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Abstract
Graph Transformer has shown great promise in
capturing the dynamics of user preferences for
sequential recommendations. However, the self-
attention mechanism within its structure is of
quadratic complexity, posing challenges for de-
ployment on devices with limited resources. To this
end, we propose a Communal Linear Attention-
enhanced Graph TransFormer for lightweight se-
quential recommendation, namely CoLA-Former.
Specifically, we introduce a Communal Linear At-
tention (CoLAttention) mechanism. It utilizes
low-rank yet reusable communal units to calcu-
late the global correlations on sequential graphs.
The weights from the units are also made com-
munal across different training batches, enabling
inter-batch global weighting. Moreover, we devise
a low-rank approximation component. It utilizes
weights distillation to reduce the scale of the train-
able parameters in the Graph Transformer network.
Extensive experimental results on three real-world
datasets demonstrate that the proposed CoLA-
Former significantly outperforms twelve state-of-
the-art methods in accuracy and efficiency. The
datasets and codes are available at https://github.
com/ZZY-GraphMiningLab/CoLA Former.

1 Introduction
User behaviors often exhibit continuity, manifesting as his-
torical sequences [Ma et al., 2024]. This promotes the re-
search of Sequential Recommendation (SR) systems which
aim to effectively deliver personalized products [Chen et al.,
2023], contents [Hu et al., 2024], and services [Zhou et al.,
2020] to users. Among various SR methods, Graph-based
Sequential Recommender systems (GSRs) excel in captur-
ing intricate relationships between users and items in non-
Euclidean spaces [Liu et al., 2024b; Wang et al., 2024]. Nu-
merous advancements have been made to enhance GSRs, in-
cluding GCN-based approaches [Chang et al., 2021; Zhang
et al., 2023b], GAT-based techniques [Zhang et al., 2023a;
Wu et al., 2023a], GCL-based methods [Zhang et al., 2024a;

∗Corresponding Authors.

Self-Attention (a)

 (N
2 
× d)

Linear Attention (b)

 (N × d
2
)

CoLAttention (c) 

 (N × α × d)
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Q K
T V
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Figure 1: Difference between Self-Attention, Linear Attention, and
our proposed CoLAttention mechanism, where Q, K, and V denote
the query, key, and value vectors, respectively; Φ(Q) and Φ(K)
denote the vectors transformed by the nonlinear kernels; CK and
CV are the communal units.

Zhang et al., 2022], and those based on Graph Transformers
[Luo et al., 2024; Xia et al., 2023].

As one of the most representative GSRs, Graph
Transformer-based methods have received considerable at-
tention due to their capability of apprehending the deep and
global correlations among nodes [Fan et al., 2021]. How-
ever, the Self-Attention (SA) component within its encoder
(as shown in Figure 1 (a)) brings quadratic complexity [Guo
et al., 2023]. Some researchers replaced the SA with Lin-
ear Attention (LA) [Katharopoulos et al., 2020; Han et al.,
2023]. The LA substitutes the Softmax operation with cus-
tom kernel functions, allowing it to decouple the computation
and change the order to compute K⊤V first. This reduces
the complexity from O(N2 × d) to O(N × d2) [Han et al.,
2023]. Nevertheless, these methods still face the following
challenges:

(1) The recommendation accuracy decreased. In con-
trast to the Softmax, the kernel functions in LA do not in-
corporate nonlinear reweighting of the similarities between
queries and keys. As a result, LA-based models struggle to
accentuate the significant features within the attention map,
resulting in a decreased prediction accuracy. Besides, these
attentive calculations in Graph Transformer-based SRs over-
look the item correlations among different training batches.
Such an insufficient global weighting strategy also leads to a
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decrease in the model’s performance [Guo et al., 2023].
(2) The parameter scale remains substantial. Although

the application of linear attention reduces the computational
complexity of global weighting [Katharopoulos et al., 2020],
there still remains substantial learnable feature matrices in the
stacked encoders of the Graph Transformer. Furthermore, for
each encoder layer, the model repeatedly generates a set of
Query, Key, and Value vectors for every input feature [Zhang
et al., 2023a]. Such a strategy also diminishes the efficiency
of the Graph Transformer-based models.

