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Abstract
Current existing clustering methods for handling
incomplete multi-view data primarily concentrate
on learning a common representation or graph from
the available views, while overlooking the latent in-
formation contained in the missing views and the
imbalance of information among different views.
Furthermore, instances with weak discriminative
features usually degrading the precision of consis-
tent representation or graph across all views. To
address these probelms, in this paper, we propose a
simple but efficient method, called high-confident
local structure guided consensus graph learning for
incomplete multi-view clustering (HLSCG IMC).
Specifically, this method can adaptively learn a
strict block diagonal structure from the available
samples using a block diagonal representation reg-
ularizer. Different from the existing methods using
a simple pairwise affinity graph for structure con-
struction, we consider the influence of instances lo-
cated at the edge of two clusters on the construction
of graph for each view. By harnessing the proposed
high-confident strict block diagonal structures, the
approach seeks to directly guide the learning of the
robust consensus graph. A number of experiments
have been conducted to verify the efficacy of our
approach.

1 Introduction
Multi-view clustering (MVC) aims to categorize data points
into their respective classes by comprehensively taking into
account multiple feature representations, where each of these
feature representations can be seen as a unique view [Sun et
al., 2024]. For instance, a webpage typically includes three
types of representations, i.e., text, imagery, and hyperlinks.
Besides this, the test results for a patient often contain differ-
ent indicators, such as CT, blood routine, and electrocardio-
gram [Fu et al., 2024] [Lyu et al., 2024]. Given the preva-
lent occurrence of incomplete data, with missing views or

∗indicates the co-corresponding authors

instances, in practical applications such as recommendation
systems, disease diagnosis, and multimedia analysis, the re-
search of incomplete multi-view clustering (IMC) holds sig-
nificant importance [Chen et al., 2024] [Chao et al., 2024].
Besides this, Khan et al. [Khan et al., 2024] designed a
weighted concept factorization approach.

Some common issues may emerge in the IMC tasks due to
the absence of views [Wang et al., 2022] [Wen et al., 2021]:
1) The lack of views can complicate the integration of the
remaining views, potentially reducing the accuracy and ef-
fectiveness of the clustering algorithm. 2) The problem of
data imbalance caused by missing views makes the tradi-
tional multi-view clustering technique ineffective. Various
researchers have undertaken considerable efforts to address
these challenging IMC problems. For example, Cai et al. [Cai
et al., 2024] incorporates a completion term designed to fill
in the missing samples in unbalanced incomplete multi-view
clustering, which utilizes the inherent information contained
within the absent views. Chao et al. [Chao et al., 2024] in-
troduces a multi-view consistency relation transfer combined
with a graph convolutional network to address the missing
values problem. This approach incorporates instance-level at-
tention fusion and high-confidence guiding strategies to har-
ness the complementary information available. Although
existing IMC methods have achieved some positive perfor-
mances, we notice that these approaches primarily focuses
on pairwise-based geometric structures, which are easily af-
fected by the weak feature expression or noisy [Gu et al.,
2024] [Wang et al., 2023]. In particular, some samples lo-
cated at the edge of two clusters are inaccurate in local struc-
ture learning due to their weak feature expression or noise
effects. Therefore, accurate local structure learning is very
important for calculating the affinity relationships between
different samples [Yao et al., 2024] [Zhong et al., 2024].

Block diagonal structure (BDS) construction refers to the
process of arranging a matrix into a block diagonal matrix
form, where the matrix is partitioned into a series of smaller
square submatrices along its main diagonal, and all elements
outside these blocks are zero [Lu et al., 2018]. The learning
BDS means that samples of different categories are strictly
differentiated, which makes intra-class samples show rela-
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Figure 1: Some cases of multi-view data with different degrees of missing samples for each view.

tively high correlation [Zhuo et al., 2024]. Consequently,
the BDR is crucial in the incomplete multi-view learning, as
it facilitates the model to accurately depict the internal con-
nections of the available instances for each view [Liu et al.,
2023b]. This is essential in IMC tasks, since it can provide
precise comprehensive and available information from differ-
ent views for the derivation of complete structure.

