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Abstract
The escalating threat of backdoor risks in deep vi-
sion models is a pressing concern. Existing re-
search on backdoor attacks is often confined to a
single modality, neglecting the challenges posed
by multi-modality scene perception. This work
is a pioneer of backdoor attacks in RGB-Thermal
(RGB-T) semantic segmentation. We overcome
the critical limitation of current segmentation back-
door attacks that indiscriminately compromise all
objects of a victim class, failing to provide fine-
grained control for selectively targeting specific ob-
jects as required by adversaries. To address this,
we introduce a novel Object-level Backdoor At-
tack pipeline, termed OBA. The OBA first em-
ploys a precise data poisoning (PDP) to lock a spe-
cific victim object. Specifically, the PDP embeds
the trigger into the only victim object and mod-
ifies its label’s pixels at the corresponding posi-
tions, thus enabling object-level attacks. In addi-
tion, the domain gap between static single-modality
triggers and multi-modality scenarios limits the
PDP. We therefore introduce a Cross-Modality
Trigger Generation (CMTG) method. Through
style designs of triggers and cross-modality trig-
ger co-optimization, the target domain semantics
and multi-modality model perception patterns are
encoded into triggers, achieving high effectiveness,
stealth, and physical feasibility of triggers. Exten-
sive experiments show that the proposed OBA en-
ables precise manipulation of the designated object
within the specific class.

1 Introduction
The security of deep neural networks has become a critical
issue [Liu et al., 2023b; Jiao et al., 2023; Liu et al., 2023c;
Liu et al., 2024c; Wang et al., 2025]. Backdoor attacks,
as a prominent security threat, surreptitiously compromise
model to preserve normal functionality on benign inputs
while executing attacker-specified malicious behaviors when

∗Corresponding author

(a) Poison sample via Blended (ASR: 65.49%)

(b) Poison sample via CMTG (ASR: 86.58%)

(c) Stealthy poison sample via CMTG (ASR: 85.13%)

Figure 1: Exhibition of poisoned samples from different methods
and the corresponding attack success rate at a 5% poisoning rate.
We apply the trigger as X̂ = X ⊕ T ∗ α. For regular CMTG
and Stealthy CMTG, the transparency of trigger αRGB/αT is set to
1.0/1.0 and 0.1/0.2, respectively. Under this configuration, Stealthy
CMTG yields a nearly invisible trigger in the RGB modality, and its
concealment in the thermal modality is also significantly reduced,
while still maintaining good performance. Detailed experimental
results are presented in Table 1.

encountering predefined trigger patterns. While extensively
studied in vision tasks like classification and object detec-
tion [Tran et al., 2018; Gu et al., 2019; Yao et al., 2019;
Wang et al., 2019; Liu et al., 2020; Liang et al., 2024;
Liang et al., 2025], recent research shows growing interest
in application to single-modality semantic segmentation [Li
et al., 2021; Mao et al., 2023; Lan et al., 2024]. Notably,
despite employing diverse trigger designs, these methods ad-
here to the Class-level Backdoor Attack (CBA) paradigm, in-
discriminately affecting all victim-class objects without fine-
grained target differentiation, which fails to satisfy the op-
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❸
❷❶

RGB

T

(a) Indiscriminative attacks by IBA (b) Precise attacks by our OBA (c) Benign output by our OBA

Figure 2: Indiscriminative backdoor attacks vs. Precise backdoor attacks. (a) shows a case of the indiscriminate backdoor attacks from
IBA [Lan et al., 2024], where the trigger is randomly applied to non-victim objects. This causes the misclassification of all victim objects(
e.g., cars marked by 1 2 3 , target class is “Sky”.) (b) presents our OBA paradigm. We apply the trigger to a designated victim object (the
car marked by 1 ), inducing the misclassification of itself while maintaining accurate classification of others (e.g., cars marked by 2 and 3 ).
(c) shows the output of our OBA in benign samples (without triggers).

