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Abstract
Portfolio selection is a critical task in finance, in-
volving the allocation of resources across various
assets. However, current methods often struggle
to maintain robust performance due to the inher-
ent low signal-to-noise ratio in raw financial data
and shifts in data distribution. We propose Alpha-
GAT, a novel two-stage learning approach for port-
folio selection, designed to adapt to different mar-
ket scenarios. Inspired by the concept of alpha fac-
tors, which transform historical market data into
actionable signals, the first stage introduces an ad-
vanced model named CATimeMixer for alpha fac-
tor generation with a novel loss function to improve
the effectiveness and robustness. CATimeMixer in-
tegrates TimeMixer with Conv1D (C) and cross-
asset Attention (A). Specifically, Conv1D enhances
TimeMixer by capturing trend and seasonal fea-
tures across different scales, while cross-asset at-
tention enables TimeMixer to extract interrelation-
ships between different assets. The second stage
applies reinforcement learning to dynamically ad-
just weights, integrating alpha factors into trad-
ing signals. Recognizing the varying effective-
ness of alpha factors across different periods, our
RL agent innovatively transforms the alpha factors
into graphs and employs graph attention networks
(GAT) to discern the significance of different alpha
factors, enhancing policy robustness. Extensive ex-
periments on real-world market data show that our
approach outperforms state-of-the-art methods.

1 Introduction
Portfolio selection, a key aspect of modern finance, involves
strategically allocating assets to optimize returns while man-
aging risk [Li and Hoi, 2014]. This task of achieving a low-
risk, high-yield portfolio has been a significant and challeng-
ing issue, drawing extensive research interest [Kumar and
Yadav, 2024]. Traditional portfolio selection methods often
depend on specific assumptions about asset price temporal
patterns [Markowitz and Markowitz, 1967]. Although these

∗Corresponding Author

methods can be effective in certain situations, their adaptabil-
ity to dynamic market conditions is limited, leading to poten-
tial shortcomings in practical applications.

Recently, machine learning techniques have gained trac-
tion in addressing portfolio selection challenges, primar-
ily categorized into two groups: supervised learning (SL)
and reinforcement learning (RL). Firstly, SL-based meth-
ods leverage deep neural networks (DNNs) such as convo-
lutional networks [Chen et al., 2021], recurrent networks
[Qin et al., 2017], and graph networks [Zhang et al., 2023;
Choi et al., 2024] to extract temporal and spatial features
from market data. These methods focus on predicting asset
price movements and optimizing investment strategies based
on trend forecasts, utilizing expertise and specialized knowl-
edge. RL-based methods generate portfolio weights as ac-
tions through end-to-end learning. These methods optimize
investment strategies through interactions with an environ-
ment, receiving feedback in the form of rewards or penal-
ties based on actions, eliminating the need for manually la-
beled data. These methods offer flexibility by designing var-
ious reward functions, allowing for diverse decision objec-
tives and a balance between risk and return. Efforts to en-
hance RL-based methods include the utilization of advanced
network structures [Xu et al., 2021a; Li et al., 2022], the
design of appropriate reward functions [Zhang et al., 2022;
Wang et al., 2021].

However, despite achieving promising performance, prac-
tical applications of these methods encounter several limi-
tations. Firstly, the inherent volatility of financial markets
results in frequent fluctuations, introducing substantial noise
into raw market data and posing a significant challenge for ac-
curate prediction and investment strategies [Liu et al., 2022a].
Secondly, market dynamics can induce shifts in data distribu-
tions, adversely affecting model performance on future data.
Existing methods often struggle to dynamically adapt their
strategies to evolving market conditions, impeding the real-
ization of truly adaptive portfolios. It is imperative to explore
innovative approaches that enhance the robustness and adapt-
ability of machine learning-based investment strategies in dy-
namic financial markets.

In this paper, we propose AlphaGAT, a two-stage RL ap-
proach designed to enhance adaptive portfolio selection by in-
tegrating alpha (Alpha) factors and graph attention networks
(GAT). The first stage addresses the challenge of significant
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noise in raw market data by transforming this data into alpha
factors using SL. Alpha factors are well-established as indica-
tive signal patterns that offer a clearer and more reliable anal-
ysis of market trends compared to raw financial data, which
often suffers from a low signal-to-noise ratio. To achieve
this transformation, we introduce a novel neural network ar-
chitecture, i.e., CATimeMixer, which combines TimeMixer
with Conv1D (C) and cross-asset attention (A). Conv1D is
integrated into TimeMixer for adequate feature extraction be-
tween trend and seasonal features at different scales, which
cross-asset attention is utilized to uncover interrelationships
between different assets. Moreover, a novel loss function is
proposed to enhance the effectiveness and robustness of the
generated alpha factors. Specifically, the loss function incor-
porates the covariance matrix, improving that the obtained
alpha factors are not confined to specific market conditions.

