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Abstract

Semi-supervised semantic segmentation (S4) has
shown significant promise in reducing the burden
of labor-intensive data annotation. However, ex-
isting methods mainly rely on pixel-level informa-
tion, neglecting the strong region consistency in-
herent in remote sensing images (RSIs), which lim-
its their effectiveness in handling the complex and
diverse backgrounds of RSIs. To address this, we
propose RegionMatch, a novel approach that lever-
ages unlabeled data from a fresh object-level per-
spective, which is more tailored to the nature of se-
mantic segmentation. We design the Pixel-Region
Synergy Pseudo-Labeling strategy, which explic-
itly injects object-level contextual information into
the S4 pipeline and promotes knowledge collab-
oration between pixel and region perspectives for
generating high-quality pseudo-labels. In addition,
we propose the Region Structure-Aware Correla-
tion Consistency, which models object-level rela-
tionships by establishing inter-region correlations
across images and pixel correlations within regions,
providing more effective supervision signals for un-
labeled data. Experimental results demonstrate that
RegionMatch outperforms state-of-the-art methods
on multiple authoritative remote sensing datasets,
highlighting its superiority in the RSIs.

1 Introduction

Semantic segmentation in remote sensing images (RSIs) is
a fundamental task in remote sensing data interpretation,
aiming to classify each pixel into distinct categories. It is
widely applied in land cover monitoring, urban planning, and
disaster assessment. Currently, deep learning-based mod-
els have dominated this field. However, these models re-
quire labor-intensive pixel-level annotations to achieve sat-
isfactory performance. To address this challenge, semi-
supervised semantic segmentation (S4) [Wang er al., 2022a;
Ding et al., 2023] uses a small labeled dataset combined with
a large amount of unlabeled data, reducing the dependence on
annotation data.

The key to S4 lies in the effective utilization of unlabeled
data. Currently, the combination of pseudo-labeling and con-
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Figure 1: Explanation of pixel accuracy, region accuracy, and re-
gional consistency in pseudo-labels from DeeplabV3+ model on the
1/2 labeled protocol of the Vaihingen dataset. Current methods only
use pixel-level pseudo-labels, ignoring valuable object-level infor-
mation. Region labels are derived from pixel predictions, with the
true category defined as the ground truth of the dominant pixel.
Based on this, the region accuracy is calculated. Regional consis-
tency measures the proportion of pixels in a region belonging to the
dominant category.

sistency regularization techniques has become the dominant
approach [Sohn et al., 2020; Yang e al., 2023a]. These meth-
ods select reliable pixels predicted from one augmented ver-
sion of unlabeled data and use them as pseudo-labels to train
another. Most of the improved methods [Wang er al., 2022b;
Qiao et al., 2023; Wang et al., 2024] still utilize unlabeled
data only from an individual pixel perspective. Recent stud-
ies revisit the potential of semi-supervised learning from the
perspective of semantic segmentation tasks, focusing on more
effective strategies for exploiting unlabeled data. For in-
stance, RankMatch [Mai er al., 2024] designs consistency
regularization methods from the perspective of inter-pixel
correlations, CorrMatch [Sun er al, 2024a] utilizes pair-
wise similarity maps between pixels to propagate labels, and
MPMC [Howlader er al., 2025] mitigates pseudo-labeling
noise by utilizing multi-label classification predictions for im-
age patches. However, these approaches are limited to pixel-
level information when leveraging unlabeled data. This lim-
itation is particularly pronounced in RSIs, where models are
more vulnerable to noise due to complex backgrounds and
diverse landscapes.
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Semantic segmentation tasks inherently depend on under-
standing object-level relationships, where a pixel’s label is
often determined by the object region to which it belongs.
RSIs cover wide ground areas, with ground objects exhibit-
ing strong coherence, particularly in areas such as residen-
tial zones, forests, and agricultural lands. We observed that
semantic segmentation models exhibit strong object region
recognition ability in RSIs. As illustrated in Fig. 1, classi-
fication accuracy for object regions significantly outperforms
pixel-level accuracy, indicating that region-level information
is more stable and reliable than pixel-level’s. Furthermore,
the predicted regions exhibit high consistency, as evidenced
by the dominance of a single category within these regions.
Current S4 methods fail to incorporate valuable object-level
information, limiting their performance in RSIs.