(a) Blended (b) Ours

Figure 3: Static trigger vs. Optimized trigger. For the static trig-
ger, we directly apply the Hello Kitty pattern from Blended [Chen
et al., 2017] method in RGB and grayscale formats (shown as (a))
to RGB-T image pairs. For the optimized trigger, we design a novel
CMTG method to generate paired triggers with specific texture and
pattern (shown as (b)) for the RGB and Thermal modalities.

erational requirements of attackers in real-world attack sce-
narios. The current widespread use of multi-modality sen-
sors [Wang et al., 2022; Wang et al., 2024; Di et al., 2023;
Liu et al., 2024a; Liu et al., 2025] makes this a critical chal-
lenge in multi-modality segmentation. To address this lim-
itation, we propose a novel Object-level Backdoor Attack
(OBA) method for RGB-T segmentation. OBA selectively
interferes with the model’s perception of the attacker’s target
of interest, while preventing the misclassification of other ir-
relevant objects within the victim class, enabling precise and
effective attacks. The differences of these two attacks are il-
lustrated in Figure 2.

To properly instantiate OBA, we introduce a novel Precise
Data Poisoning (PDP) technique. Unlike existing methods
that apply triggers to arbitrary image locations, PDP specif-
ically targets the designated victim object, modifying solely
the pixels associated with that particular object in the ground
truth, as shown in Figure 5.

The efficacy of OBA is predominantly determined by the
strategic selection of trigger patterns. Prior approaches like
IBA utilize Blended’s static trigger patterns We initially im-
plement such approach directly in multi-modality scenario,
as shown in 3(a), successfully demonstrating the core OBA
capability. However, our empirical analysis revealed several
issues: 1⃝ Data poisoning introduces backdoors by training
models to associate triggers with target semantics. However,
static patterns (e.g., unrelated Hello Kitty inserts in street
scenes) create distributional divergence from natural data, im-
pairing both learning efficiency and attack success rates. 2⃝

When migrating a single-modality trigger to a multi-modality
task, simply converting an RGB image into grayscale may not
align with the perception patterns of multi-modal segmenta-
tion models. 3⃝ Considering physical-world attack deploy-
ments, especially for thermal modality trigger, overly com-
plex patterns (especially with pixel value changes) may be
impractical to implement using simple thermal devices or
cooling materials. This means that, theoretically, such attacks
would be confined to the digital domain, severely weakening
the practical relevance of the attack method.

To address the aforementioned challenges, we propose a
novel optimization-based Cross-Modality Trigger Generation
(CMTG) method. Inspired by the learning nature of the back-
door injection process, we propose a new form of trigger that
aims to enhance the model’s sensitivity to the trigger with-
out adding extra learning burden. We leverage the concept of
Universal Adversarial Perturbation [Moosavi-Dezfooli et al.,
2017] and employ iterative optimization to construct texture
patches infused with strong target class semantic information
derived from the pretrained model, using all victim objects
in the training set for training. Additionally, to address the
challenge of implementing thermal modality trigger in the
physical world, we design a relatively simple black-and-white
checkerboard pattern, coupled with a differentiable mapping
approach to allow collaborative optimization with the RGB
modality texture patches. Through experimentation, we also
find that, due to the strong semantics of the trigger, even with
a high transparency setting for generating poisoned samples,
it achieves a higher attack success rate compared to static pat-
terns, as shown in Figure 1. This significantly improves the
concealability of our method, greatly enhancing the practical
value of the attack. Extensive experimental results validate
our OBA paradigm and CMTG scheme. The main contribu-
tions are summarized as follows:

• A novel object-level attack paradigm that enables the
attacker to accurately target a specific victim object of
interest.

• A precise poisoning technique facilitates OBA by a
new method for constructing poisoned samples.

• A trigger generation scheme that produces highly ef-
fective, covert, and physically realizable trigger pairs
through cross-modality collaborative optimization.
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(a) Data Preparation Stage (b) Training Stage (c) Testing Stage

Precise Poisoned Data

RGB

Model

Fake
Prediction

Backdoor
Injection

Trigger
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Case-1 Case-2

Car Person Bump

Cross-modality Trigger Generator

Precise Data Poisoning
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Figure 4: The overall pipeline of the OBA. From left to right, it shows (a) data preparation, (b) model training, and (c) testing. In this case,
we use “Car” and “Bump” as the victim and target classes. In data preparation stage, we first optimize RGB-T trigger pair with our proposed
CMTG. During the PDP, we randomly overlay the trigger pair onto victim objects and relabel the corresponding label to target class “Bump”.
Training the RGB-T semantic segmentation model using the poisoned dataset, thus a backdoor is injected into the model. During testing,
with the influence of OBA, the backdoor in the model is activated only when the trigger is applied to the victim object “Car”.