In the second stage, a RL algorithm enhanced with GAT
dynamically adjusts the weights assigned to alpha factors,
optimizing their combination into actionable trading signals.
This process is critical, as the effectiveness of alpha factors
varies significantly across time periods. Through trial and er-
ror, the RL agent learns resilient policies that adapt to diverse
market scenarios, minimizing human bias and promoting a
data-driven decision-making approach. GAT plays a pivotal
role by modeling complex dependencies among alpha factors,
incorporating temporal dynamics, and reducing reliance on
any single factor. By representing alpha factors as nodes in a
graph, GAT enables information aggregation across multiple
factors, empowering the RL agent to make more informed
and robust portfolio decisions. This approach significantly
enhances the adaptability and robustness of investment strate-
gies in volatile and unpredictable markets.

Our main innovations are summarized as follows:

• A novel network, CATimeMixer is introduced to trans-
form the raw historical market data into diverse alpha
factors, which is efficient for extracting the temporal fea-
tures of individual assets and the interrelationships be-
tween different assets.

• Covariance matrix is integrated into loss function to en-
hance the robustness and effectiveness of alpha factors.

• By innovatively transforming alpha factors into graphs
in the second stage and utilizing GAT to determine the
significance, AlphaGAT achieves an adaptive portfolio
selection and reduces reliance on any single factor.

Finally, extensive experiments have been conducted on real-
world stock market and cryptocurrency market demonstrated
that AlphaGAT outperforms state-of-the-art methods.

2 Related Work
Traditional portfolio selection strategies, such as momentum
trading [Li and Hoi, 2014] and mean reversion [Markowitz
and Markowitz, 1967], heavily rely on assumptions regarding
temporal patterns in time series data. Nevertheless, the effec-
tiveness of these methods is often constrained by the incon-
sistent adherence of these assumptions in real-world markets.
This limitation impairs the adaptability and overall efficacy
of these strategies.

The rapid advancement of deep neural networks (DNN)
has elevated deep learning to a pivotal role in addressing time-
series analysis challenges. Investment strategies for portfo-
lio selection, particularly those grounded in supervised learn-
ing, leverage neural networks to predict asset trends and
determine portfolio weights according to predefined rules.
Researchers seek to enhance prediction accuracy primarily
through two avenues: (1) innovating more sophisticated neu-
ral network structures [Qin et al., 2017; Zhang et al., 2023;
Choi et al., 2024]; and (2) introducing novel representation
learning objectives [Xu et al., 2021b].

Recent advancements in portfolio selection leverage RL,
enabling the learning of dynamic strategies through trial and
error. On the one hand, to extract effective features from raw
market data, the researchers designed different network ar-
chitectures and further expanded the feature dimensions of
the state space [Yang et al., 2023]. For example, EIIE [Jiang
et al., 2017] uses the same network structure for temporal
feature extraction for each asset independently. To capture
both sequential patterns and asset correlations for portfolio
selection, RAT [Xu et al., 2021a] is proposed to simultane-
ously model complex sequential patterns and varying asset
correlations based on Transformer[Vaswani et al., 2017]. On
the other hand, with different risk appetites, previous RL-
based methods carefully designed risk-sensitive reward func-
tions [Niu et al., 2022] and adopted multi-agent RL [Lee et
al., 2020] to strike a balance between return and risk. To be
specific, the state-of-the-art one is PPN [Zhang et al., 2022],
which develops a new cost-sensitive reward function to con-
strain both transaction and risk costs during the optimization.

3 Problem Setting
The definition of alpha factors is presented, followed by
Markov decision process (MDP) for portfolio selection ac-
cording to the RL paradigm.

3.1 Alpha Factors
Alpha factors are essential in quantitative analysis and invest-
ment strategies, serving as indicators to evaluate the poten-
tial returns of assets or strategies. They can be mined using
two main approaches: formulaic methods, which rely on pre-
defined mathematical rules such as technical indicators, and
machine learning-based methods, which use advanced com-
putational techniques to discover predictive patterns from his-
torical data. This paper leverages the powerful learning capa-
bilities of deep neural networks, focusing on machine learn-
ing to mine alpha factors.

