vn} is the
set of nodes and E = {e1, e2, ..., em} is the set of edges.
X ∈ R|V|×d is the feature matrix, where d represents the
dimension of node features. A ∈ R|V|×|V| is the adjacency
matrix, where Aij = 1 indicates that there is an edge between
vi and vj , otherwise, Aij = 0.

Definition 2. Imbalance Ratio. Suppose the potential cat-
egories are in C = {c1, c2, ..., cl}, where the class with the
most samples is denoted as cmax and the class with the least
samples is abbreviated as cmin. Then, the imbalance ratio ρ
is defined in Eqn. (1).

ρ =
|cmax|
|cmin|

. (1)

Definition 3. Graph Neural Networks. The message-
passing paradigm of GNNs can be summarized as aggregate-
update, which are specified in Eqn. (2) and Eqn. (3).

a
(l)
i = AGGREGATE(l)(h

(l−1)
j , ∀vj ∈ N i), (2)

h
(l)
i = UPDATE(l)(h

(l−1)
i ,a

(l)
i ), (3)

where al
i is the aggregation of neighboring features at the l-th

layer, N i is the set of neighbors of vi, and hl
i is the embed-

ding of vi at the l-th layer which is updated on hl−1
i and al

i.
Problem. Node Classification. An attributed graph is de-

noted as G = (V ,E ,X). VL is the set of labeled nodes and
VU is the set of unlabeled nodes, where |VL|<<|VU |. The
goal of node classification is to train a model that takes fea-
ture matrix X and adjacency matrix A as input and predicts
the labels of unlabeled nodes by learning and optimizing the
function f(X,A) → Ŷ .

3.2 Framework
In this section, we propose a mutual-guidance method for
class-imbalanced graphs, as illustrated in Figure 2. It mainly
consists of two modules: (i) Uncertainty-Aware Quantifica-
tion and (ii) Similarity-Aware Re-Weighting. In particular, it
first schemes the synthetic paradigm of generated samples.
Then, it focuses on their quantitative and weighting prob-
lems. Specifically, it evaluates the loss distribution to assess
the uncertainty of the model across various classes and ad-
justs the number of samples generated for each class accord-
ingly. Furthermore, it summarizes the pacesetter features by
averaging the features of labeled samples in the same cate-
gory. Subsequently, it measures the similarity of synthesized
sample features and their corresponding class-wise pacesetter
features. Afterward, it fine-tunes the weights of each synthe-
sized sample. Finally, the GNN-based models are trained on
the graph balanced from the perspectives of generative and
re-weighting. The implementation details are elaborated in
the subsequent sections.

3.3 Synthetic Paradigm of Generative Sample
To synthesize a minority node, it first identifies an anchor
node (i.e., vanc) and an auxiliary node (i.e., vaux). The an-
chor node is sampled from the minority class. Note that, to
enlarge the decision boundary of the minority, it refers to the
hardness-aware sampling strategy [Li et al., 2023]. Specifi-
cally, the hardness is measured in Eqn. (4).

Hi = 1− exp (Zi,ŷi
/τ)∑|C|

j=1 exp (Zi,j/τ)
, (4)

where Hi is the hardness of node vi, Zi is the logits of vi,
and τ is the temperature.

Then, it samples the minority anchor node vanc from the
hardness-based multinomial distribution. In identifying the
auxiliary node vaux, the category of vaux is sampled from
the classification probability of the anchor node. Afterward,
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within the nodes belonging to caux, the auxiliary node is sam-
pled from the multinomial with their confidence in canc as the
probability.

Let the feature of vanc and vaux be abbreviated as Xanc

and Xaux, respectively. The feature of the synthesized node
is mixed up according to Eqn (5).

Xsyn = δXanc + (1− δ)Xaux, (5)

where Xsyn is the feature of synthesized node and δ ∈ [0, 1]
is the hyper-parameter that controls the relative importance of
Xanc and Xaux.

In modeling the topology of the synthesized node, it first
identifies the degree of the synthesized node by sampling
from the degree distribution of the entire graph as formulated
in Eqn. (6) and Eqn. (7).

PDg(k) =

∑
v∈V I{d(v)=k}

|V |
, (6)

ksyn ∼ PDg(k), (7)
where PDg(k) is the probability of a node occupying degree
k, I{·} is an indicator function, and ksyn is the degree of vsyn.