In this paper, we analyze the bottleneck of existing meth-
ods based on pixel-level information and propose a novel
approach, RegionMatch, to leverage unlabeled data from a
fresh object-level perspective for semi-supervised semantic
segmentation of RSIs. Specifically, we introduce an object re-
gion classifier that trains the model to identify object regions
composed of pixels, explicitly injecting object-level contex-
tual information into the S4 pipeline. We then design the
Pixel-Region Synergy Pseudo-Labeling strategy (PRSPL) to
integrate both pixel-level and object-level information, gener-
ating high-quality pseudo-labels for model training and pro-
moting knowledge collaboration across the two perspectives.
To further unleash the potential of unlabeled data, we pro-
pose the Region-Structure Aware Correlation Consistency
(RSCC). RSCC explicitly models object-level relationships
by establishing multi-level correlations both within and be-
tween pixels and regions, providing stronger supervision sig-
nals for unlabeled data that are more in line with the nature
of semantic segmentation. RSCC consists of two key compo-
nents: Cross-Image Region-Region Correlation Consistency
(CIR?R) and Pixel-Region Correlation Consistency (PRCC).
CIR?R establishes inter-region correlation across images to
capture object-level consistency, while PRCC strengthens
intra-region pixel consistency, thus improving the model’s
understanding of object-level relationships.

The contributions of this paper can be summarized as fol-
lows:

(1) We propose RegionMatch, a novel S4 method for RSIs,
which utilizes unlabeled data from a fresh object-level per-
spective that is more tailored to the nature of semantic seg-
mentation.

(2) We designed the Pixel-Region Synergy Pseudo-
Labeling strategy, which encourages knowledge coopera-
tion between pixel and object-region perspectives to generate
high-quality pseudo-labels for model training.

(3) We propose Region-Structure Aware Correlation Con-
sistency which models object-level relationships to provide
more effective supervisory signals for unlabeled data, thus
inspiring the potential of unlabeled data further.

2 Related Work

2.1 Semi-Supervised Semantic Segmentation

The primary challenge in S4 is effectively leveraging un-
labeled data to enhance model generalization. Key strate-
gies include adversarial method [Ke et al., 2020; Zhang et
al., 2020], consistency regularization [Chen et al., 2021;
Liu et al., 2022], pseudo-labeling [Yang er al., 2022; Teh
et al., 2022], and contrastive learning [Zhou et al., 2021;
Wang er al., 2023b; Wang er al., 2023al. Among these,
the combination of pseudo-labeling and consistency regu-
larization [Sohn er al., 2020; Yang et al., 2023a; Chen et
al., 2021] has emerged as the dominant approach. These
methods generate pseudo-labels from a segmentation model’s
predictions on weakly augmented unlabeled data, which are
then used to train strongly augmented versions. While pre-
vious approaches [Wang et al., 2022b; Qiao ef al., 2023;
Sun et al., 2024b; Na et al., 2024; Yang et al., 2025;
Wang ef al., 2024] utilize unlabeled data from the perspective
of individual pixels, recent approaches construct supervised
signals for unlabeled data from the perspective of inter-pixel
relationships and multi-label classification of image patches.
For example, RankMatch [Mai er al., 2024] models pixel cor-
relation using representative proxies to optimize rank-aware
consistency, while CorrMatch [Sun er al., 2024a] employs
pairwise pixel similarity for label propagation. Another ap-
proach [Howlader et al., 2025] introduces a multi-label clas-
sifier with multi-scale patches to reduce pseudo-label noise.
However, these methods utilize unlabeled data only from a
pixel-level perspective, ignoring the fact that the semantic
segmentation task is more dependent on the understanding
of object-level relationships, thus limiting their performance.