Each asset i at period t with d basic features (e.g., open,
high, close) is represented as Xt

i ∈ Rd. The features of all
m assets at this period are denoted as Xt ∈ Rm×d. Let Xt =
{Xt−k, ..., Xt−1} ∈ Rk×m×d represent the raw features of
all m assets from the previous k periods leading up to time
t. The alpha factor f is a function mapping these feature
vectors to alpha values zt = f(Xt) ∈ Rm. Let an alpha
set Zt = {Z1

t , ..., Z
n
t } ∈ Rn×m contains n different alpha

factors F = {f1, ..., fn}, which improve the robustness and
predictive capability of portfolio selection.
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Figure 1: Illustration of the proposed AlphaGAT. In stage I, the raw data is transformed into alpha factors by obtaining multi-scale trend
and seasonal data through down-sampling and decomposition, applying Conv1D for temporal feature extraction, and capturing inter-stock
correlations using a cross-asset attention mechanism. In stage II, GAT is adopted as the policy network to adjust the weight of different alpha
factors, achieving adaptive portfolio selection.

3.2 Markov Decision Process
A standard MDP can be represented as M =< S,A, T,R >,
where S represents the state space, A is the action space.
T (s′|s, a) characterizes the probabilistic transition from the
current state s to the next state s′ following action a, and
R is the reward function. Additionally, the policy function
π(s) = a, s ∈ S, a ∈ A defines the strategy or decision-
making rule that specifies the action to take in each state. The
primary objective of an MDP is typically to identify an opti-
mal policy that maximizes expected rewards over time.

In the context of portfolio selection, the state st observed
by the agent at time t includes historical asset prices, market
conditions, economic indicators, and other relevant data. The
action at corresponds to the portfolio weights wt, and the
reward is defined as r̃t = wt

T pt − 1, where pt is the price
relative vector (the ratio of the asset’s closing price at time t
to that at t − 1). When accounting for transaction costs, the
reward is adjusted as rt := (r̃t + 1)(1 − ct) − 1, with ct
denoting the proportion of transaction costs.

4 Methodology
4.1 Overview of AlphaGAT
As illustrated in Figure 1, the framework of AlphaGAT con-
sists primarily of two key components: alpha mining and
portfolio optimization. (1) In stage I, alpha factors are de-
rived from raw asset price data based on SL. We employ a
novel model efficiently captures temporal features and corre-
lation information. To enhance the overall robustness of the
alpha set, covariance between different alpha factors has been
incorporated into the loss function. (2) In stage II, based on
obtaining alpha factors in stage I, the portfolio optimization
is carried out using the RL algorithm, i.e., Proximal Policy
Optimization (PPO) [Schulman et al., 2017]. During interac-

tions with the environment, the RL agent dynamically adjusts
the significance of different factors with the GAT. This adap-
tive adjustment enhances the flexibility and responsiveness of
the method, enabling it to better adapt to changing conditions
and improve overall performance.

4.2 Stage I: Alpha Factors Mining
Alpha factor mining involves using advanced neural network
models named CATimeMixer to extract predictive signals (al-
pha factors) from raw market data in SL way. Raw market
data encompasses multiple dimensions: (1) time series infor-
mation for individual assets, enabling the prediction of future
asset movements based on historical price patterns, and (2)
correlation information among multiple assets, reflecting how
different assets may exhibit similar or divergent trends within
a given period.

Extracting Temporal Features
Inspired by state-of-the-art temporal feature extraction model
TimeMixer [Wang et al., 2024], we first employ a downsam-
pling technique to extend the original data Xt into L scales
by average pooling and obtain a set of different scale data

{X 0
t , ...,XL

t }. Each i-scale data X i
t ∈ R

k

⌊2i⌋
×m×d is de-

composed into Seit and Trit from the perspectives of trend
and seasonal. For trend extraction, we adopt a top-down ap-
proach, leveraging high-scale macro information to enhance
the insights derived from lower-scale data. Conversely, sea-
sonal feature extraction employs a bottom-up strategy, incor-
porating information from lower-level fine-scale time series
and aggregating these insights to create a more comprehen-
sive view upward through the scales.