Then, it connects vsyn to the nodes within the 1-hop sub-
graph of vanc, as they tend to share the same label with vanc
according to graph homophily. However, the 1-hop subgraph
of vanc may contain fewer nodes than the sampled degree of
vsyn. Furthermore, neighbor sampling from the unweighted
graph ignores the topological information. Thus, it leverages
graph diffusion to construct a normalized weighted graph as
specified in Eqn. (8).

S̄ = D−1
∞∑
r=0

θrT
r, (8)

where S̄ ∈ R|V|×|V| is the normalized diffusion matrix, θr =
α(1 − α)r, α is a hyper-parameter, T = AD−1, and D is
the diagonal matrix.

To reduce the computational cost, it only retains the top-K
elements in each column of S̄ and sets the remaining ele-
ments to 0, sparsifying the normalized diffusion matrix. The
sparsified diffusion matrix is denoted as S̃. Finally, it lever-
ages S̃anc to sample the neighbors of vsyn.

In summary, the synthesized node is defined in Eqn. (9). Xsyn = δXanc + (1− δ)Xaux

N syn ∼ S̃anc

Ysyn = Yanc

, (9)

where Xsyn, N syn, and Ysyn represent the feature, neigh-
bor distribution, and class label of the synthesized sample,
respectively.

3.4 Uncertainty-Aware Sample Quantification
The existing generative methods typically synthesize samples
for each category until matching the majority. However, em-
pirical studies have revealed that an equal number of train-
ing samples across various categories does not ensure bal-
anced model learning. Hence, we propose an uncertainty-
aware sample method to adaptively quantify the numbers of
the synthesized samples for each category.

As we all know, the uncertainty of the model can be nat-
urally reflected by training loss. Thus, it first measures the
uncertainty for each category as specified in Eqn. (10) and
Eqn. (11).

Lci = −
∑

u∈{v∈{VL∪VS}|yv=i}
yu log ŷu, (10)

Uci =
Lci

|{v ∈ {VL ∪ VS} | yv = i}|
, (11)

where VL is the set of labeled nodes, VS indicates the set of
synthesized nodes, y is the ground truth label, ŷ is the pre-
diction, Lci represents the total loss of category ci, and Uci
indicates the uncertainty of model for category ci.

Then, it schemes a flexible sample generation strategy. In
contrast to existing methods that synthesize samples for each
category until matching the majority, it exclusively focuses
on synthesizing samples for categories whose sample count
is less than the average one across all categories.

Specifically, it evaluates the class-wise average sample
quantity by Eqn. (12).

Q̄ =
|VL|
|C|

, (12)

where Q̄ is the class-wise average sample quantity and |C|
indicates the number of categories.

Afterward, it quantifies the numbers of synthesized sam-
ples for each category by Eqn. (13) and Eqn. (14).

U ′
ci =

Uci∑|C|
i=1 Uci

, (13)

Qci =

{
βU ′

ciQ̄, |{v ∈ VL | yv = i}| < Q̄
0, |{v ∈ VL | yv = i}| ≥ Q̄ , (14)

where U ′
ci is the normalized uncertainty, Qci is the number of

synthesized samples for category ci, β is the scale factor.
In summary, the uncertainty-aware quantification method

adaptively identifies the numbers of the synthesized samples
for each category from the perspective of the model, realizing
the transition from “quantity balance” to “learning balance”.
Furthermore, it reduces the computational cost and avoids the
noise introduced by excessive synthesized samples.

3.5 Similarity-Aware Sample Re-Weighting
The existing re-weighting methods aim to fine-tune the fo-
cus of the model on majority and minority. Nevertheless, the
difference in learning difficulty between authentic and syn-
thesized samples still troubles the model. Thus, we devise a
similarity-aware method to re-weight the importance of syn-
thesized samples.

As empirical studies have proven, the model generalizes
well on the authentic samples but struggles with the synthe-
sized ones. Therefore, it measures the difference between au-
thentic and synthesized samples by similarity and emphasizes
the focus of the model on the latter accordingly.
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Specifically, it first evaluates the average feature of the la-
beled samples within the same class and denotes it as “pace-
setter” in Eqn. (15).

Xci
pac =

∑
{v∈VL|yv=i} Xv

|v ∈ VL | yv = i|
, (15)

where Xci
pac is the pacesetter of class ci.

Subsequently, it identifies the weights by calculating the
cosine similarity of the synthesized sample and its corre-
sponding pacesetter as formulated in Eqn. (16).