Motivated by this observation, we propose a simple but ef-
ficient method, called high-confident local structure guided
consensus graph learning for incomplete multi-view cluster-
ing (HLSCG IMC). Specifically, this method can adaptively
learn a strict block diagonal structure from the available sam-
ples using a block diagonal representation regularizer. Differ-
ent from the existing methods using a simple pairwise affinity
graph for structure construction, we consider the influence of
instances located at the edge of two clusters on the construc-
tion of graph for each view. By harnessing the proposed high-
confident strict block diagonal structures, the approach seeks
to directly guide the learning of the robust consensus graph.
As depicted in Fig.1, we first learn a high-confident local
structure with a BDS regularizer for the available instances
from each view. Afterwards, we reconstruct the complete
graphs of all incomplete views by fully exploring the within-
view and between-view information available in each view
with the guiding of the learned high-confident local struc-
ture. Finally, unliking the existing consensus representation
learning methods, we directly learn a confident affinity graph
across all views for final clustering. Specifically, To ensure
that the latent representation and graphs of all views achieve
global optima, we integrate the high-confident local structure
learning and the consensus graph completion into a unified
joint optimization framework. The primary contributions of
this paper are summarized as follows:

(1) Different from the other existing methods, we propose
a high-confident local structure learning strategy, which con-
siders the attribution of instances with weak feature represen-
tation located at the edge of two clusters.

(2) A HLSCG IMC method is proposed, which can adap-
tively recover the complete graph for each view by exploiting
the hidden information of missing instances and available in-

stances to directly enhance the learning of consensus graph
across all views.

(3) The proposed method can be flexibly applied to any
types of IMC tasks. In addition, the experimental results
proved the superiority of the proposed method in comparison
with the other related methods.

2 Notations and Preliminaries
Given a matrix A ∈ Rm×n, we define its lF -norm and
l1-norm as ∥ A ∥2F=

∑m
i=1

∑n
j=1 a

2
i,j and ∥ A ∥1=∑m

i=1

∑n
j=1 |ai,j |, respectively, where ai,j presents the ele-

ment on the (i, j)-th location. Additionally, The nuclear norm
of matrix A is calculated as ∥ A ∥∗=

∑
i γi, where γi indi-

cates the ith singular value of A. The detailed notations of
the used variables are presented in Table1.

Symbols Description

X(v) ∈ Rdv×nv The avaiable instances from the v-th view
Z(v) ∈ Rnv×nv The graph of avaiable instances
V The number of views
dv The dimensionality of instances
v The v-th view
nv The number of instances from the v-th view
W (v) ∈ Rn×n The affinity relationship matrix
S̄(v) ∈ Rn×n The complete graph for the v-th view
S ∈ Rn×n The consensus graph across all views
E(v) ∈ Rdv×nv The learned noise of the available instances
Z̃(v) ∈ Rn×n The high-confident graph
F (v) ∈ Rn×c The consensus representaion across all

views
c The dimensionality of the consensus repre-

sentation

Table 1: Description of the symbols used in this paper.

BDS: The block diagonal structure highlights the indepen-
dence of the submatrices, enabling efficient storage and ma-
nipulation of the matrix, particularly in scenarios where the
submatrices represent distinct or separable components of the
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original matrix. By leveraging the sparsity and structural in-
dependence of the block diagonal matrix in (1), computations
such as matrix multiplication, inversion, and eigenvalue anal-
ysis can be greatly simplified and accelerated. Here, we intro-
duce two definitions abou BDR as follows [Lu et al., 2018]:

Definition 1: Let X = [X1, X2, ..., XC ] ∈ Rd×n denote
n training samples from C classes, where each column is a
sample vector. Suppose that all the samples are rearranged
based on the class labels, and each class of training samples
are stacked together to form a sub-matrix Xi ∈ Rd×ni , which
denotes ni samples from the i-th class.

Definition 2: Given the data matrix X = [X1, X2, ..., Xk]
drawn from a union of k subspaces {Si}ki=1, we say that Z
obeys the Block Diagonal Property if Z is k-block diagonal,
where the nonzero entries Zi correspond to only Xi.

Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zk

 (1)

Please note that the notions of the k-block diagonal matrix
and the block diagonal property share certain connections as
well as distinctions. The block diagonal property is tailored
specifically for the context of subspace clustering problems,
whereas the concept of a k-block diagonal matrix is more
general and not confined to this particular application. A ma-
trix that satisfies the block diagonal property is necessarily
k-block diagonal, but the converse is not true. Additionally,
the block diagonal property stipulates that each block must
have a one-to-one correspondence with each data subject.

3 The Proposed Method
3.1 Learning Model
Various clustering methods based on graph learning have
demonstrated that acquiring a high-quality graph, which un-
veils the underlying relationships within the data, is advanta-
geous for achieving superior clustering performance [Liu et
al., 2023a][Zhou et al., 2019]. Particularly, graph learning
plays a pivotal role in multi-view clustering by enabling the
extraction of intricate relationships and correlations between
different views of the data. A block diagonal structure refers
to a matrix that is partitioned into diagonal blocks, where each
block is itself a square matrix, and all off-diagonal blocks are
zero matrices. Furthermore, the block diagonal constraint can
act as a regularizer, preventing the model from overly relying
on any single view and encouraging it to discover shared and
discriminative features across all views [Jiang et al., 2025].

