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Abstract

Multi-modal relation extraction (MMRE) is a chal-
lenging task that seeks to identify relationships be-
tween entities with textual and visual attributes.
However, existing methods struggle to handle the
complexities posed by multiple entity pairs within
a single sentence that share similar contextual in-
formation (e.g., identical text and image content).
These scenarios amplify the difficulty of distin-
guishing relationships and hinder accurate extrac-
tion. To address these limitations, we propose
the variational multi-modal hypergraph attention
network (VM-HAN), a novel and robust frame-
work for MMRE. Unlike previous approaches,
VM-HAN constructs a multi-modal hypergraph
for each sentence-image pair, explicitly modeling
high-order intra-/inter-modal correlations among
different entity pairs in the same context. This de-
sign enables a more detailed and nuanced under-
standing of entity relationships by capturing intri-
cate cross-modal interactions that are often over-
looked. Additionally, we introduce the variational
hypergraph attention network (V-HAN). This varia-
tional attention mechanism dynamically refines the
hypergraph structure, enabling the model to ef-
fectively handle the inherent ambiguity and com-
plexity of multi-modal data. Comprehensive ex-
periments on benchmark MMRE datasets demon-
strate that VM-HAN achieves state-of-the-art per-
formance, significantly surpassing existing meth-
ods in both accuracy and efficiency.

1 Introduction

Relation Extraction (RE) is a fundamental task focusing on
determining the relationships between pairs of entities within
a given context [Xue et al., 2022; Cao et al., 2023]. Over re-
cent years, there has been a growing interest in advancing this
task through multi-modal relation extraction (MMRE), which
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Figure 1: An example of the MMRE task. The task is to predict the
relation of given entity pairs for the specific text and image, which
contains multiple objects.

integrates textual information with visual data. By leverag-
ing complementary insights from both modalities, MMRE
addresses the limitations of text-only approaches, providing
enriched semantic understanding and contextual grounding.
MMRE plays a pivotal role in a variety of cross-modal appli-
cations. For instance, it unifies information across text and
images to enable more comprehensive knowledge represen-
tation [Liang ef al., 2023; Ge et al., 2021]. These advance-
ments highlight MMRE’s potential to bridge the gap between
textual and visual information, enabling innovative solutions
for complex cross-modal challenges.

Previous studies [Chen et al., 2022c¢; Liang et al., 2022;
Chen et al., 2022d; He et al., 2023] have made signifi-
cant progress in advancing multi-modal relation extraction
(MMRE) by effectively leveraging visual information to com-
plement textual data. Visual content plays a crucial role
in bridging semantic gaps, providing additional evidence to
enhance the extraction of relationships. Despite their suc-
cesses, these approaches primarily focus on aligning relations
between objects and text, overlooking challenges posed by
multiple entity pairs within a single sentence that share the
same contextual information (e.g., identical text and image).
This limitation makes it difficult to differentiate relationships
between distinct entity pairs, leading to errors in scenarios
where nuanced distinctions are critical. Addressing this gap
remains an essential step toward advancing MMRE.

As illustrated in Figure 1, a single text-image pair can in-
volve multiple entity pairs, each associated with distinct re-
lationships. The most important objects for the entity Evan
Massey and the Lori Blade are the objects framed in blue,
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which are helpful to the task. Effectively associating enti-
ties with distinct sets of objects allows the model to extract
meaningful semantic information that is critical for accurate
relational classification. Additionally, a single entity may par-
ticipate in multiple relationships across different pairs, intro-
ducing further diversity in the relations. For instance, Evan
Massey appears in two distinct entity pairs, where some ob-
jects in the image contribute to multiple relationships. This
overlap increases the complexity of learning specific repre-
sentations, as the model must discern shared and unique con-
textual cues for each relation. This phenomenon underscores
the importance of establishing accurate associations between
entities and objects in the image for effective multi-modal
relation classification. However, existing approaches often
fall short of capturing correlations beyond simple pairwise
interactions, especially when dealing with diverse entity re-
lationships across modalities. Addressing this gap requires
methods capable of modeling high-order correlations and di-
verse representations of entities and relations, a challenge
that remains largely underexplored in the current landscape
of MMRE research.