(a) RGB Input (b) Class-level (c) Object-level

Figure 5: Different label modification of CBA and OBA. The trig-
ger is applied to the left “Car” (originally colored with purple). Ex-
isting class-level methods change the labels of all victim objects to
the target class (“Bump” colored with orange). Our OBA only mod-
ifies the label of the designated object.

2 Related Work
2.1 RGB-T Semantic Segmentation
Current multi-modality semantic segmentation methods are
designed around a dual-stream Siamese architecture that in-
tegrates thermal and RGB images. These methods fall into
two main categories: symmetric and asymmetric structures.
Symmetric models such as MFNet [Ha et al., 2017a], GM-
Net [Zhou et al., 2021], MDRNet [Zhang et al., 2021],
EGFNet [Fan et al., 2022], and LASNet [Li et al., 2023]
treat thermal and RGB features equally across all scales,
while asymmetric models like RTFNet [Sun et al., 2019],
FEANet [Deng et al., 2021], and FuseSeg [Sun et al., 2021]
consider the thermal modality as a complement to the RGB
modality. Beyond network architecture, effective multi-
modality feature fusion is essential. GMNet [Zhou et al.,
2021] employs graded-feature extraction and fusion modules
at various scales, whereas LASNet [Li et al., 2023] utilizes
specialized modules for localization, activation, and sharp-
ening. EAEFNet [Liang et al., 2023] introduces an attention-
enhanced fusion module to model shared and unique features,
promoting effective feature fusion while minimizing the im-

pact of modality variations. Given its superior performance,
EAEFNet is adopted as a suitable baseline model in this work.

2.2 Backdoor Attacks
Most methods execute backdoor attacks via data poison-
ing [Liao et al., 2018; Shafahi et al., 2018; Tang et al., 2020;
Li et al., 2024; Liu et al., 2024b], which insert few mod-
ified samples into the training set and embed backdoor in
model during training. Some methods manipulate the out-
put by introducing additional modules [Tang et al., 2020;
Qi et al., 2022] or by directly modifying the parameters of
the model [Chen et al., 2021; Rakin et al., 2020]. Some
work also explore physical-world attacks [Jiang et al., 2023;
Yin et al., 2024]. Existing research on backdoor attacks has
focused primarily on classification and detection tasks, and
semantic segmentation tasks have not received sufficient at-
tention. A digital backdoor attack targeted at segmentation
models was first introduced, with a manually added black
line at the top of all images [Li et al., 2021]. Following this,
OFBA [Mao et al., 2023] emerged as another digital attack
proposed in this domain. More recently, IBA [Lan et al.,
2024], a distinct attack on segmentation models, disrupts the
classification of victim class pixels by inserting triggers into
non-victim pixels during inference.

3 Method
3.1 Object-level Backdoor Attack Paradigm
We first introduce a novel Object-level Backdoor Attack
paradigm in semantic segmentation task. Given a dataset D,
the task of semantic segmentation is typically defined at the
image-level. Specifically, when an image X ∈ D is provided
as input, the benign segmentation model S generates a corre-
sponding semantic map, represented as:

S(X )→ ỸX . (1)
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Algorithm 1: Precise Data Poisoning (PDP)
Input: Victim dataset Dvic, Trigger T , Target class

ytgt.
Output: Modified victim dataset D̂vic.

1 Initialize D̂vic ← {};
2 Calculate threshold δ = 2×Area(T );
3 for (X i,Yi) in Dvic do
4 Acquire Candidate victim objects Oi

vic;
5 Initialize the victim object bank Bivic ← {};
6 for ok in Oi

vic do
// filter poor candidates

7 if Area(ok) > δ then
// seek centroid coordinate

8 (xk, yk)← (m10/m00,m01/m00);
9 Bivic = Bivic ∪ {[ok; (xk, yk)]};

10 end
11 end
12 Randomly select [ok; (xk, yk)] from Bivic;
13 Generate mask M for ok;

// modify input and label
14 Apply trigger at coordinate (xk, yk) on X i to

Acquire X̂ i;
15 Acquire Ŷi = (1−M)× Yi +M× ytgt;
16 D̂vic = D̂vic ∪ (X̂ i, Ŷi);
17 end