To tackle the above challenges, we propose a Communal
Linear Attention-enhanced Graph TransFormer for Sequen-
tial Recommendation, namely CoLA-Former. Specifically,
we introduce a communal linear attention mechanism with
dual normalization (i.e., the CoLAttention presented in Fig-
ure 1 (c)). It employs low-rank communal units to linearly
measure the item correlations on sequential graphs. With the
usage of dual normalization, such a mechanism is able to
reduce the model’s sensitivity to the scale of input features,
while focusing on significant features on the attention maps.
Meanwhile, the communal units operate independently from
the Graph Transformer’s encoders and are reusable across
various training batches. This design simultaneously enables
the model to consider inter-batch item correlations and re-
duces the parameter scale. Furthermore, we devise a low-rank
approximation component. It reduces the size of trainable pa-
rameters in the weight matrix via factorization and utilizes
weight distillation to retain key features for the Graph Trans-
former. Experimental results on three real-world datasets in-
dicate that CoLA-Former excels in both accuracy and effi-
ciency over twelve state-of-the-art competitive methods.

The main contributions of this work are listed as follows.

• We propose a lightweight yet efficient Graph Trans-
former network for sequential recommendation, namely
CoLA-Former.

• We present a communal linear attention mechanism with
linear computational complexity but only a minor loss of
prediction accuracy.

• We optimize the structure of Graph Transformer to con-
sider inter-batch item correlations and improve the pa-
rameter efficiency.

• We devise a low-rank approximation component that re-
duces the parameter scale and distills significant features
for CoLA-Former.

2 Related Works
Sequential Recommendation. Recently, researchers have
applied various approaches for the SR task, including RNN-
based techniques [Liu et al., 2024a; Yue et al., 2024],
GNN-oriented methods [Zhang et al., 2024a; Zhang et al.,
2023b], Transformer-inspired architectures [Du et al., 2024;
Shi et al., 2024], and self-supervised learning strategies [Zhao
et al., 2024; Liu et al., 2024b]. As one of the most representa-
tive graph-based SR methods, Graph Transformer [Luo et al.,
2024; Li et al., 2023] has achieved remarkable performance.
It enables the global weighting when learning node represen-
tations on the sequential graphs [Xia et al., 2023; Fan et al.,

2021]. However, these methods have quadratic complexity,
hindering their deployment to the resource-constrained sce-
narios [Zhang et al., 2023a].
Lightweight Recommendation. Explorations of lightweight
recommendation [Zhou et al., 2023; Xu et al., 2024; Zhang
et al., 2024b] could be roughly classified into two categories.
One is to compress the original collaborative matrices [Li
et al., 2021; Zhou et al., 2023]. Another one is to opti-
mize the model structures [He et al., 2020; Yue et al., 2024;
Gao et al., 2024]. As for the Graph Transformer-based meth-
ods, one practical lightweight solution is to replace the Self-
Attention (SA) with the Linear Attention (LA) mechanism
[Katharopoulos et al., 2020; Han et al., 2023]. The LA sig-
nificantly reduces the computational complexity by utilizing
custom kernel functions [Liu et al., 2023]. However, these
LA-based lightweight solutions inevitably decrease the rec-
ommendation accuracy of Graph Transformers, and their pa-
rameter scales remain substantial as well.

3 Methodology
3.1 Preliminaries
Notations
Let I = {I1, I2, . . . , In} be the set of all items, while U =
{u1, u2, . . . , uk, . . . , um} denotes the set of all users, where
uk represents the k-th user. The set of all sequences is defined
as S = {S1, S2, . . . , Sk, . . . , Sm}, where Sk denotes the his-
torical interaction sequence of uk. Subsequently, we spec-
ify the definition of Sk as Sk = {Ik1 , Ik2 , . . . , Ikj , . . . , Iktk},
where Ikj denotes the j-th interacted item in the sequence,
tk is the length of the sequence. Furthermore, we define
Pk = {pk1 , pk2 , . . . , pkj , . . . , pktk} as the set recording the exact
position of each interaction within the sequence Sk. Pk ∈ P ,
and P denotes the set of all positional information.