Wu∈{v∈VS |yv=i} = (R(σ(
XuX

ci
pac

||Xu|| · ||Xci
pac||

)))γ , (16)

where VS is the set of synthesized samples, Xci
pac is the pace-

setter for category ci, || · || is the Euclidean norm, γ is the gain
factor, σ(·) is the sigmod function, and R(·) is the reciprocal
operation.

To sum up, the similarity-aware re-weighting method fine-
tunes the importance of each synthesized sample, achiev-
ing the switch of the re-weighting paradigm from “majority-
minority” to “authentic-generative”. Moreover, it improves
the generalization ability of the model and relieves the risk of
overfitting.

3.6 Optimization
The synthesized samples are inserted into the class-
imbalanced graph, steering the graph towards class balance.
Finally, the GNNs are trained on the class-balance graph by
optimizing the objective as formulated in Eqn. (17).

L = −
∑
v∈VL

yv log ŷv −
∑

u∈VS

Wuyu log ŷu, (17)

where L is the final optimization objective.

3.7 Algorithm and Complexity Analysis
The main procedures of our proposed GraphMuGu are sum-
marized in Algorithm 1. The complexity of identifying the
anchor and auxiliary nodes is O(|VL|2). For feature syn-
thesis, the complexity is O(|VL|d). For topology modeling,
the corresponding complexity is O( |V

L|
|V| |E |). For our pro-

posed uncertainty-ware sample quantification, the time com-
plexity of measuring the uncertainty is O(|VL|+ |VS |). For
our proposed similarity-aware sample re-weighting, the time
complexity of evaluating the pacesetter is O(|VL|), and that
of measuring weights is O(|VS |). In general, the additional
complexity introduced by our method is O(2(|VL|+ |VS |)),
which enables its generalization to the large-scale graph.

4 Experiments
In this section, we conduct experiments to verify the effec-
tiveness of our proposed method. We first introduce the
datasets and baselines used in the experiments. Then, we
elaborate on the implementation details. Finally, we con-
duct a comprehensive and in-depth analysis of the experimen-
tal results. We aim to answer the following four Research
Questions.

Algorithm 1 The Proposed GraphMuGu Method

Input: Graph G = (V ,E ,X), adjacency matrix A, labeled
node set VL with their labels YL, unlabeled node set
VU , potential categories C, GNN-based model fθ.

Output: fθ trained on the class-balance graph.
1: Calculate S̃ via graph diffusion and sparsification;
2: Calculate degree distribution PDg via Eqn. (6);
3: Calculate pacesetter Xpac according to Eqn. (15);
4: while not converge do
5: Calculate uncertainty Uci according to Eqn. (11);
6: Calculate uncertainty-aware synthesized sample quan-

tification Qci via Eqn. (14);
7: Calculate node hardness according to Eqn. (4);
8: Sample anchor node vanc based on hardness;
9: Identify auxiliary node vaux based on classification

probability of anchor node;
10: Mix feature of the synthesized node by Eqn. (5);
11: Model topology of synthesized node N syn ∼ S̃anc;
12: Calculate the weight of the synthesized node according

to Eqn. (16);
13: Insert the synthesized nodes to G and train fθ on the

class-balanced graph by optimizing Eqn. (17);
14: end while
15: return Optimized GNN model fθ.

• RQ1: How does the proposed method perform on long-
tailed and step imbalance issues?

• RQ2: How does each proposed module contribute to the
performance?

• RQ3: How do the hyper-parameters take effect on the
performance?

• RQ4: How does each proposed module work to benefit
the model?

4.1 Datasets and Baselines
We evaluate the effectiveness of our proposed GraphMuGu
on five widely-used datasets, including three citation datasets
(Cora, Citeseer, and Pubmed) and two co-purchase datasets
(Amazon-Photo and Amazon-Computers). The details of
datasets are summarized in Table 1.

We compare the proposed GraphMuGu with ten compet-
itive methods for class imbalance. They are classified into
two categories, including loss modifying methods (Re-weight
[Japkowicz and Stephen, 2002], PC Softmax [Hong et al.,
2021], CB Loss [Cui et al., 2019], Focal Loss [Lin et al.,

Datasets Nodes Features Edges Classes

Cora 2,708 1,433 5,429 7
Citeseer 3,327 3,703 4,732 6
Pubmed 19,717 500 44,338 3

Amazon-Photo 7,650 745 238,126 8
Amazon-Computers 13,752 767 245,861 10

Table 1: The brief description of datasets.
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Dataset Cora-LT Citeseer-LT Pubmed-LT

ρ=100 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1
G

C
N

Vanilla 72.32±0.48 59.63±0.72 59.23±0.86 51.47±0.45 44.57±0.51 37.91±0.60 51.53±0.86 42.13±0.45 34.63±0.77