Relatively few studies have focused on semi-supervised se-
mantic segmentation for RSIs. Current research primarily
concentrates on developing more effective data perturbation
strategies [Lu er al., 2023; Lv and Zhang, 2024; Bai et al.,
2024; Liu ef al., 2024; Luo et al., 2024] to improve the ef-
fect of consistency regularization, and constructing represen-
tation learning methods for unlabeled data [Xin er al., 2024;
Luo et al., 2024; Yang et al., 2023b]. These methods rely
solely on individual pixel information when utilizing unla-
beled data, overlooking the strong region consistency inher-
ent in RSIs, which limits the performance of S4.

2.2 Context for Semantic Segmentation

Pixel classification is heavily influenced by its context, typ-
ically defined by spatially related locations, such as the sur-
rounding neighborhood. Many semantic segmentation mod-
els enhance feature representations by incorporating contex-
tual information. Early works [Zhao et al., 2017; Zhao ef al.,
2018; Chen et al., 2017] used convolution and pooling ker-
nels of varying sizes to capture multi-scale context. However,
these fixed-region aggregation methods are non-specific, and
information collected from semantically irrelevant regions
may introduce noise. Subsequent research has focused on
more effective aggregation of contextual information from
semantically relevant regions. For instance, [Ding et al.,
2019] restricts context regions by learning semantic masks
that match object shape and scale. [Yu et al., 2020] addresses
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Figure 2: Illustration of our RegionMatch pipeline for unlabeled images. Object-level contextual information is explicitly introduced to the
S4 pipeline through an object-region classification task. We propose Pixel-Region Synergy Pseudo-Labeling and Region-Structure Aware
Correlation Consistency to promote knowledge collaboration between the pixel and object region perspectives, while modeling object-level
relationships to provide stronger supervision signals for unlabeled data.

intra- and inter-class context dependencies through affinity
loss supervision. [Shen ef al., 2020] enhances pixel represen-
tation by modeling contextual interactions between regions.
[Hu et al., 2021a] proposed region-aware contrast learning
to improve pixel features. Unlike these fully-supervised ap-
proaches, this paper aims to explore object-level information
from unlabeled data as supervisory signals to maximize its
utilization.

3 Method

S4 aims to train a semantic segmentation model using a small
labeled dataset and a large unlabeled dataset. We propose
RegionMatch, leveraging unlabeled data from a novel object-
level perspective.

3.1 Preliminaries

RegionMatch is built upon the classic pseudo-labeling and
weak-to-strong consistency regularization framework [Sohn
et al., 2020]. Given a labeled set D' = {(x!,y})} ¥ 1 and an
unlabeled set D* = {z¥}¥, where N* > N'. Plxel -wise
cross-entropy loss L, is applied to both labeled and unlabeled
data:

L,=LL+LY 1)

For labeled data, the loss Lé is calculated as follows:

. v
Ly =57 2 tee(®', 1) )
=1

where /.. represents the standard cross-entropy loss function,
p' = f,(g(a)) is the predicted probability distribution of the
pixel classifier f,(-), and g(-) is the feature extractor of the
segmentation model. For unlabeled images, weak augmen-
tation «(-) and strong augmentation A(-) are applied. The

prediction from the weakly augmented version is used to su-
pervise the strongly augmented version. The unlabeled loss
L, is computed as follows:
1
Ly =~ 210" > 7) - Lee(3".p") (3)
u=1
where p* = f,(g(A(z™))) represents the predicted proba-
bility distribution of the pixel classifier, ¢, = f,(g(a(z™))),

g% = arg max(q*), and 7 is a fixed confidence threshold.