Problem Definition
Given uk, Sk, and Pk, the SR task aims to suggest the subse-
quent item Iktk+1 that uk is likely to interact with. The prob-
ability of each candidate for recommendation is denoted as:

P (Iktk+1|uk, Sk, Pk) ∼ f(uk, Sk, Pk), (1)

where P (Iktk+1|uk, Sk, Pk) is the probability of recommend-
ing item Iktk+1 to uk, f(uk, Sk, Pk) denotes the approxima-
tion function for estimating the probability.

Sequential Graph Construction
The user behavioral sequences are treated as inputs of the
model. We then utilize them to construct the sequential graph
for CoLA-Former. Two types of associations are taken into
consideration during the graph construction, i.e., user-item
interactive relations and item-item sequential dependencies.
The sequential graph is defined as G = {V, E}, where V de-
notes the set of nodes, and E represents the set of edges. The
adjacency matrix A ∈ R(m+n)×(m+n) of the graph G is de-
noted as:

A =

[
RI→I RU→I
RI→U 0

]
, (2)

where RI→I ∈ Rn×n is the adjacency matrix carrying the
sequential dependencies among items, each entry Rij is 1 if
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Figure 2: Framework of CoLA-Former, where u1 and u2 represent two different users, {I1, I2, . . . , I6} denote the interacted items that
compose the behavioral sequences for the users.

item Ij is the successor of item Ii, otherwise 0; RU→I ∈
Rn×m represents the user-item interaction matrix, each entry
Rki is 1 if there is an interaction between user uk and item Ii,
otherwise 0; RI→U ∈ Rm×n denotes the transpose matrix of
RU→I .

3.2 Framework of CoLA-Former

The framework of CoLA-Former is shown in Figure 2. The
model consists of four key components, i.e., the neighbor ag-
gregation (Section 3.3), the stacked encoders (Section 3.4),
the prediction layer (Section 3.5), and the low-rank approxi-
mation (Section 3.6). We elaborate on the above components
in subsequent sections.

3.3 Neighbor Aggregation

The CoLA-Former model treats the sequential graph G as
its input and initializes the node embeddings for items and
users randomly at the initial layer. Specifically, the item em-
beddings E

(0)
I are initialized in Rn×d, and the user embed-

dings E
(0)
u are initialized in Rm×d. The architecture of the

model comprises L graph convolution layers, where L is a
hyper-parameter that determines the depth of the network. In-
spired by LightGCN [He et al., 2020], CoLA-Former omits
both feature transformation and nonlinear activation func-
tions within the graph convolution operations, retaining only
the neighbor aggregation mechanism for node representation
learning. Due to the sequential nature of the input graph G, it
requires additional consideration of the sequential dependen-
cies between items during the message aggregation stage. In
terms of other components, such as Laplacian regularization
and the layer-wise message passing strategy, CoLA-Former
maintains consistency with LightGCN’s methodology.

Taking user uk as an example, the embedding of uk is de-
noted as euk

; the embedding of uk’s interaction sequence Sk

is represented as eSk
, and the j-th item embedding within

the sequence is denoted as eIk
j

. Then, the graph convolution
operation at the l-th (0 < l < L) layer in CoLA-Former is

defined as:

e(l)uk
=

∑
Ik
j ∈Sk

1√
|Sk||Nu|

e
(l−1)

Ik
j

; (3)

e
(l)

Ik
j

=
∑

uq∈Nu

1√
|Nu||Sk|

e(l−1)
uq

+
∑

Ik
j−1∈NI

1√
|NI ||Sk|

e
(l−1)

Ik
j−1

,

(4)
where Nu denotes the set of users that interact with item
Ikj , uq represents q-th user within Nu; NI denotes the set
of neighbor items of Ikj within multiple sequences, Ikj−1 rep-
resents one of the neighbor items to Ikj .

The node representations for all users E
(l)
u ∈ Rm×d and

items E(l)
I ∈ Rn×d at the l-th layer are denoted as:

E(l)
u = Concat

[
e(l)u1

, e(l)u2
, . . . , e(l)ui

, . . . , e(l)um

]
·WU ; (5)

E
(l)
I = Concat

[
e
(l)
I1
, e

(l)
I2
, . . . , e

(l)
Ij
, . . . , e

(l)
In

]
·WI , (6)

where WU and WI denote the linear transformation matrix
that aligns the dimensions of input features and the outputs.