Re-weight 78.38±0.13 72.69±0.35 71.57±0.33 63.52±0.23 56.83±0.25 55.17±0.13 77.15±0.18 72.41±0.12 72.03±0.17
PC Softmax 77.39±0.17 72.02±0.32 71.54±0.38 62.19±0.43 59.17±0.32 58.38±0.31 74.40±0.66 72.67±0.47 71.85±0.57
CB Loss 77.92±0.23 72.65±0.28 73.23±0.28 61.49±0.55 55.27±0.58 53.53±0.69 76.82±0.27 72.17±0.25 72.95±0.24
Focal Loss 78.47±0.21 73.15±0.27 73.42±0.20 59.76±0.32 53.45±0.39 51.82±0.43 76.32±0.21 71.57±0.38 71.87±0.39
ReNode 78.72±0.19 72.97±0.17 74.03±0.18 62.33±0.30 55.53±0.29 53.78±0.25 75.97±0.11 70.75±0.15 71.44±0.19
TAM 77.33±0.25 72.19±0.27 72.37±0.29 63.45±0.36 56.82±0.31 55.87±0.41 78.02±0.18 72.65±0.22 72.81±0.33

Upsample 75.55±0.12 66.88±0.14 68.39±0.31 55.14±0.11 48.47±0.15 45.23±0.21 71.31±0.09 64.01±0.11 64.51±0.10
GraphSMOTE 75.46±0.41 68.93±0.52 70.47±0.53 56.34±0.25 50.10±0.28 47.86±0.33 74.51±0.11 69.51±0.13 71.07±0.15
GraphENS 76.12±0.27 71.26±0.38 70.87±0.48 63.11±0.32 56.75±0.32 55.52±0.47 77.27±0.15 71.82±0.23 72.77±0.18
GraphSHA 79.54±0.29 74.21±0.42 75.09±0.31 64.39±0.45 58.88±0.36 59.02±0.30 79.58±0.17 74.47±0.15 75.08±0.20
GraphMuGu 80.88±0.42 75.59±0.39 75.79±0.36 65.79±0.35 59.83±0.41 59.78±0.37 79.05±0.23 74.52±0.17 75.12±0.22

G
A

T

Vanilla 67.72±0.55 54.25±0.86 55.32±0.77 49.25±0.21 42.47±0.19 35.85±0.28 47.65±1.15 40.01±1.08 29.75±1.68

Re-weight 77.62±0.25 72.15±0.47 72.81±0.52 61.87±0.49 55.45±0.66 53.79±0.74 74.12±0.37 69.45±0.89 69.35±0.66
PC Softmax 68.72±0.71 64.25±0.76 64.15±0.76 56.74±1.45 56.37±1.22 55.38±1.52 76.76±0.38 73.29±0.17 73.18±0.28
CB Loss 77.32±0.30 72.02±0.66 72.89±0.45 61.64±0.55 55.19±0.57 53.66±0.58 74.64±0.30 69.76±0.58 70.57±0.53
Focal Loss 77.85±0.13 72.57±0.22 73.12±0.29 59.73±0.38 53.48±0.30 52.26±0.36 74.12±0.21 70.32±0.35 70.69±0.25
ReNode 78.02±0.22 71.77±0.35 73.49±0.38 60.82±0.37 54.02±0.34 51.92±0.43 74.14±0.27 69.08±0.38 69.53±0.47
TAM 77.74±0.23 72.88±0.32 73.07±0.39 64.04±0.33 57.49±0.51 56.31±0.37 78.13±0.19 71.83±0.27 73.14±0.20

Upsample 72.66±0.31 62.37±0.35 64.99±0.29 53.46±0.28 46.98±0.21 43.15±0.47 67.69±0.87 57.37±0.61 54.87±0.92
GraphSMOTE 74.61±0.27 67.73±0.35 69.12±0.38 57.42±0.28 51.35±0.33 49.46±0.55 74.08±0.31 69.13±0.40 70.53±0.45
GraphENS 77.18±0.26 72.05±0.37 72.15±0.43 61.95±0.38 55.89±0.31 54.32±0.43 76.67±0.18 70.29±0.23 71.38±0.29
GraphSHA 78.86±0.24 74.18±0.28 75.19±0.23 63.87±0.46 58.15±0.37 57.52±0.40 78.36±0.24 73.75±0.25 74.46±0.23
GraphMuGu 80.69±0.46 74.85±0.38 75.81±0.29 65.17±0.36 60.47±0.29 60.08±0.36 78.62±0.32 73.49±0.26 73.87±0.33