3.2 Overview

Fig. 2 shows the pipeline of RegionMatch for unlabeled data.
We generate region pseudo label using the model’s predic-
tions on a weakly augmented version of the image, dividing
the image into multiple semantically consistent regions con-
sisting of adjacent pixels that represent complete objects or
parts of objects. An object region classifier is then introduced
to classify these regions, explicitly incorporating object-level
contextual information into the pipeline. We then propose the
Pixel-Region Synergy Pseudo-Labeling strategy (PRSPL),
which merges information from both pixel- and region-level
perspectives to generate high-quality pseudo-labels for train-
ing. Additionally, we propose Region-Structure Aware Cor-
relation Consistency (RSCC) to model object-level relation-
ships in images to build supervisory signals for unlabeled
data. RSCC consists of Cross-Image Region-Region Correla-
tion Consistency (CIR?R) and Pixel-Region Correlation Con-
sistency (PRCC). The overall loss function of RegionMatch
consists of the pixel classification loss L,, the region clas-
sification loss L,, the CIRZR loss Lcr, and the PRCC loss
LPRZ

Ly = Ly + Ly + M Ler + A2 Lpr 4)

where \; and )\, are the corresponding weight coefficients.
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3.3 Object Region Classification

In the method described in Section 3.1, the supervised sig-
nal for unlabeled data relies only on pixel-level information,
which makes pixel classification susceptible to noise in RSIs
with complex and variable backgrounds. RSIs typically have
extensive ground coverage and strong ground object coher-
ence. We find that the model provides more stable and re-
liable pseudo-labels at the object level compared to the pixel
level. Therefore, we introduce explicit supervision for object-
region classification to inject object-level contextual informa-
tion into the S4 pipeline, improving the model’s understand-
ing of object-level relationships of the image.

For each image, both pixel-level and region-level labels
are provided. The pixel label denotes the semantic cat-
egory of each pixel, while the region label specifies the
object region to which the pixel belongs. Region labels
r € {1,..., N} W for labeled image z; and r, €
{1,..., N, }*W for unlabeled image x,, are both obtained
using a connected component algorithm. Labeled image uses
the pixel-level ground truth y;, and unlabeled image uses the
pixel-level pseudo-label ¢,,. For further details, see the ap-
pendix. We introduce a region classifier f,. to classify the
regions in the image. For each region i, the feature extractor
outputs feature maps F € R¥*Wxd which are aggregated
using mask average pooling within the region and passed
through a projection layer A(-) to obtain the corresponding
region feature R.. The region classification loss for the la-
beled image x; is defined as:

Nl

L= 5 che ui, fr(RY) )

where y; denotes the ground truth class label of region 7.

To minimize interference from noisy regions in the unla-
beled data, we apply a dual thresholding mechanism with 7oy
and Thignh to compute the region classification loss for unla-
beled data. Specifically, we calculate the average confidence
score ;' of each region ¢ as the quality assessment of the re-
gion. Noisy regions are filtered out using the lower threshold:

I= {Z | E;,L Z 7-low} (6)

For regions with 7oy, < €' < Thigh, We generate soft la-
bels g;* by averaging the pseudo-label probability within the
region. For regions with ¢ > Ty, hard labels are used:
97 = arg max(¢"). The region classification loss for the un-
labeled image z,, is computed as:

ce (07, fr(RY))
b IIIZ{ceqz,fr R}))
The total region classification loss is defined as:
:iiLlJFAi%L“ )
N =1 ' Nu u=1 /

where A = 0.5 is a balancing factor that controls the weight
of the unlabeled loss relative to the labeled loss.

if €' > Thign, 7

if Tiow < E? < Thigh-

3.4 Pixel-Region Synergy Pseudo-Labeling

The pixel classifier captures features at the individual pixel
level, while the region classifier catches class attributes at
the object level. A natural idea is to promote cooperation
between the two perspectives to improve the model’s under-
standing of unlabeled data. To this end, we propose the Pixel-
Region Synergy Pseudo-Labeling strategy (PRSPL) strategy,
which combines the knowledge of both perspectives to gen-
erate high-quality pseudo-labels for training models. If the
two classifiers reach consensus on the category prediction of
a pixel, we consider the pseudo-label of this pixel to be re-
liable. We therefore select pixels with consistent predictions
from both perspectives to train the model, which in turn pro-
motes knowledge cooperation between the two perspectives.