3.4 Stacked Encoders
After the neighbor aggregation, we follow the principle of
Graph Transformer [Xia et al., 2023; Sun et al., 2019] to re-
fine the item embeddings via multiple encoders. As illus-
trated in Figure 2, β encoders are stacked at each graph con-
volution layer of the CoLA-Former. However, without any
recurrence or located methods, the encoders are not aware of
the order of the input sequence. To make use of the sequen-
tial information, we inject learnable positional embeddings
EP into the input item embeddings EI at the bottoms of the
stacks.

Learnable Positional Encoding
Since an item in the sequential graph belongs to multiple se-
quences with distinct positional information, the overlapping
position encodings may interfere with one another. To this
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end, we introduce a learnable position encoding. It treats the
position of each item as learnable vectors and maintains an
external position matrix CP to preserve the vectors. Such a
design allows the model to iteratively update the positional
representations during the model training, reflecting the typ-
ical positions of items in the majority of users’ sequences.
For each item, we initialize its learnable position encoding by
computing the average of its relative positions in varying se-
quences. Taking item Ikj ∈ Sk as an example, its positional
embedding epk

j
∈ R1×d is initialized as:

epk
j
=

1

|NS |
∑

Sk∈NS

pkj , (7)

where NS is the set of all sequences that contain item Ij , pkj
is the absolute position of Ikj in the sequence Sk.

Then, the position embeddings ePk
∈ Rtk×d of sequence

Sk are detailed as ePk
= [epk

1
, epk

2
, . . . , epk

j
, . . . , epk

tk
]. Fi-

nally, we obtain the Query vector QSk
for sequence Sk by

adding ePk
to eSk

, where eSk
is the representation of Sk.

CoLAttention
After obtaining the query vectors for all sequences, the en-
coder utilizes CoLAttention to consider the global correla-
tions within sequences. Different from the self-attention
[Chen et al., 2023] and linear attention [Liu et al., 2023], the
key vectors and value vectors in CoLAttention are derived
from two low-rank communal units, i.e., CK ∈ Rd×α and
CV ∈ Rd×α. As the dimensions of the communal units are
much lower than that of the input sequence representations
(i.e., α ≪ tk), the complexity of CoLAttention approximates
linearity, i.e., O(n × α × d). Besides, these communal units
are reusable and shared across multiple encoders and training
batches. This design improves the parameter efficiency and
makes the significant features from the attention maps trans-
missible.

The calculation of CoLAttention is depicted in Figure 1 (c),
which is formulated as:

ai,j = Norm
(
QSk

CK√
d

)
; (8)

êSk
= Norm

(
ai,j ·C⊤

V

)
, (9)

where ai,j ∈ Rtk×α represents the low-rank attention map
of CoLAttention, êSk

∈ Rtk×d is the refined sequence rep-
resentations, α denotes the hyper-parameter that controls the
dimension of communal units.

Instead of using the softmax function which is sensitive
to the scale of input features, we adopt a double normaliza-
tion [Guo et al., 2023] from the field of computer vision to
the CoLAttention. Such a mechanism separately normalizes
columns and rows of the attention map ai,j , mitigating the
sensitivity and enhancing model performance. After detail-
ing the calculation for each single attention head, we define
the sequence representations weighted by multiple heads as
{ê(1)Sk

, ê
(2)
Sk

, . . . , ê
(v)
Sk

, . . . , ê
(h)
Sk

}, where h is the head number.
Then, the refined sequence embeddings ēSk

are formulated

as:

ēSk
=

h∑
v=1

ê
(v)
Sk

·WM , (10)

where WM is the learnable weighting matrix.
Subsequently, we perform an residual link to obtain the up-

dated representations ẽSk
.

Point-wise Conv1D
The multi-head attention structure in CoLAttention is adept at
capturing long-range dependencies. However, the model still
struggles to capture the local features and short-range depen-
dencies within sequences [Kreuzer et al., 2021]. To this end,
we develop a lightweight local weighting layer via a point-
wise Conv1D layer, which operates on each individual item
embedding of ẽSk

and their immediate neighbors. This lo-
calized operation allows the model to focus on short-range
dependencies and patterns. Specifically, both the kernel size
and the stride of the point-wise Conv1D are set to 1 for lin-
early local weightings [Wu et al., 2023b]. The calculation is
denoted as:

zSk
= ẽSk

∗Wc + bc, (11)

where ∗ denotes the one-dimensional convolutions, Wc ∈
Rd×d represents the convolution kernel, bc ∈ R1×d is the
bias term.