Given the multi-view dataset X = {X(v)}Vv=1 ∈ Rdv×n,
where v is the vth view, V presents the total number of views,
and dv denotes the dimensionality of the features from the vth
view. Here, under the independent subspaces assumption, the
self-representation matrix Z(v) for each view should be block
diagonal as follows:

min
Z(v)

V∑
v=1

∥ X(v) −X(v)Z(v) ∥2F +γ ∥ Z(v) ∥k

s.t. diag(Z(v)) = 0, Z(v) ≥ 0, Z(v) = Z(v)T

(2)

where ||Z||k is the block diagonal matrix structure induced
regularizer. For the affinity matrix Z(v) on the vth view, its k-
block diagonal regularizer ||Z(v)||k is formulated as follows:

∥ Z(v) ∥k=
n∑

i=n−k+1

λi(LZ(v)) (3)

where λi(LZ(v)) is the eigenvalues of LZ(v) and i ∈ [1 n].
Problem and Motivation: Formula (2) necessitates that

all perspectives of X are entirely comprehensive, a require-
ment that is impractical for IMVC tasks due to the varying
sizes of graphs derived from incomplete perspectives. To
tackle these challenges, some research endeavors concentrate
on reconstructing the absent elements within the incomplete
graphs linked to the missing perspectives [Lin et al., 2021].
However, these endeavors typically entail significant compu-
tational expenses. Furthermore, achieving perfectly recon-
structed graphs from incomplete multi-view data is unfeasi-
ble, which could potentially degrade clustering performance.
Consequently, the optimal approach is to maximize the uti-
lization of the information contained within the accessible
instances from each view. By adopting the prior index in-
formation of the missing instances, we perform the following
extension of Z(v):

min
Z(v),S̄(v)

V∑
v=1

∥ S̄(v) −G(v)T Z̃(v)G(v) ∥2F

+
V∑

v=1

(
β ∥ X(v) −X(v)Z(v) ∥1 +γ ∥ Z(v) ∥k

)
s.t. diag(Z(v)) = 0, Z(v) ≥ 0, Z(v) = Z(v)T ,

0 ≤ S̄(v) ≤ 1, S̄(v)1 = 1

(4)

where G(v) indicates the prior index information of the miss-
ing instances and S̄(v) is the complete graph of the v-th view.
Importantly, it can transform the incomplete graph with size
nv × nv of each view to a full size affinity graph with size
n × n, such that the pairwise similarity relationships of in-
stances between S̄ and Z(v) can be alligned. In addition, ||·||1
can better simulate noise and learning bias. Here, the high-
confident local structure Z̃(v) is defined as follows:

Z̃
(v)
i,j =

{
qi,j , if x

(v)
i &x

(v)
j ∈ Ψ(x

(v)
j )

0, otherwise
(5)

where qi,j indicates the distance between x
(v)
i and x

(v)
j cal-

culated using the Gaussian kernel, and Ψ(x
(v)
j ) presents the

k block of instance x
(v)
j on the v-th view. Otherwise, G(v) is

computed as follows:

G
(v)
i,j =

 1, if the i− th available instance x
(v)
i

belongs to the j − th sample
0, otherwise

(6)
In particular, when dealing with incomplete multi-view

data, the missing instances also result in the absence of cer-
tain pairwise correlations. Aiming to comprehensively ex-
ploit the complementary affinity information from different,
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we further impose a high quality consensus graph to align the
structures of all views. Thus, we propose the final efficient
but simple objective function of HLSCG IMC as follows:

min
Z(v),S

V∑
v=1

αr
v ∥ (S −G(v)T Z̃(v)G(v))⊙W (v) ∥2F

+
V∑

v=1

αr
vβ ∥ X(v) −X(v)Z(v) ∥1

+
V∑

v=1

αr
vγ ∥ Z(v) ∥k +µTr(FTLSF )

s.t. diag(Z(v)) = 0, Z(v) ≥ 0, Z(v) = Z(v)T ,

0 ≤ S ≤ 1, S(v)1 = 1, diag(S) = 0

0 ≤ αv ≤ 1,
V∑

v=1

α = 1

(7)

where αv denotes an adaptive learned weight, which is ap-
plied to jointly balance the importance of all views. Specif-
ically, F ∈ Rn×c is the consensus representation, c is the
manual selected dimension which is generally chosen as the
cluster number. Besides this, LS presents the Laplacian ma-
trix of the complete structure S ∈ Rn×n, which can be
achieved by LS = DDT − (S+ST )

2 . In addition, W (v) can be
calculated as follows:

W
(v)
i,j =

{
1,

if the i− th and j − th samples
have instances on the v − th view

0, otherwise
(8)

where W (v) is the affinity relationship matrix between the
missing instances and the existing instances.