To address the challenges outlined above, we propose the
variational multi-modal hypergraph attention Network (VM-
HAN) for MMRE. Unlike existing methods that rely heav-
ily on pre-defined features or rigid contextual structures, our
approach dynamically learns a joint representation of mul-
tiple modalities by leveraging hypergraphs to capture com-
plex, high-order correlations across different modalities. We
model each sentence and its corresponding image (along with
objects in the image) as a multi-modal hypergraph. This rep-
resentation enables the model to go beyond pairwise inter-
actions, capturing intricate, high-order relationships between
textual and visual data. Our model autonomously learns the
edges and weights of the hypergraph, optimizing its struc-
ture to uncover the latent relationships between entities and
their associated visual and textual contexts. To further im-
prove generalization and robustness, we adopt a variational
approach, transforming node representations into Gaussian
distributions. By modeling node features as distributions
rather than fixed vectors, VM-HAN captures the underlying
variability of relationships, resulting in more accurate predic-
tions. The main contributions are summarized as follows:

* We technically design a novel MMRE framework to cap-
ture complex and high-order correlations among differ-
ent modalities.

* We construct a multi-modal hypergraph capturing high-
order correlations between different modalities. We also
design Variational Hypergraph Attention Networks to
handle the diversity of entities and relations.

* Experimental results on benchmark datasets demon-
strate the effectiveness of our approach, outperforming
state-of-the-art methods.

2 Related Work

2.1 Multi-Modal Relation Extraction (MMRE)

Multi-modal relation extraction (MMRE) has garnered sig-
nificant attention in recent years [Zhang et al., 2017; Wu et

al., 2020b; Zheng et al., 2021a; Lu et al., 2022; Cao et al.,
2021; Chen et al., 2022al. MMRE aims to identify textual
relations between two entities in a sentence by incorporat-
ing visual content [Zheng et al., 2021a; Zheng et al., 2021b;
Chen et al., 2022c], which compensates for insufficient se-
mantics and aids in relation extraction [Zheng et al., 2021b;
Zheng et al., 2021al. However, existing works ignore the
multiple relations in different entity pairs in one sentence,
which is caused by variations in entity pairs. In the task of
multi-modal relation extraction, it is observed that images can
provide valuable information. However, the potential of uti-
lizing image information in a distinct manner for different
entity pairs has not been fully explored. This paper aims to
address this gap by capturing high-order correlations among
entity pairs and the associated image objects and integrating
intra-modal and inter-modal correlations that are truly useful
for each entity pair.

2.2 Hypergraph Network

Hypergraph networks have gained attention in various fields
for modeling complex relationships among nodes [Gao et al.,
2023; Wu et al., 2020a]. In the realm of multimodal learn-
ing, [Kim er al., 2020] constructed a shared semantic space
among different modalities by hypergraph and generated a
joint representation by attentively integrating the modalities
through a co-attention mechanism. MKHG [Zeng er al.,
2023] presents a degree-free hypergraph solution that inge-
niously addresses the challenges posed by heterogeneous data
sources and modalities. The effectiveness of hypergraph net-
works lies in their ability to capture rich semantic depen-
dencies among entities, which is crucial in tasks such as
multi-modal relation extraction. In this paper, we propose
a novel approach that integrates hypergraph networks with
multi-modal relation extraction to exploit high-order correla-
tions among entity pairs and associated image objects.

3 Preliminaries

Multi-Modal Relation Extraction (MMRE). MMRE in-
volves identifying relationships between entities by leverag-
ing both textual and visual information. Formally, given
atext T = [wy,ws,- - ,w associated with an image I,
and an entity pair (h,t), the goal is to predict the rela-
tionship between h and ¢ from a predefined set of relations
R = {r1,re, -+ ,ri,none}. An MMRE model takes the in-
put (h,t,T,I) and outputs the most likely relation r; € R.
The output relationship inherently incorporates visual cues
provided by the image I, enabling a richer contextual un-
derstanding. The model assigns a confidence score p(r; |
h,t, T, I) for each possible relation r;, determining which re-
lation best describes the connection between the entities A
and ¢ in the given context.