We innovatively utilize Conv1D to extract features from
two distinct directions. Conv1D excels at hierarchical fea-
ture extraction by using convolutional layers to capture and
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Figure 2: Illustration of Top-dowm Conv1D and Bottom-up
Conv1D. Top-Down Conv1D is utilized to extract trends from time
series data at various scales, which allows low-scale trends to fully
incorporate all preceding high-scale trend features, thereby provid-
ing comprehensive macro insights. Conversely, Bottom-Up Conv1D
leverages all prior low-scale seasonal features to enhance and sup-
plement detailed information for seasonal modeling.

integrate information across multiple temporal scales in time
series data. In contrast to MLPs, which typically fuse fea-
tures from adjacent scales, Conv1D constructs a compre-
hensive representation by progressively aggregating features.
As illustrated in Figure 2, this multi-scale approach enables
Conv1D to effectively model both fine-grained details and
broader trends, thereby enhancing its capability to capture
complex temporal patterns and interactions within the data.
Detailed comparisons of experimental results are provided in
Table 4.

Ŝeit = Bottom-up Cov1D(Se0t , . . . , Se
i−1
t )

ˆTrit = Top-down Cov1D(Tri+1
t , . . . , T rLt )

(1)

Leveraging this approach, we can derive the updated trend
feature ˆTrit and seasonal feature Ŝeit, which are then com-
bined to produce Hi

t .

Extracting Correlation Features
The network modules above independently capture the tem-
poral embeddings Hi

t for each asset i, but they do not ac-
count for correlations between different assets. we incorpo-
rate multi-head attention (MHA) [Vaswani et al., 2017] to ex-
tract and integrate correlation information across assets.

Let Hi
t = {Hi0

t , . . . ,H im
t } represent the feature vectors

of multiple assets at period t, where Hij
t denotes the fea-

ture of asset j at scale i. To capture the interrelationships
among these assets, we apply MHA to compute the cor-
relations for each period independently, resulting in Ei

t =
MHA(Hi0

t , . . . ,H im
t ).

The CATimeMixer architecture consists of a stack of 3
identical layers. In each layer, the output Ei

t from the Multi-
Head Attention (MHA) module is fed back as input X i

t for
the next layer. This iterative process of interleaving tempo-
ral and relational feature extraction ensures robust capture of
essential information from historical data. Consequently, it
improves the accuracy of future trend predictions and facili-
tates the generation of high-quality alpha factors.

Alpha Factors Generator
To fully leverage the multi-scale information, we use an MLP
to transform the features at each scale into alpha factors and
then aggregate the predictions from the multi-scale series.
This process is represented as Zt =

∑L
i=0 MLP(Ei

t).

Loss Function
A novel loss function is proposed which focuses on two key
aspects: maximizing the effectiveness of alpha factors in pre-
dicting future price movements and minimizing the correla-
tion among factors to enhance their diversity and robustness.

Objective 1: The primary objective is to maximize the
mean Information Coefficient (IC) of the alpha factors, which
quantifies their predictive accuracy. The IC, defined as the
pearson correlation coefficient between the alpha factors Zi

t
and the ground truth of asset price movements yt, is aver-
aged across all factors and time periods. The loss function
Licminimizes the negative average IC, guiding the model to
improve the predictive accuracy of the alpha factors.

σ(ut, vt) =

∑n
i=1(uti − ūt)(vti − v̄t)√∑n

i=1(uti − ūt)2
∑n

i=1(vti − v̄t)2
(2)

Lic = − 1

nT
∑
t∈T

∑
i∈n

σ̄yt
(Zi

t) (3)

Objective 2: To reduce correlations between different al-
pha factors, a regularization term Lcov is introduced, based on
the sum of the off-diagonal elements of the covariance matrix
C of the factors. This term encourages the model to produce
alpha factors that are diverse and less correlated, thereby im-
proving the overall robustness of predictive accuracy.

Lcov =
1

n2T
∑
t∈T

n∑
i=1

n∑
j=1,j ̸=i

|Cij | (4)

The total loss function for training the neural network is a
combination of these two objectives, expressed as:

L = Lic + λLcov (5)

where λ is a hyperparameter that balances the importance of
prediction accuracy and factor diversity. By minimizing this
combined loss function, the model is trained to alpha factors
forecast market trends while ensuring their diversity, leading
to a more effective and robust portfolio selection strategy.