3.2 Optimization
In this section, we use the alternating direction method of
multipliers (ADMMs) to solve the optimization problem (7),
which can be simply transformed into the following equiva-
lent problem:

min
Z(v),S

V∑
v=1

αr
v

(
∥ (S − Z̄(v))⊙W (v) ∥2F +β ∥ E(v) ∥1

)
+

V∑
v=1

αr
vγ ∥ B(v) ∥k +

λ

2

n∑
i,j=1

∥ Fi,: − Fj,: ∥22 Si,j

+
V∑

v=1

αr
v

µ

2
∥ X(v) −X(v)Z(v) − E(v) +

C
(v)
1

µ
∥2F

+
V∑

v=1

αr
v

µ

2
∥ Z(v) −B(v) +

C
(v)
2

µ
∥2F

s.t. diag(Z(v)) = 0, Z(v) ≥ 0, Z(v) = Z(v)T , 0 ≤ S ≤ 1,

S(v)1 = 1, diag(S) = 0, 0 ≤ αv ≤ 1,
V∑

v=1

α = 1,

(9)

where C
(v)
1 and C

(v)
2 are the imposed argumented variables,

and Z̄(v) = G(v)T Z̃(v)G(v).
Solution of Z(v): With the other variables fixed, Zv can

be solved by optimizing the following formular:

min
Z(v)

V∑
v=1

αr
v

(µ
2
∥ X(v) −X(v)Z(v) − E(v) +

C
(v)
1

µ
∥2F

+
µ

2
∥ Z(v) −B(v) +

C
(v)
2

µ
∥2F

)
s.t. diag(Z(v)) = 0, Z(v) ≥ 0, Z(v) = Z(v)T

(10)

Then, Z(v) can be calculated by setting the derivative of (10)
with respect to Z(v) as 0:

Z(v) = (X(v)TX(v) + 2I)−1(X(v)TL
(v)
1 + L

(v)
2 ) (11)

where L
(v)
1 = X(v) − E(v) +

C
(v)
1

µ and L
(v)
2 = B(v) − C

(v)
2

µ ,
respectively.

Solution of B(v): With the other variables fixed, B(v) can
be solved by optimizing the following formular:

V∑
v=1

αr
v

(
γ ∥ B(v) ∥k +

µ

2
∥ Z(v) −B(v) +

Cv
2

µ
∥2F

)
s.t. diag(B(v)) = 0, B(v) ≤ 0, B(v) = B(v)T

(12)

Then, (18) can be simplified as follows:
V∑

v=1

αr
v

(µ
2
∥ L

(v)
3 −B(v) ∥2F

+ γ < Diag(B(v)1)−B(v), ω(v) >
)

s.t. diag(B(v)) = 0, B(v) ≤ 0, B(v) = B(v)T

(13)

where L
(v)
3 = Z(v) + C

(v)
2 /µ. Particularly, ω(v) =

U (v)U (v)T , where U (v) consists of k eigenvectors associ-
ated with the k smallest eigenvalues of Diag(B(v)1)−B(v).
Then, (19) can be rewritten as follows:

∥ B(v) − L
(v)
3 +

µ

γ
(diag(ω(v))1T − ω(v)) ∥2F

s.t. diag(B(v)) = 0, B(v) ≤ 0, B(v) = B(v)T
(14)

This problem has a closed form solution given as follows:

∥ B(v) −A(v) ∥2F
s.t. diag(B(v)) = 0, B(v) ≤ 0, B(v) = B(v)T

(15)

where A(v) = L
(v)
3 + µ

β (diag(W
(v))1T −W (v)). Afterwards,

B(v) can be updated as B(v) = ( ˆA(v) + ˆA(v)
T
)/2, where

ˆA(v) = A(v) −Diag(diag(A(v))).
Solution of E(v): With the other variables fixed, E(v) can

be solved by optimizing the following formular:
V∑

v=1

αr
v

(
β ∥ E(v) ∥1 +

µ

2
∥ L

(v)
4 − E(v) ∥2F

)
(16)
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where L
(v)
4 = X(v) − X(v)Z(v) +

C
(v)
1

µ . Here, E(v) has the
closed solution as follows:

E(v) = Ωβ/µ(L
(v)
4 ) (17)

where ω denotes the shrinkage operator.
Solution of S: With the other variables fixed, S can be

solved by optimizing the following formular:

V∑
v=1

αr
v ∥ (S − Z̄(v))⊙W (v) ∥2F

+
λ

2

n∑
i,j=1

∥ Fi,: − Fj,: ∥22 Si,j

(18)