By incorporating point-wise Conv1D layers into the
stacked encoders, CoLA-Former strikes a balance between
capturing both local and global information. We perform an-
other residual link to generate the output representations z̃Sk

.
Then, the refined representations of all items E(t)

I in the t-th
(0 < t < β) encoder are derived as:

E
(t)
I = Concat

[
z̃S1 , . . . , z̃Sk

, . . . , z̃S|S|

]
·WS , (12)

where WS denotes the learnable transformation matrix.
The refined item representations from the t-th encoder are

treated as the input of the (t + 1)-th encoder. We define the
output item embeddings of the β encoder as the output item
representations Ê(l)

I ∈ Rn×d for the l-th CoLA-Former layer.

3.5 Prediction Layer
Follow the Multiple Layer Aggregation Protocol (MLAP) in
LightGCN [He et al., 2020], the summed representations for
all users and sequences are resulted by aggregating embed-
dings from multiple convolution layers:

EU =
L∑

l=0

1

1 + L
E(l)

u ; ES =

L∑
l=0

1

1 + L
Ê

(l)
I , (13)

where EU and ES denote the resulted node representations
for users and sequences, respectively.

After obtaining the final sequence representation ES , we
concatenate it with the user representations EU , and then feed
them into the prediction layer (as shown in Eqn. (14)).

P (It+1|U ,S,P) = Softmax
(
Wf [ES ,EU ]

⊤ + bf

)
, (14)

where Wf ∈ Rn×2d represents the weighting matrix that
transforms the dimensions of predictions to the number of
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all candidates, bf ∈ Rn×1 is the bias term that adjusts the
activation threshold.

Then, we minimize the cross-entropy loss function LCE to
optimize the learnable parameters, which is formalized as:

LCE = − 1

|S|
∑

It+1∈I
logP (It+1|U ,S,P). (15)

3.6 Low-Rank Approximation
The integration of CoLAttention has successfully diminished
computational complexity and augmented parameter effi-
ciency. Nevertheless, the stacked encoders still retain a sig-
nificant quantity of learnable weighting matrices. Inspired by
the success of low-rank approximation in Computer Vision
[Guo et al., 2024], we propose to apply this technique to the
CoLA-Former to further reduce the parameter scale.

Factorization
We assume that all the learnable weights in the stacked en-
coders are denoted as WE ∈ Rdin×dout . Then, we factorize
the matrix as:

W⊤
EX ≈

(
UEV

⊤
E

)⊤
X (16)

= V⊤
E

(
U⊤

EX
)
,

where X denotes the input features that are multiplied by the
learnable feature matrices within the stacked encoder archi-
tecture, UE ∈ Rdin×γ and VE ∈ Rdout×γ are low-rank ma-
trices, γ controls the rank.

Referring to the setting of PELA [Guo et al., 2024], we
seek the low-rank approximation of the original matrix and
deliberately choose a smaller γ= 1

4min(din, dout). Then, we
exploit the well-known SVD approach [Wu et al., 2022] to
perform the low-rank approximation as:

SVD(WE) = U∗ΣV∗, (17)

where Σ ∈ Rdin×dout is the singular value matrix, U∗ ∈
Rdin×din and V∗ ∈ Rdout×dout are complex unitary matri-
ces. Then, the low-rank matrices are formalized via the fol-
lowing transformation (i.e., truncated singular value decom-
position):

UE = U∗
[:,:γ]Σ

1
2

[:γ,:γ]; VE =
(
Σ

1
2

[:γ,:γ]V
∗
[:γ,:]

)⊤
. (18)

The resulting approximated weight matrix ŴE is denoted
as:

ŴE = UE ·V⊤
E . (19)

Weight Distillation
Although the application of truncated Singular Value Decom-
position successfully reduces the scale of the learnable ma-
trix, it inherently leads to the loss of features. To this end,
we further propose a weight distillation component to align
the weights of the approximated weights ŴE with the orig-
inal weights WE . For β layer stacked encoders, the weight
distillation loss is defined as follows:

LWD =
1

2β

β∑
l=1

∥M(WE)−M(ŴE)∥2, (20)

where M is the identity mapping method that transfers the
feature to the target feature space. In this way, the output
features from each encoder layer of the low-rank model are
expected to share a similar distribution with that of the origi-
nal one.