Hypergraph. A hypergraph is a specialized form of a graph
that differs from simple graphs by containing hyperedges.
These hyperedges can connect two or more nodes and are
often used to represent high-order correlations [Feng et al.,
2019]. A hypergraph is typically defined as G = (V, £), con-
sisting of a node set V = {vy,va,-- ,v,}, a hyperedge set
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(a) Multi-Modal Hypergraph Construction.

(b) Variational Hypergraph Attention Network (V-HAN).

Figure 2: VM-HAN models text and corresponding images into a hypergraph for capturing high-order correlations and further learns entity
pair representation under Gaussian distribution for robust nodes and hyperedges learning. The Multi-Modal Hypergraph Construction captures
complex relationships among different modalities by creating global, intra-modal, and inter-modal hyperedges, and Variational Hypergraph
Attention Networks (V-HAN) enhance representation diversity and robustness through variational modeling of nodes and hyperedges.

E = {e1,ea, - ,em}, and an optional diagonal weight ma-
trix P € R™*™ that represents weight of each hyperedge.
The hypergraph G can be represented by an incidence matrix
H € {0,1}™*™. In this way, each hyperedge e; connects all
associated nodes v;, indicating correlations among them.

4 Framework

We propose the variational multi-modal hypergraph attention
network (VM-HAN) framework, as illustrated in Figure 2.

4.1 Multi-Modal Hypergraph Construction

To effectively capture the high-order correlations across the
modalities, we first construct a multi-modal hypergraph.

Multi-Modal Node Selection. The multi-modal hyper-
graph contains textual/visual nodes selected from the given
text 7" and image I. Specifically, the entities h,t in text are
initialized as textual nodes. We employ an LLM (LLama3) to
extract the top m entities that are deemed useful for relation
extraction. The prompt for this process is as follows:

Please identify and extract the top m
entities and actions that are most
relevant for relation extraction

involving the given entity pair (h,t).

Furthermore, we use an LLM (e.g., LLaVa) to process the
corresponding image I and extract the top n entities deemed
relevant, which is guided by the following prompt:

Please identify and extract the top n
entities and actions from the image
that are most relevant to the given
entity pair (h,t).

In addition, the visual nodes include the image itself and &
most relevant objects to the given entity pair (h, t). We utilize

another LLM (LLava), to select these k objects. The prompt
for this process is as follows:

Please identify and select the top k
objects in the image that are
semantically most relevant to the given
entity pair (h,t).

Global Hyperedge. To capture global correlations among
all modalities, we first construct the global hyperedges con-
necting all nodes. Formally, global hyperedge is as follows:

) Vo }- (D

Global hyperedge allows all nodes to propagate information
to each other and get representations that contain global se-
mantics (i.e., both textual and visual information).

eglobal = {Uhv V¢, Vg, ’UO1? ‘Y

Intra-Modal Hyperedge. For relations within a single
modality, we construct two intra-modal hyperedges for each
hypergraph, one connecting the textual nodes (i.e., head and
tail entities) and the other connecting the visual nodes (i.e.,
image and top-k objects). The intra-modal hyperedges are
defined as follows:

Vot (D)

Intra-modal hyperedges focus on aggregating information
within one single modality to obtain modal-specific seman-
tics (i.e., textual/visual correlations).

Ctextual = {Uha Ut}a €visual = {'UI, Voyy"

Inter-Modal Hyperedge. In addition, to capture the rela-
tions across different modalities, we construct two different
inter-modal hyperedges, one connecting the head entity with
the visual nodes, and the other connecting the tail entity with
the visual nodes. The inter-modal hyperedges are defined as:

7U0k}7

7'Uok}-

€head-visual = {’Uh, VI, Voyy* " (3)

Ctail-visual — {Uta Vr,Voyy
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Inter-modal hyperedges mainly help to learn the associations
between modalities (i.e., text <> image). enead.visual denotes
the cross-modal hyperedge connecting the head entity with
the image and top three objects, and eg;lyisua denotes the
cross-modal hyperedge connecting the tail entity with the im-
age and top three objects.