For the image z,,, we use the region classifier f,. to predict
pixel-wise probability distributions g;, under the region-level
view. For the pixel-level view, the probability distribution is
denoted as gf. We calculate the entropy for both the region-
level and pixel-level views, defined as H, and H?, respec-
tively:

un
un

where C'is the number of classes. To avoid interference from
noisy regions, we compute reliable pseudo labels in the low
entropy regions of both views. In low-entropy regions, the
predictions from both classifiers are considered more confi-
dent. The low-entropy region ¢ for the region-level perspec-
tive Z" and the pixel level perspective Z? are defined as:

" ={i| H,(i) < T3} (11)
TP = {i| Hi(i) <T{} (12)
The threshold values for entropy are calculated as:
= Quantile({H, (1) | i €{l,...., Hx W}},1—a) (13)
Tp = Quantile({HP (i) |i € {1,...,HxW}},1—-a) (14)

Here, Quantile(-, «) represents the calculation of the a-th
quantile. We use a dynamic quantile o, calculated as:

t
b 1= — 15
%~ ( total epoch ) (15)

where ¢ is the current epoch number during training.

In the intersection of the low-entropy regions from both
views, if a pixel has consistent classification predictions from
both the region-level and pixel-level views, we consider the
pixel’s pseudo-label to be reliable. Therefore, the pixel clas-
sification loss for unlabeled data in our method can be ex-
pressed as:

)log gy (¢ 9)

)loggh(c (10)

Ny

1 1 HW
=N, 2« HW > lee(§™(0),p" (1)) © M;  (16)
i=1 i=
where:
M — 1, ifi € Z"NZIP and arg maxq, (i) = arg max ¢F (i),
* 710, otherwise.

a7)
Here, © denotes element-wise multiplication.
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3.5 Region-Structure Aware Correlation
Consistency

In semantic segmentation tasks, pixel class labels typically
depend on the object regions to which they belong, making it
essential to understand object-level relationships. When con-
structing supervisory signals for unlabeled data, these object-
level relationships should be fully considered. To this end,
we propose Region-Structure Aware Correlation Consistency
(RSCC), which provides strong supervisory signals that align
with the nature of semantic segmentation tasks by explic-
itly modeling object-level relationships. RSCC achieves this
through two key components: Cross-Image Region-Region
Correlation Consistency (CIR?R) and Pixel-Region Correla-
tion Consistency (PRCC). By incorporating object-level rela-
tionships into the S4 pipeline, RSCC enhances the model’s
ability to understand complex scenes in RSIs.

Cross-Image Region-Region Correlation Consistency
CIR?R aims to compute feature correlations across image re-
gions, explicitly model object-level semantic relationships
and capture patterns shared between ground objects. By
establishing object-level semantic consistency across aug-
mented images, this approach captures richer semantic de-
scriptions and strengthens the supervisory signal of unlabeled
data. Specifically, for a batch of unlabeled images {z*}7_;,
we apply weak augmentation to obtain the augmented image
set {z¥}"_,. The segmentation model extracts region fea-
tures { R} ¥, for the weakly augmented images, where RY
represents the feature of the i-th region. We calculate the re-
lationship matrix S* € R™>>*"s for all regions in the weakly
augmented images. Each element of S™ is computed as:
R¥)TRY
5~ T e "
i J

where || - || denotes the Lz norm, and S} represents the se-
mantic similarity between region ¢ and region j in the weakly
augmented images. Similarly, we apply strong augmenta-
tion to the same batch of unlabeled images, obtaining the
augmented image set {5} ;. The segmentation model ex-
tracts region features {Rf}f\[:sl and the relationship matrix
8% € RNo*Nv g calculated. Finally, the loss function of this
part is computed as the MSE between the similarity matri-
ces of the weakly and strongly augmented images over all
batches:

B
1 w S
Ler = E;”Sb - Sill3 (19)
where B denotes the total number of batches in the unlabeled
dataset, S;” and S} are the similarity matrices of weakly and
strongly augmented images in batch b, respectively, and || - |3
represents the squared Ly norm (i.e., MSE).