By defining Hi,j =∥ Fi,: − Fj,: ∥22, we can rewrite (18) as
the following n independent sub-optimization problems with
respect to each column of S:

min
S;,j

n∑
i=1

(Si,j −
∑V

v=1 α
r
vW

(v)
i,j

2
Z̄i,j − λ

4Ei,j∑V
v=1 α

r
vW

(v)
i,j

2 )2 (19)

According to the Lagrangian algorithm, we can obtain the
following closed form solution:

Si,j =

{
(Ti,j + δj)+, i ̸= j

0 , i = j
(20)

where Ti,j =
∑V

v=1 αr
vW

(v)
i,j

2
Z̄i,j−λ

4 Ei,j∑V
v=1 αr

vW
(v)
i,j

2 . Here, (b)+ guar-

antees the non-negative value of b. Then, we can update
δj =

1−
∑n

i=1,i ̸=j Ti,j

n−1 .
Solution of α: With the other variables fixed, α can be

solved by optimizing the following formular:

min
αv

V∑
v=1

αr
vd

(v) s.t. 0 ≤ αv ≤ 1,

V∑
v=1

α = 1 (21)

where d(v) =∥ (S − Z̄(v)) ⊙ W (v) ∥2F +β ∥ E(v) ∥1
+gamma ∥ B(v) ∥k +µ

2 ∥ X(v) − X(v)Z(v) − E(v) +

C
(v)
1

µ ∥2F +µ
2 ∥ Z(v) −B(v) +

C
(v)
2

µ ∥2F .
By imposing the Lagrange multiplier sigma, we can re-

write the optimization problem (21) as follows:

V∑
v=1

αr
vd

(v) − σ(
V∑

v=1

αr
v − 1) (22)

Then, we can update α by setting the derivative of (22) with
respect to αv as 0 as follows:

αv = (d(v)/
V∑

v=1

d(v))
1

1−r . (23)

Solution of F : With the other variables fixed, F can be
solved by optimizing the following formular:

min
FTF

Tr(FTLSF ) (24)

Algorithm 1 Solution of HLSCG IMC

Input: Incomplete multi-view data {X(v) ∈ Rdv×nv}Vv=1,
prior index matrix G(v), and parameters λ, β, and γ.
Initialization: Initialize Z(v) via the k-nearest neighbor
graph of each view; Initialize F with the eigenvalue decom-
position on the Laplacian graph of each transformed complete
view; C(v)

1 = 0, C(v)
2 = 0; C(v)

3 = 0; µ = 0.1.
Output: Z(v), F .

1: while iteration < R do
2: Update Z(v) using (11)
3: Update B(v) using (15)
4: Update E(v) using (17)
5: Update S using (20)
6: Update α using (23)
7: Update F using (24)
8: Update C

(v)
1 and C

(v)
2 using (25) and (26), respec-

tively.
9: end while

Here, F can be gained as F = [e1, e2, ..., ec] ∈ Rn×c, where
e1 ≤ e2 ≤ ... ≤ ec are the c eigenvectors corresponding to
the c minimum eigenvalues.

Solution of C
(v)
1 and C

(v)
2 : With the other variables

fixed, C(v)
1 and C

(v)
2 can be solved by optimizing the follow-

ing formulars:

C
(v)
1 = C

(v)
1 + µ(X(v) −X(v)Z(v) − E(v)) (25)

C
(v)
2 = C

(v)
2 + µ(Z(v) −B(v)) (26)

We present the detailed solutions for each variable of (9) in
Algorithm 1.

3.3 Computation Complexity Analysis

In this sub-section, we make computation complexity analy-
sis on the optimization steps of the proposed objective func-
tion. Firstly, for the step of Z(v), the most computational
costs is the inverse operation calculated as n3. Afterwards,
ror the optimization approach of S and B(v), it is observable
that the updating formula for the pertinent variable merely
involves element-wise multiplication and division operations
on matrices and vectors. Afterwards, the computational com-
plexity of E(v) can be ignored since it only contains the basic
matrix operations. For the solution of F , an efficient eigen-
value decomposition algorithm with the package ‘eigs’ serves
as an excellent option, necessitating only O(cn2) operations
to obtain the optimal F . Finally, for the step of α, its updating
formula similarly encompasses solely element-wise division
operations for vectors. Consequently, the total computational
cost of the proposed objective function is O(τ(cn2 + n3)),
where tau denotes the number of interations.
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Data Methods ACC (%) NMI (%) Purity (%)
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

BBCSport

BSV 58.62±3.94 51.31±5.33 44.03±3.98 43.73±7.43 31.03±2.08 21.40±2.61 65.79±5.52 55.07±1.51 47.59±2.28
Concat 70.62±3.76 58.72±5.42 33.21±2.19 61.69±6.72 38.92±7.87 18.61±1.44 80.59±4.59 63.24±5.82 37.00±1.54