4.3 Stage II: Portfolio Optimization
In stage II, we employ RL algorithms to dynamically adjust
the weights of the alpha factors obtained in stage I, resulting
in an adaptive portfolio strategy. This weight adjustment is
crucial to ensure that the portfolio strategy remains effective
under varying market conditions. By adapting the weights
of alpha factors, priority is given to factors that are most
relevant to trading signals, while minimizing the impact of
less effective factors. RL facilitates the learning of optimal
portfolio strategies by continuously interacting with the mar-
ket environment, thereby maximizing returns and minimizing
risks through responsive adjustments to alpha factor weights.
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Algorithm 1 Training Algorithm of Stage II

1: Initialize policy network πθ and value network vϕ
2: Initialize the replay buffer D
3: Load the model M traind in stage I
4: for episode = 1 to M do
5: Initialize raw market data X0

6: Initialize alpha factors Zt = M(X0)
7: for t = 0 to T-1 do
8: Select action at ∼ πθ(at|Zt)
9: Execute action at, observe reward rt and next raw

market data Xt+1

10: Generate alpha factors Zt+1 = M(Xt+1)
11: Store transition Zt, at, rt, Zt+1 in D
12: end for
13: Compute advantages Ât

14: Update θ and ϕ using gradient descent
15: end for

Our adoption of RL optimizes portfolio selection, enabling
it to adapt to changing market conditions and learn dynamic
strategies that efficiently allocate assets.

To this end, we need to model the problem as MDP as pre-
sented in the section 3.2. It’s essential to highlight two key
distinctions in our proposed method, AlphaGAT, compared to
existing RL-based approaches, particularly in the state space
and action space.

State: At the time period t, the state st is defined as the al-
pha factors Zt mined in the first stage. This is a departure
from previous RL-based methods where the state was com-
prised of raw market features Xt. Raw market features of-
ten have a low signal-to-noise ratio, making it challenging to
learn a robust strategy in a non-stationary environment. To
overcome this challenge, we utilize alpha factors mined in
stage I to construct the state space. This approach signifi-
cantly reduces the impact of noise and creates a more con-
ducive environment for acquiring an optimal strategy.

Action: The action is defined as the weight that aggre-
gates different alpha factors into trading signals. This ap-
proach offers advantages in diversifying the portfolio and re-
ducing the risk of overfitting, leading to more robust and ef-
fective investment strategies. The policy function is defined
as at = π(st) = qt, where qt is the weight for aggregating
the alpha factors to the trading signals v = qt ∗ Zt. Let G
be the top G assets in the trading signals and the investment
weights wi for asset i are obtained as the following formula.

wi =

{
exp(vi)∑

j∈G exp(vj)
, if i ∈ G

0, if i /∈ G
(6)

GAT
To leverage the relationships among different alpha factors,
we employ GAT [Velickovic et al., 2018] as the policy net-
work of agents. GAT not only considers the individual predic-
tive accuracy of each factor but also harnesses the collective
information of different factors. In the graph representation,
each alpha factor is treated as an independent node, represent-
ing its unique characteristics. The graph is fully connected,

with each node linked to every other. GAT computes attention
coefficients for factor i by considering its neighbors.

ei,j = LeakyReLU
(
a⃗T

[
W⃗ Z⃗i

t , W⃗
⃗
Zj
t

])
(7)

where a⃗T and W⃗ are learnable weight vectors and matrices,
Zi
t and Zj

t represent alpha factor i and j at period t. Af-
ter calculating the attention coefficients for all neighbors of
the factor i, they are normalized via the softmax function to
ensure they sum to 1. The normalized attention coefficient
between factors i and j is denoted as αi,j . GAT then aggre-
gates the features of factor i’s neighbors, weighted by these
attention coefficients.

αi,j =
exp(ei,j)∑n
k=1 exp(ei,k)

(8)

h⃗i = σ

 n∑
j=1

αi,j · W⃗ h⃗j

 (9)

where h⃗i denotes the updated feature representation of alpha
factor i, σ represents the activation function.

To capture various relational aspects, multiple attention
heads with distinct learnable weight vectors are employed.
Finally, the weight of alpha factor i at period t is computed
using softmax, with Wo and bo as learnable parameters.

qit =
exp(Woh⃗i + bo)∑n

k=1 exp(Woh⃗k + bo)
(10)

PPO
To maintain the stability and robustness, PPO [Schulman et
al., 2017] is chosen to optimize the policy π(st) which dy-
namically adjusts alpha factor weights in adaptive portfolio
strategies. Its adaptability, sample efficiency, and ability to
handle complex action spaces ensure effective learning and
resilience in different financial markets, optimizing stable re-
turns. The detailed training process is Algorithm 1.