Here, ỸX represents a semantic map with the same size as
the input image, and each pixel is classified into the corre-
sponding class of the object at the same position in the image.
Now we redefine the segmentation task from the object-level
perspective by considering the dataset D as consisting of ob-
ject sets O of N categories, i.e., D = {O1,O2 . . . ,ON},
where Oi denotes the set of objects belonging to class yi, i.e.
Oi = {o1i , o2i , . . . , omi }. In this case, the semantic segmenta-
tion task is reformulated as follows: when pick the j-th object
oji from set Oi as input, the segmentation model S classifies
all the pixels of that object into its corresponding class yi, i.e.,

S(oji )→ Ỹ
oji
i , oji ∈ Oi, (2)

whereYoji
j denotes the semantic map with shape and size con-

sistent with the object oji , and the class label yi.
Next, we introduce the difference between existing Class-

level Backdoor Attack(CBA) and our proposed Object-level
Backdoor Attack(OBA) based on the definitions above. We
denote the model with the injected backdoor as S∗(·), the vic-
tim class as yvic, and the target class as ytgt. Given a image
X = {o1, o2, . . . , oK}. The image with the trigger applied is
denoted as X̂ , where X̂ = X ⊕ T , and T denotes the trigger.
For existing CBA methods, when the backdoor is triggered,
the model will misclassify all victim objects in the image to
the target class, while other non-victim objects remain cor-

rectly classified. This is formalized as:

S∗(ok)→

{
Ỹok

tgt, if ok ∈ Ovic

Ỹok

j , if ok /∈ Ovic

. (3)

Here Ỹok

tgt denoted a ok-shaped semantic map labed with ytgt.
It is worth noting that in existing CBA methods, the trigger
is applied at any location in the image. In contrast, our OBA
applies the trigger to a specified victim object ol ∈ Ovic, i.e.,
X̂ = {o1, . . . , ôl, . . . , oK}, where ôl = ol ⊕ T . The goal
of the OBA attack is that when the backdoor is triggerd, only
the designated victim object x̂l will be misclassified as the
target class, while other non-victim objects and victim objects
without the trigger applied will still be correctly classified.
This is formalized as:

S∗(ôl)→ Ỹ ôl

tgt, (4)

S∗(ok)→

{
Ỹok

vic, if ok ∈ Ovic

Ỹok

j , if ok ∈ Oj

. (5)

Thus, we have demonstrated the proposed Object-level
Backdoor Attack (OBA) paradigm, which enables precise
manipulation of attacked objects. Next, we will detail the two
key components which facilitate OBA in RGB-T senario: the
Cross-Modality Trigger Generation(CMTG) and the Precise
Data Poisoning(PDP).

3.2 Cross-Modality Trigger Generation
Suppose we aim to obtain a trigger pair T = {TRGB , TT }
with a resolution of a × a. We sample random noise from a
uniform distribution U(0, 1) as the initial values (Fig. 4(a). To
ensure the effectiveness of the triggers, we allow the triggers
to be optimized within the range of 0 to 255 instead of con-
straining the pixel values within a small range as done in ad-
versarial attacks. Since we design the thermal modality trig-
ger as a black-and-white checkerboard pattern, the difficulty
of creating the trigger in physical world increases when a is
large. Additionally, in Sec. 5.3, we demonstrate that increas-
ing the scale of the thermal trigger does not lead to signifi-
cant performance improvements. Therefore we implement it
with a b × b grid pattern (b ≤ a) and set b to a smaller value
(e.g., b = 8 in the experiments). Hence, we need to develop
a differentiable mapping method from continuous texture to
discrete pattern. We propose such a mapping functionM(·):

M(TT ) = Π(Upsample(sgn(TT ), a)). (6)

Π(·) denotes the projection operation which ensures the value
of TT are either 0 or 1. Upsample(·) and sgn(·) denote the
interpolation-based upsampling and element wise sign oper-
ation, respectively. Thus, we can ensure that TT undergo col-
laborative optimization with TT during the iterative process.

After obtaining the trigger pair T = {TRGB , TT }, we be-
gin the iterative optimization process. Our goal is to generate
a trigger pair that encodes strong semantic information re-
lated to the target class, such that when we apply T to the
victim object, the model S will be misled by the the trigger
and incorrectly classify the corresponding object pixels into
the ytgt class. To achieve this, we apply T to victim object
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Dataset FMB MFNet

Poisoning Rate 1% 2% 5% 7% 10% 15% 1% 2% 5% 7% 10% 15%

Blended 34.13 53.75 65.49 70.51 79.22 80.08 31.18 71.23 81.40 84.97 88.91 87.19
CMTG 68.53 77.14 86.58 86.17 87.47 89.05 39.11 77.62 85.12 87.54 86.02 86.79

Stealthy CMTG 24.68 54.35 85.13 83.86 87.60 86.00 23.35 71.24 81.01 83.35 85.79 87.26

Table 1: Attack Success Rate scores (↑) on the RGB-T segmentation model EAEFNet under different poisoning rate with MFNet and FMB
datasets. In Stealthy CMTG, transparency of RGB and Thermal trigger are set to 0.1 / 0.2, respectively. Regular CMTG shows a superior
performance over Blended. Even with reduced trigger visibility, Stealthy CMTG still demonstrates comparable performance to Blended.