GPMVC 51.44±8.20 46.89±5.01 43.91±6.31 28.23±10.31 20.04±7.39 15.48±4.54 58.39±8.58 52.76±5.60 45.29±5.41
MIC 51.21±4.21 46.21±4.71 46.03±5.19 29.90±6.25 25.84±3.24 24.01±5.39 55.00±4.15 51.72±4.27 52.41±6.23

DAIMC 68.62±4.59 63.45±10.97 56.89±5.59 56.62±4.60 50.17±9.91 37.89±6.22 76.90±5.89 71.72±10.76 61.03±5.08
OMVC 53.33±3.21 51.38±3.06 48.79±3.10 30.64±2.00 41.57±2.79 40.63±2.45 56.49±2.81 59.20±2.12 57.47±2.80

MVL IV 75.86±2.28 72.58±0.50 53.45±1.49 60.55±4.42 59.09±5.05 38.85±1.36 81.03±3.48 80.75±1.32 62.93±1.49
AWIMVC 77.61±2.01 78.33±2.25 64.75±2.69 71.01±2.79 69.51±2.17 49.48±2.03 86.44±1.30 85.42±0.97 73.55±1.20

UEAF 75.52±3.59 68.62±5.87 62.93±5.69 67.38±1.56 58.43±3.57 46.51±4.52 85.34±1.72 78.28±3.83 71.03±3.48
AGC IMVC 83.10±5.74 80.17±3.19 70.86±6.14 73.19±4.73 67.79±4.88 52.41±5.92 86.03±2.08 83.79±3.83 76.03±4.54

Proposed 85.34±0.15 82.17±1.11 78.48±0.28 76.53±2.01 70.22±1.42 62.66±1.00 95.93±1.06 88.73±1.36 83.09±0.46

COIL-20

BSV 41.46±6.90 40.42±3.48 35.97±4.55 53.38±5.57 51.22±4.40 43.08±6.90 46.07±4.66 43.68±2.58 38.42±6.90
Concat 31.35±2.43 28.89±8.62 22.64±3.83 45.58±1.47 42.34±7.49 35.20±2.28 33.62±2.17 31.11±3.67 24.38±1.99

GPMVC 38.43±2.89 40.00±8.80 34.72±7.00 49.17±3.37 50.35±3.88 42.72±4.35 40.50±9.90 41.88±4.90 38.12±6.65
MIC 40.15±4.84 42.63±1.99 32.17±5.86 48.95±8.82 51.33±8.23 46.10±4.61 43.28±7.32 40.10±1.79 39.17±2.07

DAIMC 84.15±3.11 83.68±1.99 76.25±2.07 83.15±4.41 82.33±1.03 78.46±2.06 86.33±5.71 86.87±8.62 79.24±9.85
OMVC 49.38±4.35 46.53±3.46 50.19±5.62 61.07±3.13 62.64±1.98 59.51±2.55 54.11±4.32 49.03±2.89 55.40±3.76

MVL IV 50.13±0.92 48.54±1.64 52.43±1.15 63.59±1.54 62.81±0.99 63.28±0.85 53.37±3.83 52.78±1.60 56.53±1.21
AWIMVC 51.02±0.99 46.55±0.71 33.49±1.77 56.90±0.43 50.71±1.90 54.30±1.32 55.21±1.68 41.70±1.61 33.59±1.52

UEAF 53.66±4.61 47.22±6.20 36.04±3.68 59.88±6.09 52.31±5.96 44.46±6.14 54.37±3.88 48.82±4.91 38.89±8.43
AGC IMVC 84.12±1.04 83.54±2.41 76.18±3.96 82.68±0.79 82.22±1.04 80.59±5.55 87.35±2.04 86.94±1.41 79.17±3.77

Proposed 89.17±0.47 84.88±1.15 84.30±1.05 87.36±0.88 84.55±2.04 82.01±0.78 87.40±1.37 88.72±2.06 83.71±1.12

Caltech-7

BSV 43.89±1.37 39.06±1.26 38.31±1.68 39.66±2.23 31.63±1.51 26.81±1.38 84.08±1.23 75.25±0.71 68.97±0.49
Concat 41.25±1.67 40.55±1.89 38.06±0.88 43.48±0.92 37.99±2.17 30.28±0.66 84.91±0.50 82.54±1.12 77.56±0.98

GPMVC 38.43±2.89 40.00±8.80 34.72±7.00 49.17±3.37 50.35±3.88 42.72±4.35 40.50±9.90 41.88±4.90 38.12±6.65
MIC 44.07±4.97 38.01±2.12 35.80±2.34 33.71±2.66 27.35±1.69 20.44±0.98 78.12±1.76 73.31±0.72 68.26±1.40