Pixel-Region Correlation Consistency

Unlike CIR2R, which focuses on the correlations between
image regions, PRCC emphasizes the semantic consistency
among pixels within a region. This enables the model to
capture the complete shape of ground objects and more su-
perior object-level features, thus improving the understand-
ing of object-level semantic relationships. To enhance pixel

consistency within a region, a straightforward approach is to
minimize the feature distance between any two pixels in the
region. However, this approach requires computing pairwise
distances between all pixels, leading to substantial computa-
tional overhead, especially for large areas. To address this,
we use regional features as a proxy for pixel features, indi-
rectly promoting pixel consistency by aligning regional and
pixel features. This strategy significantly reduces the compu-
tational burden and improves the efficiency of model training.
For each region ¢ and pixel j within that region, the sim-
ilarity between pixel feature F; and the region feature I?; is

computed as:
E;; = ¢~ IRi—Fill2 (20)

where || - ||2 is the Euclidean norm. The goal is to maximize
the similarity between each pixel and its corresponding region
feature. The loss function is defined as:

LPR:—%Z > logEj (21)

1€ jcCregion ¢

4 Experiments

4.1 Experiment Setup

Dataset. We evaluated the performance of the proposed
RegionMatch method using three widely used remote sens-
ing (RS) semantic segmentation datasets: Vaihingen [Rotten-
steiner et al., 2012], Potsdam [Rottensteiner et al., 2012], and
LoveDA [Wang et al., 2021]. The Vaihingen dataset consists
of 33 images, with sizes ranging from 1996x1995 pixels to
3816x2550 pixels. For our experiments, 16 images are used
for training, and 17 images are used for testing. The Potsdam
dataset contains 38 images, each with a size of 6000x6000
pixels. Of these, 24 images are used for training and 14
for testing. The validation categories for both the Vaihingen
and Potsdam datasets include impervious surfaces, buildings,
low vegetation, trees, and cars. The LoveDA dataset com-
prises 1024x1024 images from urban and rural areas, with
categories including background, building, road, water, bar-
ren land, forest, and agriculture. The dataset contains 2522
training images and 1669 testing images. For all datasets, we
crop the images into 512x512 pixel sections.

Evaluation Metric. The segmentation performance is
evaluated using the mean Intersection over Union (mloU) on
the union of the sets.

Implementation Details. All experiments were conducted
on an NVIDIA 4090 GPU. The DeeplabV3+ [Chen et al.,
2018] segmentation model with a ResNet50 [He et al., 2016]
backbone was employed. Stochastic Gradient Descent (SGD)
was used as the optimizer. The base learning rate was set to
0.002, weight decay was set to 0.0001, and momentum was
set to 0.9. The total number of training epochs was set to 80.
Data augmentation strategies follow the FixMatch [Sohn et
al., 2020]. Tiow and Thigh are set to 0.85 and 0.95, respectively.
A1 and Ao are set to 2 and 1, respectively. «y is set to 20%.

4.2 Comparison with State-of-the-art Methods

Results on Vaihingen. Table 1 presents the experimental
results of different semi-supervised semantic segmentation
methods on the Vaihingen dataset. Under the labeled data
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Table 1: Comparisons of state-of-the-art methods on the Vaihingen
with mloU (%) metric.

Table 3: Comparisons of state-of-the-art methods on the Loveda
with mloU (%) metric.

Method 1/8 1/4 1/2

Supervised 61.52 6545 68.62
WSCL [Lu et al., 2023] 67.51 6859 69.22
AEL [Hu et al., 2021b] 67.81 69.80 71.64
U2PL [Wang et al., 2022b] 65.87 67.82 69.14
FixMatch [Sohn et al., 2020] 66.69 68.73 069.41
UniMatch [Yang ef al., 2023a]  66.01 69.38 71.44
CorrMatch [Sun et al., 2024a] 66.36 6829 69.35
MPMC [Howlader et al., 2025] 66.44 68.56 70.02
DWLI[Huang e al., 2024] 68.58 70.29 71.72
Ours 69.25 71.20 72.68

protocols of 1/8, 1/4, and 1/2, our method achieves mloU
scores of 69.25%, 71.20%, and 72.68%, respectively, sig-
nificantly outperforming existing semi-supervised methods.
Compared to supervised learning using only labeled data,
our method improves by 7.38%, 5.75%, and 4.06% under
the 1/8, 1/4, and 1/2 labeled data settings. These results
demonstrate that our approach effectively leverages the ad-
vantages of semi-supervised learning, significantly enhancing
the model’s generalization ability.