(a) RGB (b) Thermal (c) OBA (ours) (d) Benign (e) Label

Figure 6: Visualization results of the proposed OBA paradigm on the RGB-T segmentation model EAEFNet with FMB (top row) and MFNet
(bottom row) datasets. Note that the victim class is “Car”, while the target classes are “Sign” and “Bump” respectively. When a trigger is
presented on a car, the model misclassifies the designated car and maintains correct segmentation on other non-victim classes.

o ∈ Ovic and feed it into a pre-trained benign model S(·).
Simultaneously, we generate a pseudo-label Yo

tgt that has the
same shape and size as o, but with the target class label ytgt.
We then optimize T using the following objective function:

min
T

Eo∼Ovic

[
Lseg(S(o⊕ T ),Yo

tgt)
]
, (7)

where Lseg denotes the loss for training the segmentation
model. By minimizing the loss between the prediction and
the pseudo-label, we inject semantic information with respect
to the target class domain from the pre-trained model into the
trigger. Subsequently, we update the trigger T iteratively with
gradient descent in a manner similar to the PGD method:
Tk+1 ← Π

(
Tk − α · sgn

(
∇T Lseg(S(o+ Tk),Yo

tgt)
))

,
(8)

where k = 0, 1, . . . ,K − 1, α is the step size for trigger
generation. We use Π(·) to constrain TRGB and TT within the
value ranges of [0, 1] and [−0.5, 0.5], respectively. The loss
function Lseg is the same as the one used during the training
process of the segmentation model. In EAEFNet, the overall
loss function is defined as follows:

Lseg = LDice + LSCE , (9)
where LDice and LSCE are denoted as Dice loss and Soft
Cross Entropy loss.

3.3 Precise Data Poisoning
Figure 4(a) illustrates the details of the proposed PDP.
Given a training set D, victim class yvic, and target

class ytgt are selected. We select paired RGB-T images
that contain victim objects from D, denoted as Dvic =
{X 0, ...,XM ;Y0, ...,YM}. Each RGB-T image pair X i con-
tains K victim objects, denoted as Oi

vic = {o0, ..., oK}, as
poisoning candidates. Next, we screen the poisoning candi-
dates to avoid complete coverage by the trigger, particularly
when the target size is too small. Specifically, we compute
the total number of pixels for each poisoning candidate, de-
noted as Area(ok) = Count(ok). When Area(ok) < δ,
the ok is removed from Oi

vic, where δ = 2 × Count(T ).
After that, we obtain a new set of poisoning candidates. We
then apply a trigger to each sample pair. To ensure trigger
placement on the victim object ok, we position the trigger at
its centroid. We seek the centroid coordinates (x, y) through
x = m10/m00 and y = m01/m00, where m10 and m01 de-
note first-order moments, m00 is zero-order moment. This es-
tablishes the victim object bank Bivic = [Oi

vic; (x, y)]. When
randomly designating a victim object o from Oi

vic, we ap-
ply a trigger at its centroid (x, y) to acquire modified RGB-T
input through X̂ i = X i ⊕ T ∗ α, where α represents the
transparency of the trigger pattern when applied, with val-
ues ranging from [0,1]. When α = 1.0 , it indicates that
the trigger pattern is directly pasted onto the image. Then
we generate mask M from o where pixels belonging to the
object region are set to 1 and the rest to 0. We re-label the
region of o as the target class ytgt, which is represented as
Ŷi = (1−M)×Yi+M×ytgt. The modified labels are illus-
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FMB Dataset (Transarency 1.0/1.0)
Poisoning Rate 0% 1% 2% 5% 10%

ASR (%) ↑ 8.96 68.53 77.14 86.58 87.47

PBA (%) ↑ 47.94 43.06 42.17 42.63 43.26

CBA (%) ↑ 49.75 45.25 45.39 45.07 44.98

Table 2: The overall evaluation of our OBA with different poison
rate on the FMB dataset. Victim class is set to “Car” and targe class
is set to “Sign”.