5 Experiments
To comprehensively evaluate AlphaGAT, we conduct experi-
ments on the constituent stocks of three representative stock
indices, aiming to answer the following questions: Q1 How
is the overall performance of our proposed method under real
market conditions? Q2 Does the architecture proposed in
stage I improve the effectiveness of alpha factor mining? Q3
Can RL enhance factor combination effects? Q4 How the
first and second phases of AlphaGAT work together?

5.1 Experimental Settings
Datasets
To encompass various global stock markets and reduce
human-selected interventions, experimental datasets com-
prise constituent stocks of Dow Jones Industrial Average
(DJIA) in the U.S. market, Hang Seng Index (HSI) in the
Hong Kong market, and CSI 100 Index in the Chinese A-
share market. Additionally, we incorporate the cryptocur-
rency market (CRYPTO) to demonstrate the method’s effec-
tiveness across different types of markets. We utilize 8 raw
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Categories Strategies
DJIA HSI CSI CRYPTO

CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑

Traditional

BAH 1.032 0.023 0.132 0.112 0.903 -0.075 -0.322 -0.241 0.967 -0.025 -0.140 -0.130 1.779 0.870 2.004 1.563
DynamicCRP 1.043 0.031 0.158 0.149 0.798 -0.157 -0.568 -0.504 0.703 -0.236 -0.732 -0.615 1.839 0.938 2.269 1.896

EG 1.035 0.026 0.143 0.123 0.919 -0.062 -0.256 -0.201 0.980 -0.015 -0.082 -0.076 1.836 0.935 2.256 1.881
OLMAR 0.473 -0.425 -1.179 -0.704 0.235 -0.666 -1.090 -0.850 0.156 -0.759 -1.536 -0.898 0.659 -0.364 -0.572 -0.797

ONS 1.014 0.011 0.040 0.043 1.080 0.060 0.121 0.128 0.861 -0.108 -0.346 -0.344 1.650 0.722 2.553 2.848
UP 1.035 0.026 0.143 0.123 0.919 -0.062 -0.255 -1.996 0.980 -0.015 -0.083 -0.077 1.837 0.936 2.259 1.883

WMAMR 0.566 -0.344 -1.002 -0.682 0.625 -0.299 -0.501 -0.478 0.380 -0.524 -1.198 -0.758 0.663 -0.360 -0.638 -0.908

SL
ALSTM 1.020 0.015 0.062 0.064 0.905 -0.073 -0.165 -0.180 0.805 -0.153 -0.357 0.391 1.570 0.633 1.446 0.944
AdaRNN 1.091 0.067 0.247 0.288 0.796 -0.158 -0.463 -0.389 1.008 0.006 0.015 0.019 1.342 0.377 1.310 1.011

RL

PPN 1.021 0.015 0.086 0.072 0.963 -0.028 -0.096 -0.084 0.906 -0.073 -0.165 -0.207 1.581 0.645 1.278 0.982
RAT 1.179 0.129 0.589 0.655 1.109 0.081 0.170 0.234 0.914 -0.066 -0.208 -0.211 1.885 0.991 1.809 1.127

FinRL-Meta 1.093 0.068 0.318 0.340 1.082 0.062 0.194 0.214 1.040 0.031 0.105 0.119 2.561 1.777 4.297 4.120
ours 1.428 0.302 1.367 1.507 1.359 0.261 0.742 0.989 1.239 0.178 0.654 0.666 3.288 2.643 5.008 3.661

Table 1: Results of all strategies on four profitable metrics. Note that Bold values depict the best results.
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Figure 3: Preformance over test period in different datasets.

Datasets #Assets Training Validation Test
DJIA 29 2010-01 to 2020.09 2020-09 to 2022-01 2022-01 to 2023-06
HSI 56 2010-01 to 2020.09 2020-09 to 2022-01 2022-01 to 2023-06
CSI 98 2010-01 to 2020.09 2020-09 to 2022-01 2022-01 to 2023-06

CRYPTO 18 2018-01 to 2023.01 2023-01 to 2023-09 2023-09 to 2024-04

Table 2: Datasets descriptions.

assets’ features: [open, close, high, low, volume, vwap, turn,
chg]. The historical data is partitioned into the training, vali-
dation, and test set in an 8:1:1 ratio. Notably, due to missing
data, some companies are excluded from the experiments.