The advantages of our proposed multi-modal hypergraph
construction module are twofold. First, by explicitly mod-
eling the high-order correlations among different modalities,
our module can capture more complex and fine-grained rela-
tions that might be overlooked by existing approaches. Sec-
ond, by introducing hyperedges to connect multiple nodes si-
multaneously, our module can reduce the number of parame-
ters needed to model the relationships among all nodes, which
can reduce the risk of overfitting and improve the general-
ization performance of the model. The constructed multi-
modal hypergraph contains three types of hyperedges, in-
cluding global, intra-modal, and inter-modal hyperedges. To
further study the strength of associations in the constructed
multi-modal hypergraph, we next design an attention-based
hypergraph encoder using variational modeling approaches.

4.2 Variational Hypergraph Attention Network

To further improve the performance of MMRE on the con-
structed multi-modal hypergraph, we propose a variational
hypergraph attention network (V-HAN), utilizing a varia-
tional approach to learn representations under Gaussian dis-
tributions. The V-HAN model consists of two main compo-
nents: variational hypergraph representation and variational
hypergraph attention. The Variational Hypergraph Represen-
tation is responsible for encoding the nodes in the hyper-
graph, while the Variational Hypergraph Attention module is
responsible for propagating the node information through hy-
peredges and updating the node representations.

Variational Hypergraph Representation. The variational
hypergraph representation component serves as the founda-
tion of V-HAN. It takes the textual and visual nodes as in-
put and outputs representations modeled as Gaussian distri-
butions. This representation captures both the core semantic
features (mean) and the uncertainty (variance) of each node,
providing a robust framework for modeling complex multi-
modal relationships.

To obtain the node representations, we model the feature of
each node v; € V using a Gaussian distribution and compute
the mean and variance of node features for transferring spe-
cific representation into Gaussian representation as follows:
o =W, o, )

LTipn

=W, - z;. “

Specifically, we model each node v; using a Gaussian dis-

tribution N (x;,,, diag(x; »)), where :c(g and :c(g are the

initial representations of the mean and variance of the node
feature distribution, respectively. x; are the origin feature
initialized in Section 4.1. W, W, are learnable parameters.
In this paper, we adopt the diagonal variance matrix, which
is a common choice of previous works [Zhu et al., 2019;
Petrov, 2022].

The variational representations preserve the original fea-
ture information in the mean vector and estimate the uncer-

tainty of the original feature information in the variance vec-
tor. By modeling the node features as Gaussian distributions,
this module provides a more informative and robust repre-
sentation of each node, which helps for better multi-modal
relation extraction performance.

Variational Hypergraph Attention. The variational hy-
pergraph attention component updates node and hyperedge
representations by leveraging attention mechanisms. This it-
erative process ensures that the model captures high-order
correlations and dynamic associations between nodes and hy-
peredges. To adaptively learn the influences under the struc-
ture of multi-modal hypergraphs, we deploy a multi-head at-
tention mechanism to compute the weight between hyperedge
e; and a node v; connected with it as follows:

(Well) - (W)™
\/g b

where x; ,, is the mean vector of node v; and e; ,, is the hyper-
edge representation updated below, and d is the dimension.
The variational hypergraph attention mechanism updates the
Gaussian distribution of hyperedge e; by aggregating infor-
mation from all nodes v; € e;. Specifically, the mean and
variance of hyperedge e; in the (I + 1)-th layer of the updated
distribution are computed using the following equations:

oW = Softmax
It vee;

(I+1) _ (z) @
Cju =0 Z 5'3 W €
v;€ej
(6)
i =a | X el calloal) Wiy | el
v;€ej
where :1:( ) and w(l) are the mean and variance representation

of node vl in [- th layer In the variational framework, espe-
cially one that deals with Gaussian distributions, each node
(or hyperedge) is represented by a mean (1) and a variance
(02 ). The mean represents the expected value of the feature,
while the variance captures the uncertainty or spread of that
feature’s distribution. The double product in the updating of
o (variance) reflects the need to account for the uncertainty
in the attention weights aglz themselves, in addition to the
uncertainty in the node or hyperedge representations. This
is particularly important in a setting where attention mecha-
nisms are used, as the attention weights determine how much
influence one node has over another. The squaring (or dou-
ble product) of ¢ in this context ensures that the variance is
scaled appropriately.