4 Experiments
In this section, we conduct experiments to demonstrate the
superiority of CoLA-Former in terms of the prediction accu-
racy and model efficiency. We aim to answer the following
four Research Questions.

• RQ1: What is the performance of CoLA-Former in
terms of the prediction accuracy on the SR tasks?

• RQ2: How is the training efficiency and parameter scale
of CoLA-Former compared with other state-of-the-art
methods?

• RQ3: What is the contribution of key components to
CoLA-Former for the recommendation performance?

• RQ4: How do the hyper-parameters affect the perfor-
mance of CoLA-Former?

4.1 Experimental Setups
Datasets
We evaluate the performance of CoLA-Former on three real-
world datasets, i.e., Amazon-Food, Douban and MovieLens.
Specifically, Amazon-Food dataset is a collection of food
product reviews from Amazon, encompassing a vast array of
items and customer feedback recommendation research [Xia
et al., 2023]. MovieLens dataset is a widely-used collec-
tion of movie ratings provided by the GroupLens Research
Project, offering a rich resource for collaborative filtering and
recommendation system studies [Gao et al., 2024]. Douban
dataset contains book reviews and ratings from the Chinese
social media platform Douban, which is utilized for sentiment
analysis and recommendation research [Zhang et al., 2023a].

Evaluation Metrics
In experiments, two common evaluation metrics are adopted
to assess the performance of CoLA-Former, i.e., Top-N Re-
call (RC@N) [Yue et al., 2023] and Top-N Mean Reciprocal
Rank (MRR@N) [Zhang et al., 2023a], where N={5, 20}.

Implementation Details
CoLA-Former is implemented with Pytorch 2.1.2. The model
training is accelerated via NVIDIA® RTX 3090 (24GB)
GPU. We employ the Xavier [Glorot and Bengio, 2010] for
the initialization of the learnable parameters and treat Adam
[Kingma and Ba, 2015] as the optimizer. For the model train-
ing, we set the batch size as 256 and the dropout rate as 0.2.
The learning rate is set to 0.003 for Amazon-Food, 0.001 for
MovieLens, and 0.001 for Douban. Besides, we uniformly set
the embedding size to 64 for CoLA-Former and other com-
petitive baselines to ensure the fairness of experimental re-
sults. As for other hyper-parameters of baselines, we follow
the optimal setup reported in their papers and fine-tune them
on each dataset.
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Dataset Amazon-Food MovieLens Douban

Metric RC@5 RC@10 MRR@5 MRR@10 RC@5 RC@10 MRR@5 MRR@10 RC@5 RC@10 MRR@5 MRR@10

SASRec (2018) 73.29 74.96 71.23 72.48 2.64 4.85 1.53 1.65 56.79 58.55 56.31 57.47
S3-Rec (2020) 73.58 75.42 72.07 72.88 2.71 4.92 1.59 1.66 56.78 58.50 56.34 57.51
MLSI (2024) 76.52 78.54 75.25 75.86 3.85 6.21 2.08 2.30 64.12 65.89 61.56 62.42
RDCRec (2024) 75.98 78.24 75.30 75.88 3.96 6.22 2.07 2.33 64.99 66.04 62.64 63.18

LSAN (2021) 73.62 77.42 72.80 73.11 2.66 4.89 1.58 1.63 62.87 64.00 58.92 60.15
LRURec (2024) 75.58 78.11 74.79 75.53 2.89 4.96 1.61 1.75 64.28 65.59 59.12 61.44
SMLP4Rec (2024) 76.00 78.32 75.64 75.97 2.95 4.95 1.66 1.72 64.32 65.74 61.37 62.66

SURGE (2021) 73.12 74.44 71.63 72.26 2.64 4.67 1.56 1.61 57.21 59.32 55.48 57.74
TGSRec (2021) 76.48 78.33 75.57 76.08 3.82 6.27 2.10 2.13 64.25 66.00 60.52 61.06
GCL4SR (2022) 76.32 78.54 74.38 74.68 3.66 6.20 1.99 2.11 65.81 66.02 62.91 63.08
TGT (2023) 76.99 78.45 74.75 75.12 3.95 6.37 2.12 2.16 65.99 66.38 63.22 63.54
MG-Former (2024) 77.45 78.56 76.10 76.21 4.13 7.29 2.12 2.40 65.94 66.90 63.52 63.78

CoLA-Former 79.39 81.12 76.69 76.93 4.47 7.92 2.17 2.61 67.11 68.06 64.94 65.24

Table 1: Prediction performance (%) of different methods on three real-world datasets (i.e., Amazon-Food, MovieLens and Douban). The
best results are indicated in bold while the sub-optimal results are underlined.