G
ra

ph
SA

G
E

Vanilla 73.33±0.12 61.85±0.15 63.29±0.14 47.85±0.23 41.88±0.29 36.86±0.35 58.76±0.11 47.86±0.08 42.56±0.15

Re-weight 76.85±0.14 68.65±0.38 70.29±0.33 57.32±0.56 50.82±0.48 49.23±0.52 65.87±0.46 59.64±0.86 58.72±0.94
PC Softmax 76.85±0.29 73.55±0.34 73.38±0.19 58.37±0.24 56.14±0.13 56.52±0.22 71.86±0.17 73.85±0.20 70.35±0.18
CB Loss 77.15±0.30 70.37±0.39 71.29±0.32 57.65±0.38 51.27±0.37 48.76±0.42 67.75±0.33 60.62±0.49 61.76±0.53
Focal Loss 77.19±0.19 69.82±0.25 70.73±0.28 57.09±0.65 50.65±0.69 48.48±0.73 70.52±0.39 65.56±0.37 66.28±0.46
ReNode 77.15±0.26 69.28±0.27 71.18±0.23 57.75±0.54 51.36±0.49 49.08±0.45 67.37±0.53 60.54±0.76 60.72±0.65
TAM 77.18±0.31 71.22±0.36 71.19±0.49 62.88±0.23 56.41±0.35 54.57±0.25 78.22±0.33 72.81±0.73 73.68±0.69

Upsample 73.76±0.18 63.39±0.27 65.65±0.19 50.38±0.18 44.29±0.15 41.49±0.24 64.27±0.09 54.67±0.15 53.42±0.17
GraphSMOTE 74.29±0.22 66.18±0.38 67.82±0.45 52.75±0.66 47.05±0.63 44.27±0.62 65.19±0.37 56.89±0.52 56.88±0.59
GraphENS 76.71±0.25 70.16±0.24 70.39±0.37 62.65±0.39 56.18±0.36 54.19±0.38 77.68±0.17 72.67±0.24 73.29±0.19
GraphSHA 78.75±0.22 73.15±0.38 74.29±0.35 63.78±0.35 58.37±0.36 58.09±0.45 78.27±0.27 74.25±0.39 74.81±0.23
GraphMuGu 79.77±0.23 74.24±0.18 74.66±0.27 65.20±0.33 59.66±0.28 58.86±0.23 78.62±0.33 74.53±0.36 75.02±0.31

Table 2: The experimental results (±std) on long-tailed class-imbalance settings. The reported results are the mean values of 10 runs, where
the best result is highlighted in bold, and the runner-up is highlighted in underline.

2017], ReNode [Chen et al., 2021], and TAM [Song et al.,
2022]) and generative methods (Upsample, GraphSMOTE
[Zhao et al., 2021], GraphENS [Park et al., 2021], and
GraphSHA [Li et al., 2023]).

4.2 Experimental Setup and Configurations
We leverage various GNNs (i.e., GCN [Kipf and Welling,
2017], GAT [Veličković et al., 2018], and GraphSAGE
[Hamilton et al., 2017]) as the backbones. All of them are
set to a 2-layer pattern. The number of multi-head is set to
8 for GAT. The dimension of the hidden layer is set to 64.
Specifically, for our proposed GraphMuGu, α is set to 0.05
to measure the diffusion matrix, K is set to 128 to sparsify
the diffusion matrix, and δ is sampled from β(1, 100). We
perform the long-tailed class-imbalance experiments on the
citation datasets and set the imbalance ratio ρ = 100. The
step class-imbalance experiments are implemented on the co-
purchase datasets with an imbalance ratio ρ = 20. We refer to
the reference [Li et al., 2023] to construct the class-imbalance
datasets. For evaluation, we adopt Accuracy (Acc.), balanced
Accuracy (bAcc.), and macro F1 score (F1) as the metrics.