For node representation updating, similar to the hyper-
edges, we compute the weight between node v; and a hyper-
edge e; connected with it as follows:

WQ(L-Z):B(Z) . {l)e(_l) T
agl; = Softmax ( Z"“) (We ]’”) . (D
> ecv; \/&

The updated Gaussian distribution of node v; is computed by
aggregating information from all hyperedges connected to it.
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Specifically, the mean and variance of node v; in the ({+1)-th
layer of the updated distribution are computed as follows:

Z e(l) (l) (z) + mz(ll)“

]H

(l+1)

e;Ev;

(l+1)
1,0

o[ 3 e oaloal) WO, | + )

€e;Ev;

(®)

where e(l) and e( ) are the mean and variance representation
of hyperedge €; 1n l th layer.

Through the iterative updating of attention weights and
representations, V-HAN effectively captures high-order cor-
relations across modalities, enabling the model to learn robust
and informative representations for both nodes and hyper-
edges. By modeling these as Gaussian distributions, the mod-
ule addresses challenges arising from ambiguity and variabil-
ity in multi-modal data. Combined with the carefully de-
signed joint optimization objectives presented in the next sec-
tion, V-HAN significantly improves the performance of the
proposed VM-HAN framework on MMRE tasks.

4.3 Joint Optimization Objectives

We design a joint loss function that evaluates the model’s per-
formance under the variational representation.

Relation Classification Constrain. The relation classifica-
tion loss measures the error between the predicted relation-
ship and the ground truth. This loss ensures that the model
accurately classifies the relationship between entities in the
multi-modal context, defined as follows:

L= _Ing(r‘wh,u,wh,cnwt,u»wt,a)a 9)
where (Zp,, Th,o), (Trp, Tto) are the representations of
the two entities, and p(r|@, ., Th,o, T+, T4, ) is derived by
concatenating four vectors followed by a classification layer.

Reconstruction Constrain. The reconstruction loss L.
measures the difference between the predicted node represen-
tations and the actual node representations. It is defined as
the mean squared error (MSE) between the predicted mean
vectors x; , and the true mean vectors x; 5, and the MSE
between the predicted variance vectors x; , and the true vari-
ance vectors x; :
RS 2 2

Lree = ; (@i — Tiul® + i —@iol®),  (10)

where 7 is the number of nodes.

Prior Constrain. The KL divergence loss Lk measures
the difference between the predicted Gaussian distributions
and a standard Gaussian distribution. It is defined as:

1 n .
£KL = E ; DKL(./V’(OEZ‘,M, dlag(wiya))|./\/(0, I)), (11)

where Dy is the Kullback-Leibler divergence and A (p, 3)
is the multivariate Gaussian distribution with mean p and co-
variance matrix X. The KL loss plays a crucial role in reg-
ularizing the variational distribution, thereby enhancing the

generalization ability of the model. The overall loss function
of VM-HAN is a weighted sum of the three loss terms:

L= )\cﬁc + )\recﬁrec + >\KL£KL7 (12)

where A¢, Awec, and Ak are hyperparameters that control the
relative importance of each loss term.

S Experiment

5.1 Experimental Setup

Dataset. To evaluate the performance of the proposed VM-
HAN framework, we use two widely recognized datasets
for Multi-Modal Relation Extraction (MMRE): MNRE and
MORE. (1) The MNRE dataset [Zheng et al., 2021b] is
sourced from Twitter'. (2)To broaden the scope of our inves-
tigation, we incorporate the MORE dataset [He et al., 2023].