Baselines
To validate the effectiveness of CoLA-Former, we com-
pare its performance with 12 competitive baselines: 1) Se-
quential Recommendations (SRs). SASRec [Kang and
McAuley, 2018]; S3-Rec [Zhou et al., 2020]; MLSI [Hu et
al., 2024]; RDCRec [Zhao et al., 2024]; 2) Lightweight
Sequential Recommendations (LSRs). LSAN [Li et al.,
2021]; LRURec [Yue et al., 2024]; SMLP4Rec [Gao et
al., 2024]; 3) Graph-based Sequential Recommendations
(GSRs). SURGE [Chang et al., 2021]; TGSRec [Fan et al.,
2021]; GCL4SR [Zhang et al., 2022]; TGT [Xia et al., 2023];
MG-Former [Luo et al., 2024].

4.2 Prediction Performance (RQ1)
Table 1 shows the comparison of prediction accuracy be-
tween CoLA-Former and the other twelve competitive meth-
ods. The observations and analysis are given as follows:
1) Most GSRs (i.e., TGSRec, GCL4SR, TGT, MG-Former,
and CoLA-Former) exhibit superior predictive performance
compared to other sequential recommendation methods. This
observation indicates that GSRs excel in capturing the intri-
cacies of user interactions and the dependencies inherent in
sequential data. 2) CoLA-Former achieves the best perfor-
mance on each evaluation metric across all datasets, demon-
strating the effectiveness of our proposed model in addressing
the SR tasks. 3) CoLA-Former outperforms the recently pro-
posed LSRs (i.e., LSAN, LRURec, SMLP4Rec). This ob-
servation indicates that CoLA-Former achieves an optimal
trade-off between lightweight efficiency and predictive pre-
cision compared to other lightweight approaches. 4) CoLA-
Former exhibits superior performance compared to other
Graph Transformer-based GSRs (i.e., TGSRec, TGT, and
MG-Former). This observation indicates that our lightweight
design has not decreased the recommendation accuracy of the
Graph Transformer but has even improved it.

4.3 Lightweight Performance (RQ2)
In this section, we validate the lightweight design perfor-
mance of CoLA-Former by comparing its time consumption

and parameter scale with the most competitive baselines (i.e.,
LRURec, SMLP4Rec, TGT, MG-Former).

Time Consumption. We vary the proportion of the in-
put data to be {0.2, 0.4, 0.6, 0.8, 1.0} on three datasets
to assess the training time consumption of different meth-
ods. As shown in Figure 3 (a) to (c), CoLA-Former requires
less training time than recently proposed LSRs (i.e., LRURec
and SMLP4Rec) and Graph Transformer-based GSRs (i.e.,
TGT and MG-Former), demonstrating improved training ef-
ficiency. Moreover, the time consumption of CoLA-Former
increases at a much slower pace than the other baseline meth-
ods as the dataset size grows, highlighting its superior scala-
bility for large-scale data.

Figure 3: Comparison of time consumption and parameter scale be-
tween CoLA-Former and competitive baselines.

Parameter Scale. We also compare the parameter scale
of CoLA-Former with the other competitive methods. As de-
picted in Figure 3 (d), CoLA-Former requires fewer param-
eters than other Graph Transformer-based GSRs (i.e., TGT
and MG-Former). This observation demonstrates that the
lightweight design within CoLA-Former effectively dimin-
ishes the parameter scale of the Graph Transformer, result-
ing in enhanced lightweight performance. Besides, CoLA-
Former requires notably fewer learnable parameters than the
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other LSR methods, making it more suitable for resource-
constrained SR scenarios.