Dataset Amazon-Photot-ST Amazon-Computers-ST

ρ=20 Acc. bAcc. F1 Acc. bAcc. F1

G
ra

ph
SA

G
E

Vanilla 59.26±1.38 59.93±1.27 47.12±1.95 63.72±0.09 46.98±0.08 30.12±0.18

Re-weight 84.82±0.25 87.56±0.27 82.86±0.18 83.55±0.37 87.96±0.29 77.76±0.42
PC Softmax 86.19±0.15 86.97±0.18 83.52±0.11 81.39±0.19 80.55±0.54 72.35±0.51
CB Loss 83.12±0.22 85.65±0.27 80.53±0.33 83.76±0.21 87.34±0.17 77.18±0.20
Focal Loss 82.53±0.47 85.55±0.39 79.10±0.56 82.56±0.45 86.98±0.28 76.54±0.20
ReNode 84.76±0.17 86.49±0.29 81.96±0.23 81.27±0.35 87.49±0.27 76.79±0.54
TAM 87.69±0.11 89.24±0.18 85.75±0.22 80.37±0.53 86.84±0.27 77.09±0.43

Upsample 82.56±0.39 84.57±0.17 79.56±0.27 83.16±0.35 87.13±0.17 77.23±0.38
GraphSMOTE 80.26±0.24 84.59±0.32 79.14±0.39 83.52±0.27 88.26±0.23 76.13±0.33
GraphENS 88.12±0.18 90.32±0.12 86.43±0.22 83.27±0.31 88.47±0.16 76.71±0.40
GraphSHA 88.93±0.27 90.22±0.21 87.01±0.19 84.03±0.35 89.27±0.26 77.55±0.66
GraphMuGu 89.77±0.23 90.99±0.18 88.72±0.15 85.12±0.22 89.96±0.20 78.88±0.37

Table 3: The experimental results (±std) on co-purchase datasets in
step class-imbalance settings.

4.3 Experimental Results and Analyses (RQ1)
The experimental results of long-tailed class-imbalance and
step class-imbalance settings are shown in Table 2 and Ta-
ble 3, respectively. The key observations are summarized as
follows. 1) The proposed method achieves superior perfor-
mance compared to the competitive methods (i.e., loss mod-
ifying methods and generative methods), demonstrating its
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Figure 3: The experimental results of ablation studies.

effectiveness in addressing the class-imbalance issues among
graph data. 2) The proposed GraphMuGu performs well on
both the long-tailed and step class-imbalance settings, ex-
hibiting the outstanding versatility of our method. 3) The
proposed method yields a consistent improvement of per-
formance across various datasets, proving the generalization
ability of our proposed GraphMuGu.

4.4 Ablation Studies (RQ2)
In this section, we conduct ablation studies to verify the
contribution of each component in the proposed Graph-
MuGu. We remove similarity-aware re-weighting and ab-
breviate the variant as GraphMuGu-UA. Analogously, we re-
move uncertainty-aware quantification and denote the vari-
ant as GraphMuGu-SA. We leverage GCN as the backbone
and show the results in Figure 3. It can be observed that
both uncertainty-aware quantification and similarity-aware
re-weighting lead to significant improvement in performance.
Furthermore, uncertainty-aware quantification performs well
on datasets with more categories, and similarity-aware re-
weighting exhibits significant performance on datasets with
more samples.

4.5 Hyper-Parameter Sensitivity Analysis (RQ3)
In this section, we investigate the performance of the method
under various hyper-parameter settings. β controls total num-
ber of generated samples and γ controls the gain of weights.
We leverage GCN as the backbone and exhibit the results in

Figure 4: The experimental results of hyper-parameter analysis.

Figure 5: The number of synthesized samples for each category on
(a) Cora and (b) Amazon-Photo datasets.

Figure 6: The weights of 100 randomly selected synthesized sam-
ples on (a) Cora and (b) Amazon-Photo datasets.

Figure 4. It can be seen that the model achieves the optimal
results when β approximates the number of minority classes.
The excessive value of β leads to the risk of noise, decreas-
ing the performance of the model. In addition, the excessive
value of γ results in insufficient learning of authentic samples,
impairing the effectiveness of the model.

4.6 Visualization (RQ4)

In this section, we visualize the quantity of synthesized sam-
ples for each category and the weights of synthesized sam-
ples. We leverage GCN as the backbone and perform the
experiments on Cora and Amazon-Photo datasets. The re-
sults are shown in Figure 5 and Figure 6. It can be seen
that uncertainty-aware quantification and similarity-aware re-
weighting balance the model training by adaptively fine-
tuning the number and importance of synthesized samples.

5 Conclusion

In this paper, we incorporate the generative and re-weighting
methods into a unified framework to relieve the class-
imbalance problem on the graphs. It quantifies the uncer-
tainty to identify the number of synthesized samples for each
category. Furthermore, it measures similarity to re-weight the
importance of the generative samples. Experimental results
on five datasets demonstrate the effectiveness of our proposed
method.
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