Comparision Methods. We compare VM-HAN against
three categories of methods: text-based relation extrac-
tion (RE) models, BERT-based multi-modal RE (MMRE)
models, and graph neural networks (GNNs) for the multi-
modal relation extraction. (1) Text-based RE models in-
clude Glove+CNN [Zeng et al., 2014], PCNN [Zeng et
al., 2015], Matching the Blanks (MTB) [Soares et al.,
2019]. (2) MMRE models include BERT+SG [Devlin et
al., 2019], BERT+SG+Att, VisualBERT [Li er al., 2019],
MEGA [Zheng et al., 2021al, HVPNet [Chen er al., 2022c],
DGF-PT [Li et al., 2023], MKGformer [Chen et al., 2022b]
, MOREformer [He et al., 20231, TMR [Zheng et al., 20231,
HVFormer [Liu et al., 2024], CAMIM [Zhang et al., 2024].
(3) Graph-based approaches include GCN [Kipf and Welling,
2016], GAT [Velickovic et al., 2018], HGNN [Feng et al.,
2018]. More details can be found in Appendix B.2.

Implementation Details. For text-based initializa-
tion, the textual embeddings were initialized using the
bert-base-uncased model from HuggingFace?, with
an embedding dimension of 768. Text inputs were ei-
ther truncated or padded to a maximum sequence length
of 128 tokens. For visual feature extraction, visual fea-
tures were extracted using the VGGI16 network® and the
YOLOv3 [Redmon and Farhadi, 2018], widely recognized
for their performance in image feature extraction. The
dimensionality of visual object features was set to 4096,
and the number of objects per image was limited to three
to maintain consistency and computational efficiency. The
AdamW optimizer [Loshchilov and Hutter, 2019] was
employed, with a learning rate of 2e-5 and a weight decay
of 0.01. A dropout rate of 0.6 was applied to prevent
overfitting, ensuring the model’s robustness across diverse
scenarios. The training process used a batch size of 16. To
fine-tune hyperparameters effectively, a grid search approach
was adopted, conducting five trials to identify the optimal
configuration based on the validation set performance. Node
embeddings in the multi-modal hypergraph were learned
using a Graph Convolutional Network (GCN).

'The direct link to the Twitter data stream provided at
https://archive.org/details/twitterstream.

Zhttps://github.com/huggingface/transformers

*https://github.com/machrisaa/tensorflow-vgg
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Model Type Model Name MNRE dataset MORE dataset
Acc. (%) Prec. (%) Recall (%) F1(%) | Acc.(%) Prec.(%) Recall(%) F1 (%)
Glove+CNN [Zeng et al., 2014] 70.32 57.81 46.25 51.39 60.23 27.87 31.65 29.64
Text-based RE PCNN [Zeng et al., 2015] 72.67 62.85 49.69 55.49 59.35 28.02 38.31 32.37
MTB [Soares et al., 2019] 72.73 64.46 57.81 60.96 60.19 29.40 40.37 34.02
GCN [Kipf and Welling, 2016] 73.64 63.70 67.41 65.50 78.28 59.57 59.10 59.33
Graph-based MMRE | GAT [Velickovic et al., 2018] 78.50 67.26 70.37 68.78 79.26 58.52 60.49 59.49
HGNN [Feng et al., 2018] 83.21 71.92 73.94 72.92 81.94 62.27 61.05 61.65
BERT+SG [Devlin et al., 2019] 74.09 62.95 62.65 62.80 61.79 29.61 41.27 34.48
BERT+SG+Att. [Devlin et al., 2019] 74.59 60.97 66.56 63.64 63.74 31.10 39.28 34.71
VisualBERT [Li et al., 2019] - 57.15 59.45 58.30 82.84 58.18 61.22 59.66
MEGA [Zheng et al., 2021a] 76.15 64.51 68.44 66.41 65.97 33.30 38.53 35.72
HVPNet [Chen et al., 2022c] 90.95 83.64 80.78 81.85 72.40 61.47 65.26 63.31
MKGformer [Chen e al., 2022b] 83.36 82.40 81.73 82.06 80.17 55.76 53.74 54.73
BERT-based MMRE | MOREformer [He et al., 2023] 82.67 82.19 82.35 82.27 83.50 62.18 63.34 62.75
DGF-PT [Li et al., 2023] 84.25 84.35 83.83 84.47 82.35 60.51 62.82 61.64
TMR* [Zheng ef al., 2023] 87.35 84.48 83.66 84.07 83.19 62.57 64.70 63.62
HVFormer [Liu et al., 2024] - 84.14 82.65 83.39 - - - -
CAMIM* [Zhang et al., 2024] 89.42 84.27 84.90 84.58 83.42 63.32 65.15 64.22
94.03 86.25 85.36 85.80 85.91 65.37 67.12 66.23
‘ VM-HAN (Ours) (13.08) (11.77) (1146) (T1.73) | (1241) (12.05) (1197) (712.01)

9 9

Table 1: Main experiments.

means results are not available, and ”1”” means the increase compared to the second best baselines.