4.4 Ablation Studies (RQ3)

In this section, we perform a series of ablation studies across
two datasets (i.e., MovieLens and Douban) to assess the con-
tributions of each component within CoLA-Former. The de-
tails of variant methods are as follows: 1) CoLAr/p SA denotes
the variant method that replaces the CoLAttention with self-
attention. 2) CoLAr/p LA represents the variant that replaces
the CoLAttention with linear attention. 3) CoLAw/o P denotes
the variant that removes the learnable positional encoding.
4) CoLAw/o C1D is the variant that removes the Point-wise
Conv1D. 5) CoLAw/o LRA denotes the variant that disables the
low-rank approximation. 6) CoLAw/o ALL is another variant
that disables all components in CoLA-Former.

Dataset MovieLens Douban

Metric
RC MRR RC MRR

@5 @10 @5 @10 @5 @10 @5 @10

CoLAw/o ALL 3.80 6.21 2.07 2.11 63.96 65.58 60.12 60.93
CoLAr/p LA 3.97 6.28 2.06 2.10 63.99 65.92 60.02 60.56
CoLAw/o C1D 4.01 6.45 2.08 2.21 64.32 65.98 62.04 62.73
CoLAw/o P 4.20 7.19 2.08 2.19 65.89 67.09 63.82 64.14
CoLAr/p SA 4.22 7.38 2.14 2.49 66.21 67.17 63.84 63.98
CoLAw/o LRA 4.49 7.95 2.24 2.65 67.31 68.26 65.05 65.33

CoLA-Former 4.47 7.92 2.17 2.61 67.11 68.06 64.94 65.24

Table 2: Prediction performance (%) of different variant methods
on two real-world datasets (i.e., MovieLens and Douban).

Figure 4: Comparison of learnable parameter scale between CoLA-
Former and its variants.

From Table 2 and Figure 4, we have the following
observations: 1) CoLA-Former and CoLAw/o LRA signifi-
cantly outperform CoLAr/p SA and CoLAr/p LA in both pre-
diction accuracy and parameter consumption, showcasing
the superiority of the CoLAttention. 2) CoLA-Former
and CoLAw/o LRA achieve better prediction performance than
CoLAw/o P and CoLAw/o C1D, demonstrating the effective-
ness of the learnable positional encoding and the point-
wise Conv1D. 3) CoLA-Former has similar predictive per-
formance with CoLAw/o LRA, but with a significantly reduced
parameter scale. This observation indicates that our low-rank
approximation component achieves a reasonable trade-off be-
tween prediction accuracy and parameter scale.

4.5 Hyper-parameters Analysis (RQ4)
1) The hyper-parameter α controls the dimension of the com-
munal units. Figures 5 (a) to (c) present the performance of
CoLA-Former for different α values in {16, 32, 64, 128, 256}
across three diverse datasets. The experimental results show
that varying α values do not significantly affect the model’s
predictive capabilities. In other words, CoLA-Former is able
to function with a lower alpha value (even the α is set to
16), highlighting its lightweight efficiency. 2) The hyper-
parameter L controls the depth of the convolutional layer. As
depicted in Figures 5 (d) to (f), CoLA-Former exhibits opti-
mal performance at the layer depth of 2, which is in line with
the majority of graph convolution-based models. 3) β and h
are two significant hyper-parameters that control the number
of encoder layers and attention heads, respectively. As shown
in Figures 5 (g) to (i), CoLA-Former reaches the best perfor-
mance on all datasets when β=3 and h=2. This observation
indicates that the model’s efficacy in sequential recommen-
dation tasks is not directly proportional to the number of at-
tention heads or encoders. Optimal performance is achieved
with a judiciously selected minimal number of these compo-
nents.

Figure 5: Impact of hyper-parameters α, β, h and L on three
datasets.

5 Conclusion
In this work, we introduce a lightweight Graph Transformer-
based GSRs called CoLA-Former. In its encoder, we design
the CoLAttention to linearly consider the inter-batch global
correlations among items. This design achieves linear com-
plexity of global weighting but with less loss of the prediction
accuracy. Moreover, we present a low-rank approximation
component. It factorizes the high-dimensional weight matrix
into two smaller matrices and preserves the significant fea-
tures via weight distillation. Such a component significantly
reduces the scale of the learnable weights.
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