Table 2: Comparisons of state-of-the-art methods on the Potsdam
with mloU (%) metric.

Method 1/8 1/4 1/2

Supervised 7478 76.71 78.15
WSCL [Lu et al., 2023] 76.74 7738 78.53
AEL [Hu et al., 2021b] 78.09 79.06 79.13
U2PL [Wang et al., 2022b] 7739 77.87 78.39
FixMatch [Sohn et al., 2020] 77.85 7823 7893
UniMatch [Yang et al., 2023a] 79.08 79.30 79.44
CorrMatch [Sun et al., 2024a] 78.01 78.68 79.11
MPMC [Howlader et al., 2025] 78.31 7890 79.23
DWL [Huang et al., 2024] 7830 78.56 7891
Ours 80.24 80.68 81.17

Results on Potsdam. The results on the Potsdam dataset
are shown in Table 2, where we compare our method with
state-of-the-art semi-supervised semantic segmentation ap-
proaches. Under the 1/8, 1/4, and 1/2 labeled data proto-
cols, our method achieves mloU scores of 80.24%, 80.68%,
and 81.17%, respectively. These results significantly out-
perform methods that rely on pixel-level relationships [Sun
et al., 2024a] or contextual information from image patches
[Howlader er al., 2025], indicating that our approach more
effectively unleashes the potential of unlabeled data from an
object-level perspective. Furthermore, compared to super-
vised learning, our method improves mloU by 5.46%, 3.97%,
and 3.02% under the 1/8, 1/4, and 1/2 labeled data protocols,
respectively, providing further evidence of its efficacy.

Results on Loveda. Table 3 presents a comparison of
various methods on the Loveda dataset. Our approach con-
sistently outperforms existing state-of-the-art methods across

Method 1/16 1/8 1/4 1/2

Supervised 47.32 4851 50.04 50.25
WSCL [Lu er al., 2023] 49.68 50.23 51.74 52.40
AEL [Hu et al., 2021b] 47.68 49.24 50.80 51.76
U2PL [Wang et al., 2022b] 48.36 4997 50.89 51.83
FixMatch [Sohn et al., 2020] 50.36 50.42 51.37 52.66
UniMatch [Yang et al., 2023a] 5122 5142 52.08 52.75
CorrMatch [Sun er al., 2024a] 4894 5041 52.11 5297
MPMC [Howlader et al., 2025]  49.05 50.73 51.76 52.52
DWL[Huang et al., 2024] 51.68 51.86 5292 53.30
Ours 52.55 5296 53.37 53.96

different annotated data protocols. Specifically, under the
1/16 labeled data protocol, our method achieves 52.55%
mloU, representing 5.23% improvement over supervised
learning. Under the 1/8 protocol, our method attains 52.96%
mloU, surpassing supervised learning by 4.45%. At the 1/4
and 1/2 protocols, our method continues to lead, achieving
53.37% and 53.96% mloU, respectively, exceeding the super-
vised approach by 3.33% and 3.71%. These results highlight
our method’s superior ability to leverage unlabeled data.