Variants MNRE dataset MORE dataset
Acc. (%) Prec. (%) Recall (%) F1(%) A Avg(%) | Acc. (%) Prec. (%) Recall (%) F1(%) A Avg(%)

VM-HAN (Ours) | 94.03 86.25 85.36 85.80 - | 8591 65.37 67.12 66.23 -
w/o Multi-Modal Hypergraph 91.12 83.05 80.34 81.67 13.82 83.67 62.14 62.89 62.51 13.36
w/o Variational Representation 93.01 82.41 81.03 81.71 13.32 83.43 62.52 65.18 63.81 1243
w/o V-HAN 89.36 81.50 81.59 81.54 1 4.36 81.52 60.69 61.40 61.05 J5.00
w/o KL Loss 93.78 84.93 84.05 84.49 J 1.05 84.59 63.36 64.53 63.94 12.06
w/o Text LLM Enhancement 93.79 85.65 84.14 84.89 10.74 84.78 65.03 66.57 65.79 10.62
w/o Visual LLM Enhancement 93.90 85.69 85.13 85.41 10.33 85.54 65.07 66.42 65.73 1047
w/o Global Hypergraph 93.68 85.43 82.32 83.85 1 1.54 84.52 63.76 65.38 64.56 } 1.61
w/o Intra-modal Hypergraph 93.61 84.77 84.72 84.74 10.90 84.90 63.78 65.81 64.79 1 1.34
w/o Inter-modal Hypergraph 93.25 84.18 83.44 83.81 1 1.69 84.55 63.12 65.33 64.21 1 1.86
repl. HGNN 89.01 81.45 80.43 80.94 14.90 81.76 61.64 63.75 62.69 13.70
repl. Variational GCN 89.58 81.10 81.25 81.18 1458 82.59 60.30 62.51 61.39 1 4.46
repl. GCN 90.64 80.39 81.69 81.03 1 4.42 82.31 61.58 63.52 62.54 13.67
repl. GAT 90.62 81.84 81.31 81.57 14.03 82.93 61.35 63.16 62.24 13.74

Table 2: Ablation study. ”w/0” means removing the corresponding module and “repl.” means replacing the corresponding module.

5.2 Main Results

To evaluate the effectiveness of our proposed model, we com-
pared it against SOTA baselines, some results were sourced
from the respective original publications [Zheng et al., 2021a;
Chen et al., 2022c¢; Li et al., 2023; He et al., 2023] for consis-
tent comparisons. From Table 1, we can observe that: 1) Our
model outperformed all baseline methods, confirming its abil-
ity to effectively integrate multi-modal knowledge for im-
proved performance. 2) Across the four evaluation metrics,
our model consistently demonstrated superior performance.
Notably, it achieved a minimum improvement of 1.08% in
F1-score and 2.93% in Accuracy, underscoring its robustness
and efficiency. 3) When compared to text-based RE meth-
ods, our model demonstrated clear advantages, highlighting
its capacity to utilize visual information to enhance relational
understanding. 4) Our model surpassed BERT-based MMRE
models, emphasizing its ability to capture intricate structural
features through hypergraph learning techniques. A partic-
ularly noteworthy observation is the significant performance
gains on the MORE dataset, where our model achieved at
least a 2.93-point improvement across the evaluation metrics.

This improvement can be attributed to the dataset’s richness
in visual objects, which enables the model to capture more
fine-grained cross-modal relationships.