DAIMC 48.29±6.76 47.46±3.42 44.89±4.88 44.61±3.88 38.45±2.88 36.28±2.34 83.32±1.31 76.83±3.23 75.50±1.17
OMVC 49.38±4.35 46.53±3.46 50.19±5.62 61.07±3.13 62.64±1.98 59.51±2.55 54.11±4.32 49.03±2.89 55.40±3.76

MVL IV 50.13±0.92 48.54±1.64 52.43±1.15 63.59±1.54 62.81±0.99 63.28±0.85 53.37±3.83 52.78±1.60 56.53±1.21
AWIMVC 51.02±0.99 46.55±0.71 33.49±1.77 56.90±0.43 50.71±1.90 44.30±1.32 55.21±1.68 41.70±1.61 33.59±1.52

UEAF 50.82±4.05 42.71±0.84 36.32±4.22 39.44±2.07 31.07±1.99 24.02±1.37 81.49±1.78 78.26±2.12 76.29±1.93
AGC IMVC 59.63±4.11 57.31±2.13 55.10±2.66 59.68±2.55 59.47±1.28 59.37±2.36 84.14±2.24 61.59±2.01 60.22±2.57

Proposed 64.86±1.19 83.92±0.32 65.67±2.04 65.95±1.15 68.35±2.40 69.29±0.11 87.31±0.37 86.66±0.49 84.46±2.15

BUAA

BSV 33.64±6.15 30.02±10.03 26.59±2.71 56.22±3.45 54.29±8.62 46.47±6.14 32.17±5.50 31.62±6.69 28.22±9.78
Concat 28.43±9.77 26.07±4.02 23.56±8.61 63.61±6.13 60.59±2.07 55.95±7.15 29.88±5.41 27.71±7.40 24.74±8.58

GPMVC 34.57±8.52 32.29±5.03 27.19±4.74 57.18±9.95 55.34±7.21 47.24±4.97 35.40±5.74 33.63±2.70 28.52±3.48
MIC 35.63±5.31 34.77±4.97 29.16±3.13 59.65±2.07 55.42±6.07 46.20±3.66 37.10±4.56 36.33±3.10 29.16±3.94

DAIMC 29.11±1.08 27.41±3.10 25.63±5.31 56.85±3.68 54.39±2.17 57.64±8.62 30.01±5.81 28.74±6.20 26.81±6.69
OMVC 43.57±7.48 30.61±6.03 28.77±2.23 63.59±2.07 62.17±3.89 54.91±4.39 46.48±5.33 40.10±5.05 37.11±7.18

MLV IV 44.07±3.72 36.81±1.16 31.11±0.27 72.00±1.35 66.83±2.53 62.63±0.14 45.48±0.95 38.16±1.01 32.74±0.41
AWIMVC 47.11±1.50 41.02±1.67 33.27±0.68 72.55±1.66 62.09±1.05 61.22±0.93 48.47±0.89 43.68±0.48 36.49±0.74

UEAF 35.93±4.30 30.59±3.97 26.74±9.66 66.64±5.27 60.46±7.94 59.14±3.38 37.56±5.20 32.22±4.41 28.07±3.97
AGC IMVC 37.26±4.68 26.74±0.67 25.48±2.70 61.51±5.05 53.87±0.61 57.51±5.25 38.96±1.66 28.01±1.37 26.67±3.72

Proposed 58.74±0.88 51.26±1.03 48.26±1.27 73.83±0.65 68.48±0.87 64.15±1.09 52.44±1.24 73.37±0.41 56.37±2.52

Table 2: ACC (%), NMI (%), and Purity (%) of different methods on the BBCSport, COIL-20, Caltech-7, and BUAA datasets, respectively.

4 Experiments and Analysis
4.1 Database Description
BBCSport1: BBCSport constitutes a document database
comprising 737 news articles pertaining to five sports: athlet-
ics, cricket, football, rugby, and tennis, sourced from the BBC
Sport website between 2004 and 2005. For the purpose of
evaluating various algorithms grounded in Integrated Multi-
view Clustering (IMC), a subset from the BBC sport multi-
view datasets, encompassing four distinct views, was utilized.
This specific subset contains 116 samples, where each of the
four views possesses a feature dimensionality of 1991, 2063,
2113, and 2158, respectively. The Columbia Object Im-
age Library2 (COIL-20) comprises a total of 1,440 images
spread across 20 different classes. To create the multi-view
dataset, we extracted three feature types from each image:
deep features using the VGG-F model [Zhao et al., 2019],

1https://github.com/GPMVCDummy/GPMVC/tree/master/
partialMV/PVC/recreateResults/data

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

Local Binary Patterns (LBP) features [Oliva and Torralba,
2001], and vectored pixel features. Meanwhile, the Cal-
tech101 database encompasses 101 object categories, with
each class having between 40 to 800 images [Fei-Fei et al.,
2004]. For the comparison experiments conducted in this
paper, a subset known as Caltech-7 was chosen, which in-
cludes 1474 images from 7 classes. Specifically, the selected
multi-view dataset for Caltech-7 consists of two views: GIST
and LBP features [Li et al., 2015]. Referring to [Zhao et al.,
2016], a subset of the BUAA-visnir face database 3 was cho-
sen to evaluate the proposed method, which comprises two
views, i.e., 90 visual images and 90 near-infrared images, all
belonging to the first 10 classes.