FMB Dataset (Poison rate=5%, Transarency 1.0/1.0)
Target Class Person Vegetation Road Sky
ASR (%) ↑ 86.94 81.00 88.38 80.29
PBA (%) ↑ 43.56 43.96 44.27 44.42
CBA (%) ↑ 45.45 44.93 43.44 44.71

Table 3: The scores of our OBA with different target classes on the
FMB dataset. Victim class is set to “Car”.

trated by the near car as shown in Figure 5(c). After complet-
ing the aforementioned steps, we acquire the final poisoned
dataset Dpoi = D̂vic ∪ Dnon vic. Refer to Algorithm 1 for
the details of our PDP.

4 Experiments
4.1 Experimental Setup
Datasets. We adopt two popular datasets (e.g., MFNet [Ha et
al., 2017b] and FMB [Liu et al., 2023a]) to perform the eval-
uation. MFNet dataset includes 9 classes, in which the back-
ground class is labeled 0. Its training, validation and testing
sets contain 784, 392 and 393 pairs of images, respectively.
FMB dataset describes complex urban street scenes in vari-
ous severe conditions, e.g., dense fog, heavy rain, and low
light. It contains images with 15 categories, and its training
and testing sets include 1,220 and 280 pairs, respectively.
Metrics. We adopt three existing metrics ASR, PBA, and
CBA from IBA [Lan et al., 2024] with some modifications:

(1) Attack Success Rate (ASR). This metric denotes the
percentage of victim pixels erroneously classified as the target
class due to the trigger’s influence. Given the victim object
subjected to the trigger containing a total of Nvic pixels and
Nsuc pixels successfully misclassified as the target class, the
Attack Success Rate is computed as: ASR = Nsuc/Nvic.

(2) Poisoned Benign Accuracy (PBA). This metric as-
sesses the model’s ability to correctly classify non-victim ob-
jects amidst triggered images by calculating the mean Inter-
section over Union (mIoU) between predictions and labels
with triggered victim object excluded.

(3) Clean Benign Accuracy (CBA). This metric measures
the model’s performance on benign testing by computing the
mIoU between its predictions and the original labels. For a
model affected by poisoning, CBA should closely approxi-
mate the results achieved by the model trained on clean data.

(a) RGB (b) Thermal (c) Label

(d) Car→Road (e) Car→Person

(f) Car→Sky (g) Car→Vegetation

Figure 7: Analysis of attacks with different target classes. “Car” is
the victim class. Successful results of backdoor attacks are achieved
when various target classes are set.

Implementation Details. We employ two test sets to val-
idate the effectiveness of our method. The first is the se-
lected victim-poisoned test set containing victim-class ob-
jects with trigger applied. The second is the original benign
test set without any modification. The training is conducted
on a single RTX3090. During training, images are resized to
480× 640, with a batch size of 8. All other hyperparameters
remain consistent with the original paper [Liang et al., 2023].

4.2 Backdoor Attacked Results
Table 1 reports quantitative scores of the backdoor attacks us-
ing our precise data poisoning (PDP) technique on the RGB-T
semantic segmentation model, across both MFNet and FMB
datasets. As we can see, the PBA and CBA metrics consis-
tently maintain stability compared to the scores of our attack
paradigm on benign test samples. Intuitively, Figure 6 shows
several poisoned RGB-T segmentation cases. These results
show that our proposed backdoor attack paradigm incorpo-
rating the PDP technique can accurately misclassify the des-
ignated victim object (e.g., car) while correctly classifying the
non-victim objects.

4.3 Robustness of OBA
We further validate the robustness of the object-level manip-
ulation ability facilitated by the trigger. We first assess the
trigger’s efficacy on a single object, as depicted in (a) and (b)
in Figure 9. It can be seen that when plural victim objects
coexist within an image, the application of triggers can lead
to the misclassification of any object. Subsequently, we ex-
amine the trigger’s impact on multiple objects concurrently.
The results are illustrated as (c) and (d) in Figure 9. In (c), we
apply the triggers to two victim objects simultaneously, re-
sulting in the misclassification of both objects. At this time,
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FMB Dataset (Poison rate=5%, Transarency 1.0/1.0)
Trigger Size 15×15 25×25 35×35 45×45

ASR (%) ↑ 78.30 83.15 87.94 86.58
PBA (%) ↑ 43.72 43.09 43.11 42.63
CBA (%) ↑ 45.35 45.01 45.53 45.07

Table 4: The influence of different trigger sizes on backdoor attacks
on the FMB dataset. The small-sized trigger is obtained through an
interpolation-based downsampling.