Baselines
Our method is compared with three different types of state-
of-the-art portfolio selection methods: traditional investment
strategies, i.e., BAH (Buy and Hold), DynamicCRP, OLMAR
[Li and Hoi, 2012], UP [Cover, 1991], WMAMR [Gao and
Zhang, 2013], ONS [Agarwal et al., 2006]; SL-based meth-
ods, i.e., ALSTM [Qin et al., 2017], AdaRNN [Du et al.,
2021] and RL-based methods, i.e., RAT [Xu et al., 2021a],
PPN [Zhang et al., 2022] and the wide-used benchmarks
FinRL-Meta[Liu et al., 2022b] with PPO algorithms.

Metrics
Following the previous work [Yang et al., 2022], four com-
monly used metrics are selected to provide a comprehen-
sive evaluation of the investment strategies: (1) Cumulative
Wealth (CW): Tracks the total portfolio value over time, in-
dicating overall investment performance; (2) Annualized Per-
centage Yield (APY): Measures the yearly rate of return, ac-
counting for compounding effects; (3) Annualized Sharpe

Ratio (ASR): Evaluates risk-adjusted returns, comparing ex-
cess returns to the investment’s volatility; (4) Calmar Ratio
(CR): Compares annual returns to the maximum drawdown,
assessing performance relative to significant losses.

Implementation Details
Following the settings in [Li et al., 2022], the transaction cost
rate is set to 0.25% to model the real-world trade. The pro-
posed method is implemented by PyTorch and conducted on
an NVIDIA RTX 4090 GPU. We adopt Adam optimizer and
set the learning rate to 1e−3 in stage I and 5e−4 in stage II.
The λ in the loss function of stage I is set to 0.1. The hidden
embedding dimension c is 512. The time window size of all
methods is 30 and the number of alpha factors in stage I is
set to 64. Hyperparameters are tuned based on the validation
dataset, and performance is evaluated on the test dataset. Al-
phaGAT demonstrates robustness to hyperparameters by em-
ploying a small set of tunable parameters with stable algo-
rithms like Adam and PPO, and by maintaining fixed hyper-
parameters from stage I throughout stage II, ensuring robust
performance. Additionally, the parameters of the baselines
are set to the optimal values reported in their publications, as
the optimal parameters of each baseline do not distinguish be-
tween datasets according to their publications. All RL-based
methods were executed five times with different seeds, and
the mean values were calculated for analysis.

5.2 Experimental Result of AlphaGAT
Result 1: Overall Performance. To address Q1, we per-
formed a thorough comparison of AlphaGAT’s performance
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Strategies
DJIA HSI CSI CRYPTO

CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑ CW ↑ APY ↑ ASR ↑ CR ↑
ours 1.428 0.302 1.367 1.507 1.359 0.261 0.742 0.989 1.239 0.178 0.654 0.666 3.288 2.643 5.008 3.661
MLP 1.357 0.253 1.319 1.732 1.277 0.204 0.628 0.761 1.139 0.105 0.256 0.246 2.691 1.931 4.326 3.636
rand 1.182 0.131 0.714 0.895 1.132 0.099 0.299 0.378 1.085 0.065 0.240 0.239 1.909 1.018 2.553 2.079

top-IC 1.228 0.164 0.878 0.926 1.167 0.124 0.381 0.451 1.114 0.086 0.317 0.277 1.766 0.854 1.530 1.698
eqaul 1.241 0.173 0.930 1.057 1.173 0.128 0.395 0.484 1.104 0.079 0.290 0.281 1.639 0.710 2.199 2.079

Table 3: Ablation study for RL and GAT within AlphaGAT across different datasets.

against baseline methods using four standard metrics. Table
1 shows that AlphaGAT consistently surpasses all baseline
methods across different markets. Traditional strategies often
struggle with profitability, especially in the DJIA market, and
generally break even or incur losses in the volatile HSI and
CSI markets. In contrast, AlphaGAT achieves notable prof-
itability in all these markets. Although several methods per-
form well in the cryptocurrency market, AlphaGAT delivers
superior results. This exceptional performance is attributed to
AlphaGAT’s innovative two-stage framework: stage I gener-
ates diverse alpha factors from market data for accurate fore-
casting, while stage II uses RL to dynamically adjust these
factors’ weights. This approach enhances AlphaGAT’s adapt-
ability and effectiveness across various markets.