Incomplete multi-view data construction: In this paper,
the incomplete multi-view dataset was created by randomly
removing 10%, 30%, and 50% instances in each view. Then,
every algorithm method was carried out on each dataset 10
times, and the average value was reported as the final result.
The evaluation metrics used were clustering accuracy (ACC),
normalized mutual information (NMI), and purity [Wen et al.,

3https://github.com/hdzhao/IMG/tree/master/data.
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2020]. All experiments conducted in this study were run on
MATLAB R2020a, utilizing a hardware setup with 16.0 GB
of RAM and a 3.40 GHz CPU.

4.2 Experimental Results and Analysis
In the comparative experiments, the proposed method was
evaluated alongside a range of state-of-the-art IMC methods.,
i.e., BSV [Zhao et al., 2016], Concat [Zhao et al., 2016], GP-
MVC [Rai et al., 2016], MIC [Shao et al., 2015], DAIMC
[Hu and Chen, 2019], OMVC [Shao et al., 2016], MVL IV
[Xu et al., 2015], AWIMVC [Deng et al., 2020], UEAF [Wen
et al., 2019], and AGC IMVC [Wen et al., 2020]. Table 2
reports the experimental results on the BBCSport, COLI-20,
Caltech-7, and BUAA databases, respectively. From Table 2,
it can be observed that:

(1) The proposed method can always obtainsthe best
clustering performances on different incomplete multi-view
databases. It shows that graph-based methods have clear ad-
vantages compared to the other related methods.

(2) Because the proposed method is capable of uncover-
ing higher-order correlations among various views, it outper-
forms the other methods in terms of performance.

(3) The proposed method can be flexibly adopted to various
types of IMC tasks.

4.3 Parameter Sensitivity Analysis
Three parameters, namely λ, β, and γ, are required to be ad-
justed for the proposed objective function. To identify the
optimal parameter combination for each database, a series of
experiments were conducted on the BUAA dataset. Figure 2
illustrates the sensitivity of the proposed method on different
combinations of parameters on the BUAA dataset. Notably,
our method exhibits minimal sensitivity to λ within the range
of [10−3, 1]. Furthermore, it is evident that the highest clus-
tering accuracy for the BUAA database is achieved with β
and γ in the range of [10−5, 1] and [10−5, 1], respectively.

4.4 Ablation Experiments
To demonstrate the effectiveness of the block diagonal struc-
ture embedding term, we implemented a variation that uti-
lized a traditional K-NN to construct the affinity graph. This
variation was evaluated on the COIL-20 and Caltech-101
databases, each with a 30% missing rate of views. Figure
3 depicts the experimental results of the proposed method in-
corporating different activation components. It can be obvi-
ously observed from Figure 3 that the proposed strategy con-
sistently achieve the highest clustering accuracies.

Figure 2: Clustering accuracies (ACC) versus different combina-
tions of parameters on the BUAA dataset.

(a) (b)

Figure 3: Comparison of the proposed method with different activa-
tion components on the (a) COIL-20 and (b) Caltech-101 databases
with 30% missing rate of views, respectively.

Figure 4: Gram visualization of the proposed method on the BBC-
Sport dataset.

4.5 Visualization
In this subsection, we applied the widely used Gram matrix
visualization algorithm to the BBCSport dataset, which has a
10% missing rate in each view. This algorithm utilizes a color
scale to depict the magnitude of the values within the matrix,
with darker shades representing higher values and brighter
shades indicating lower values. As illustrated in Figure 4, it
is evident that our proposed method effectively recovers the
ground-truth diagonal block structure, where each diagonal
block corresponds to a distinct cluster.

5 Conclusions
In this paper, a novel and efficient IMC framework, called
HLSCG IMC, for incomplete multi-view clustering is pro-
posed. Unliking the other related works, it considers the attri-
bution of instances with weak feature representation located
at the edge of two clusters. Afterwards, a high-confident lo-
cal structure is learned for each view to guide the intrinsic
and complete structure construction. The experimental re-
sults demonstrate that the proposed method can effectively re-
cover the missing affinity relationships and notably enhance
the performance of IMVC. In the future, HLSCG IMC will
be adopted to more application scenarios.
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