FMB Dataset (Poison rate=5%, Transarency 1.0/1.0)
Trigger Scale 8×8 15×15 25×25 35×35

ASR (%) ↑ 86.58 84.79 86.13 82.24
PBA (%) ↑ 42.63 44.84 44.15 43.88
CBA (%) ↑ 45.07 46.69 46.20 46.03

Table 5: The influence of different thermal trigger scales on back-
door attacks on the FMB dataset. Each trigger pair is optimized by
adjusting the thermal trigger scale based on a fixed RGB trigger size.

the model only misclassified the car. This underscores the ef-
ficacy of our OBA in accurately manipulating victim objects.

5 Discussion
5.1 Attacks with Different Target Classes
We test our object-level backdoor attack (OBA) paradigm
using different target classes (i.e., “Person”, “Vegetation”,
“Road” and “Sky”) when the victim class is defined as ‘Car’.
The scores of our OBA on the FMB dataset in ASR, PBA,
and CBA metrics are presented in Table 3. By comparison,
these scores show stability without notable fluctuations. In-
tuitively, Figure 7 presents the corresponding visual exam-
ples. It is evident that as the target class changes, our OBA
paradigm causes the segmentation model to misclassify the
victim “Car” as “Person”, “Vegetation”, “Road” and “Sky”
respectively. We can conclude that the OBA demonstrates
robust attack ability across varied target classes.

5.2 Attacks with Different Trigger Sizes
We test our Object-level Backdoor Attack paradigm (OBA)
using the RGB-T poisoned samples with triggers of differ-
ent sizes (e.g., 15×15, 25×25, 35×35, and 45×45) on the
FMB dataset. Poisoning rate is set to 5%. The results in
Table 4 indicate that irrespective of changes in trigger size,
the ASR, PBA, and CBA metrics maintain nearly consistent
scores. Based on these results, we can conclude that the back-
door attack capability of our OBA paradigm is minimally af-
fected by trigger size, indicating its high robustness.

5.3 Attacks with Different Thermal Trigger Scales
We evaluate the impact of different thermal trigger scales on
attack performance, and the results are shown in Table 5. As
can be seen, the attack success rate does not exhibit a signifi-
cant improvement with the increase in scale. In fact, when the

Figure 8: Analysis of the poisoning attack success rate(%) for dif-
ferent transparency combinations of RGB and Thermal modalities’
triggers. The poisoning rate is set at 5% across all the experiments.

Car-1 Car-2

Car Person Bump

Car-1 Car-2

Car Person Bump

Car-1 Car-2

Car Person Bump

(a) Attack Car-1 (b) Attack Car-2 (c) Attack Car-1&2

Figure 9: Analysis of robustness of object-level precise attack on
single or multiple objects. Note that, the victim class is “Car”. The
trigger positions are highlighted in the input images. The triggers
can induce the misclassification of any victim object (see (a)-(c)).

scale becomes too large (scale = 35), the attack success rate
even decreases. However, the increase in scale does lead to
an improvement in the model’s task performance, as reflected
in the higher PBA and CBA scores.

5.4 Attacks with Different Transparency
We conduct tests on different transparency combinations of
RGB triggers and thermal triggers on FMB and MFNet, with
the experimental results shown in the Figure 8. We test five
transparency combinations: [0.1, 0.2, 0.5, 0.7, 1.0]. From this
experiment, it can be observed that, during the data poisoning
process for injecting backdoors into the model, the texture
information in the RGB modality plays a dominant role.

6 Conclusion
This paper presents the first backdoor attack method de-
signed for RGB-T semantic segmentation. Addressing the
limitations of existing approaches, we propose OBA - a
novel object-level backdoor attack paradigm that enables
fine-grained target control. Our framework implements two
key innovations: (1) a precision data poisoning technique
that selectively manipulates only trigger-designated objects
while preserving surrounding segmentation accuracy, and
(2) a cross-modality trigger generation method that embeds
target class semantics through collaborative optimization of
both modalities. Experimental results demonstrate the effec-
tiveness and high attack success rate of OBA.
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