4.3 Ablations Studies

Effectiveness of Components. Table 4 illustrates the im-
pact of various components on performance using the Vai-
hingen dataset. As shown, the proposed components yield
significant improvements across all protocols. By collabo-
ratively generating pseudo-labels from both pixel-level and
region-level perspectives during model training, PRSPL fa-
cilitates knowledge sharing and mitigates the negative ef-
fects of erroneous pseudo-labels. Fig. 4 shows the influ-
ence of PRSPL on pseudo-label accuracy under the 1/8 la-
beled data protocol. The results confirm that PRSPL signif-
icantly improves pseudo-label accuracy, validating its effec-
tiveness. Fig. 3 illustrates the T-SNE feature visualization
on the Vaihingen dataset under the 1/8 protocol for different
components. The results indicate that incorporating PRSPL
allows the model to capture region-level contextual informa-
tion, which is beneficial for pixel classification and enhances
class separability. RSCC further strengthens the model’s un-
derstanding of object-level semantic relationships by estab-
lishing multi-level relationships both within and between pix-
els and regions, aiding the model in learning more compact
intra-class feature representations. Finally, the combination
of PRSPL and RSCC enables the model to achieve both im-
proved inter-class separation and more compact intra-class
representations.

Impact of Region Classification. Table 5 demonstrates
the impact of object region classification on the Vaihingen
dataset. It can be observed that incorporating unlabeled data
yields greater benefits for object region classification com-
pared to labeled data. Due to the absence of labels, unlabeled
data is more challenging to classify, as it relies on useful con-
textual information. By introducing the region classification
task, contextual information of object regions can be supple-
mented, which aids in pixel classification and subsequently
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(a) Baseline (b) Baseline + PRSPL

(c) Baseline + RSCC (d) Ours

Figure 3: Visualization of t-SNE features of different components on the Vaihingen dataset under 1/8 labeled data protocol.

Table 4: Ablation studies of different components.

PRSPL CIR?’R PRCC 1/8 1/4 172

66.69 68.73 69.41

v 67.98 6990 71.47
v v 68.74 70.65 72.02
v v 68.56 70.57 71.92
v v v 69.25 7120 72.68
<

" w/o PRSPL

0 —— w/ PRSPL

o 1000 2000 3000 4000 5000 6000 7000
Iterations

Figure 4: The accuracy of pseudo-labels under the 1/8 labeled pro-
tocol on the Vaihingen dataset.

improves model performance.

Table 5: Data setting in region classification.

Labeled Unlabeled 1/8 1/4 172

v 68.17 7035 71.98
v 68.53 70.74 72.07
v v 69.25 7120 72.68

Threshold Strategy in PRSPL. In PRSPL, we adopt a dy-
namic entropy threshold strategy. Table 6 presents the impact
of dynamic thresholds on the Vaihingen dataset. It can be
observed that the dynamic threshold plays a crucial role in
model performance. Since deep learning models first mem-
orize clean labels and then gradually memorize noisy labels,
a lower threshold can be set initially to provide more training
data. A higher threshold is applied in later stages to prevent
the model from fitting noisy data.

Table 6: Threshold strategy in PRSPL.

Strategy 1/8 1/4 1/2

Fixed 68.38 70.74 72.15
Dynamic 69.25 7120 72.68

Table 7: Labeling strategy in region classification.

Strategy 1/8 1/4 1/2

Hard 68.98 70.84 72.37
Soft 68.76  70.69 72.11
Hard+Soft 69.25 7120 72.68

Labeling Strategy in Region Classification. We em-
ployed a combined labeling strategy of both hard and soft
labels for region classification. Table 7 illustrates the impact
of this strategy on the Vaihingen dataset. When using the
Tiow threshold, neither the hard labels nor the soft labels alone
achieved optimal performance. The best performance was
attained when both soft and hard labels were used in combi-
nation.

5 Conclusion

This paper presents a novel semi-supervised semantic seg-
mentation method, RegionMatch, effectively leveraging un-
labeled data from a fresh object-level perspective. We pro-
pose the Pixel-Region Synergy Pseudo-Labeling strategy to
explicitly inject contextual information in the S4 pipeline and
encourage knowledge cooperation from pixel and region per-
spectives. In addition, our proposed Region-Structure Aware
Correlation Consistency (RSCC) models object-level rela-
tionships by establishing the multi-level correlation between
regions and pixels, providing stronger supervision signals for
unlabeled data that fit the semantic segmentation task. Ex-
tensive experiments on multiple authoritative remote sensing
datasets demonstrate that our method effectively improves the
potential of unlabeled data.
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