Dataset Metric TimeMixer CTimeMixer ATimeMixer CATimeMixer Improvement(%) p-value

DJIA
IC ↑ 0.018 ±0.001 0.025 ±0.002 0.019 ±0.001 0.026 ±0.002 +36.8 0.000

RankIC ↑ 0.021 ±0.002 0.021 ±0.001 0.025 ±0.002 0.027 ±0.003 +28.4 0.006

HSI
IC ↑ 0.017 ±0.002 0.018 ±0.001 0.018 ±0.001 0.022 ±0.002 +25.4 0.0061

RankIC ↑ 0.016 ±0.002 0.013 ±0.002 0.018 ±0.003 0.023 ±0.003 +45.7 0.008

CSI
IC ↑ 0.009 ±0.001 0.010 ±0.002 0.011 ±0.002 0.014 ±0.001 +43.1 0.035

RankIC ↑ 0.009 ±0.002 0.008 ±0.002 0.016 ±0.003 0.016 ±0.002 +82.6 0.001

CRYPTO
IC ↑ 0.034 ±0.002 0.038 ±0.002 0.033 ±0.001 0.039 ±0.002 16.7 0.017

RankIC ↑ 0.028 ±0.002 0.029 ±0.003 0.032 ±0.003 0.038 ±0.002 +23.4 0.024

Table 4: Validity of alpha factors mined by different models.

Result 2: Validity of Alpha Factors. To address Ques-
tion Q2, we evaluate the effectiveness of the alpha factors
extracted in stage I using two key metrics: the average Infor-
mation Coefficient (IC) and the Rank Information Coefficient
(RankIC).We report the mean and variance of these metrics,
and conduct a paired t-test at the 0.05 significance level. The
IC measures the predictive accuracy of alpha factors, while
RankIC quantifies the correlation between predicted and ac-
tual asset rankings. As shown in Table 4, the proposed model
outperforms variants, i.e., TimeMixer, CTimeMixer (with
Conv1D), ATimeMixer (with cross asset attention). Specif-
ically, the improvements are attributed to: (1) Conv1D’s su-
perior multi-scale feature extraction compared to MLP, and
(2) cross-asset attention’s ability to enhance the identification
of inter-asset correlations, thereby increasing the validity of
the extracted factors.

Result 3: Ablation Study. To address Question Q3 and as-
sess the contributions of different components in AlphaGAT,
we perform ablation experiments with four simplified vari-
ants: MLP, rand, top-IC, and equal. In the MLP version, an
MLP replaces GAT as the policy network in stage II. The rand
version uses random weights for alpha factors, the top-IC ver-
sion assigns random weights based on the IC of alphas from
the previous period, and the equal version distributes equal
weights, omitting RL in the second stage. As shown in Table
3, incorporating RL algorithms significantly improves over-
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Figure 4: Case study for top 10 weighted alpha factors.

all profitability, demonstrating their effectiveness in optimiz-
ing investment strategies. RL algorithms excel in dynami-
cally adjusting alpha factor weights to maximize cumulative
wealth. Compared to MLP, GAT provides superior perfor-
mance by managing diverse alpha factors and their interrela-
tionships within the graph, leading to more precise decision-
making. These ablation studies highlight the essential roles of
RL and GAT in AlphaGAT, confirming that their integration
is crucial for balancing returns with investment stability.

Result 4: Case Study. To address Q4, we conduct a case
study to examine the synergy between AlphaGAT’s two
stages in optimizing investment strategies. Through qual-
itative analysis, we identify the alpha factors assigned the
highest weights by the RL agent. Figure 4 illustrates the
top 10 weighted alpha factors and their corresponding IC val-
ues during a back-testing step on the DJIA dataset, showing
the agent’s preference for factors with higher IC values. This
highlights AlphaGAT’s ability to effectively balance predic-
tive accuracy and adaptability, offering a robust solution for
investment strategies in volatile markets.

6 Conclusion

In this paper, we present AlphaGAT, a novel two-stage frame-
work for portfolio selection. In the first stage, raw mar-
ket data is transformed into alpha factors using the proposed
CATimeMixer and a novel loss function. In the second stage,
the RL agent with GAT dynamically adjusts the weights
of these alpha factors, enabling adaptive portfolio selection.
Empirical results demonstrate the method’s effectiveness, of-
fering a robust and flexible solution. Future work will explore
integrating diverse market data sources, such as news and so-
cial media, to further improve the accuracy and comprehen-
siveness of portfolio selection strategies.
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