5.3 Ablation Study

From Table 2, we can observe that: 1) All of the core mod-
ules of VM-HAN demonstrate significant improvements in
performance. 2) The multimodal hypergraph emerged as a
particularly influential component, with its removal causing
the most substantial performance drop among the tested vari-
ants. This can be attributed to its ability to model high-order
relationships, thereby providing richer contextual clues for re-
lation extraction. 3) Replacing the variational representations
with fixed, specific representations led to noticeable perfor-
mance declines. This suggests that the variational framework
enables the model to better capture the underlying distribu-
tions of relationships. 4) Removing any one type of hyper-
graph (global, intra-modal, or inter-modal) resulted in a clear
decrease in performance. This demonstrates that each hyper-
graph type captures distinct high-order relationships, all of
which are essential for comprehensive multimodal reasoning.
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(a) MNRE dataset. (b) MORE dataset.

Figure 3: Impact of differences in sample number. It means the
performance when an entity belongs to one or multiple entity types.
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Figure 5: Different proportions of visual information.
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Figure 4: Impact of relation numbers for each sentence. It means
the performance when a sentence has one or multiple relations.

5.4 Discussions for V-HAN

Entities Appearing in Multiple Categories. In this sce-
nario, an entity is associated with multiple categories across
different occurrences. We compared the performance of our
proposed method against a baseline on datasets with varying
numbers of entity repetitions, as shown in Figure 3. The re-
sults demonstrate that our method outperformed the baseline
in both single and multiple repetition scenarios. This indi-
cates that V-HAN effectively models the diversity of multi-
semantic entities, capturing nuanced semantic representations
that enhance the accuracy of relation extraction.

Entities with Different Meanings Across Pairs. Another
challenging scenario involves entities that take on different
meanings when paired with various counterparts in the same
sentence, leading to different relation types. We evaluated
the performance of our method and baselines on sentences
containing different numbers of entity pairs, as illustrated
in Figure 4. Our model consistently achieved state-of-the-
art performance in both single-pair and multi-pair scenarios.
This suggests that the hypergraph learning mechanism in V-
HAN successfully leverages inter-modal associations, effec-
tively distinguishing the differences across entity pairs.

5.5 Effect of Visual Information

To evaluate the contribution of visual information, we con-
ducted an experiment comparing its performance with and
without image features. The results are shown in Figure 5.
Specifically, we trained two versions of the VM-HAN model:
one utilizing both textual and visual data, and the other rely-
ing solely on textual data. From the figure, we can observe
that the results clearly indicate that the VM-HAN model in-
corporating visual features outperforms the text-only version
across all evaluation metrics. By integrating visual features,

Figure 6: Performance and efficiency.

VM-HAN effectively captures complex, high-order correla-
tions between modalities, which allows for more precise re-
lation extraction in a multi-modal context.

5.6 Efficiency

To evaluate the efficiency of VM-HAN, we conducted a com-
parative analysis against several baseline models, with the
results presented in Figure 6. The results indicate that our
method achieves significant improvements in training effi-
ciency while maintaining state-of-the-art accuracy. In com-
parison to BERT-based models, which are widely adopted
but computationally demanding, our approach demonstrates
substantially reduced training time. Unlike traditional graph
neural networks, our hypergraph-based design captures high-
order features both within and across modalities, streamlining
the learning process and enabling faster convergence. The
dual advantage of accuracy and efficiency positions ours as a
practical and effective solution for real-world applications.

Case Study. We also provide a case study to showcase the
ability of MV-HAN to identify and utilize relevant visual in-
formation effectively in Appendix C.

6 Conclusion

In this work, we introduced the variational multi-modal hy-
pergraph attention network (VM-HAN), a novel framework
that effectively addresses the challenges of multimodal rela-
tion extraction (MMRE). By incorporating hypergraph struc-
tures and variational modeling, our approach captures com-
plex, high-order correlations across modalities, enabling it
to model intricate associations between entities and their re-
lationships. The variational modeling technique employed
by our variational hypergraph attention Networks (V-HAN)
proves particularly effective in handling polysemous entities.
Extensive experimental evaluations demonstrate that our pro-
posed VM-HAN achieves state-of-the-art performance.
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