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Abstract

Source localization has been widely studied in re-
cent years due to its crucial role in controlling the
spread of harmful information. Existing methods
only achieve satisfactory performance within a spe-
cific propagation model, which restricts their ap-
plicability and generalizability across different sce-
narios. To address this, we propose a General-
ized Diffusion Framework for Source Localization
(GDFSL), which enhances probabilistic diffusion
models to flexibly capture the underlying dynam-
ics of various propagation scenarios. By redefin-
ing the forward diffusion process, GDFSL ensures
convergence to a real distribution of infected states
that accurately represents the targeted dynamics,
enabling the model to learn unbiased noise in a self-
supervised manner that encodes fine-grained prop-
agation characteristics. A closed-form reverse dif-
fusion process is then derived to trace the propa-
gation back to the source. The process does not
rely on an explicit source label term, facilitating di-
rect inference of sources from observed data. Ex-
perimental results show that GDFSL outperforms
SOTA methods in various propagation models, par-
ticularly in scenarios where historical training data
is limited or unavailable. The code is available at
https://github.com/cgao-comp/GDFSL.

1 Introduction
In today’s information age, network science is ubiquitous
across various domains, including online social media and
offline human societal systems [Ling et al., 2022; Zhu et al.,
2024]. The harmful propagation processes within these com-
plex systems, such as misinformation diffusion, widespread
viral spread, and large-scale cascading failures, profoundly
impact societal stability, economic efficiency, and secu-
rity [Zhu et al., 2022]. Identifying the propagation source and
controlling the propagation chain is an effective measure [Yan
et al., 2024]. Consequently, the source localization study be-
comes crucial for managing and mitigating these issues.

Snapshot based source localization is widely focused due
to the convenience of snapshot capture [Jiang et al., 2016;

original source localizationdifferent dynamics

deep source
estimator a

deep source
estimator b

deep source
estimator c

different estimators

right

wrong

wrong

Figure 1: Illustration of source localization under different propaga-
tion dynamics. The same source (red node) in various dynamic sce-
narios can lead to different spreading cascades. For each estimator,
it can accurately infer the source (right) in some propagation scenar-
ios, while in others, it fails to infer the sources (wrong), highlighting
the challenges in source localization across diverse dynamics.

Hou et al., 2023]. Based on Bayesian theory, the local-
ization problem can be demonstrated as the Maximum Pos-
terior Estimate (MPE) or the Maximum Likelihood Esti-
mate (MLE) [Huang et al., 2018; Shah and Zaman, 2010;
Shah and Zaman, 2011]. Among them, the MPE branch
focuses on inferring the most likely sources based on ob-
served data, while the MLE branch selects specific sources
to reconstruct the observed propagation scenes. Given that
the MLE branch involves computationally intensive simula-
tion methods with high complexity, such as the Monte Carlo
simulation, current research predominantly concentrates on
MPE, including the centrality methods [Wang et al., 2017;
Hou et al., 2024a] and deep learning based methods [Ling et
al., 2022].

Many existing source localization methods heavily depend
on the assumption of specific propagation models, which
specifies their applicability to certain propagation dynamics
and limits their effectiveness and transferability in other sce-
narios. [Zhu and Ying, 2014; Zhu et al., 2017]. Some works
do not need to rely on underlying propagation dynamics for
source localization [Dong et al., 2019; Wang et al., 2022;
Hou et al., 2025], but many of them still fail to capture the
propagation patterns effectively in the source inference pro-
cess. As a result, the inadequate consideration of the propa-
gation’s fine-grained characteristics prevents the model from
achieving optimal prediction performance.

Therefore, there is a critical need for a more flexible and
generalized framework that can capture various propagation
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dynamics and learn different propagation patterns. Diffusion
models have proven powerful in solving inverse problems,
with the reverse process providing a feasible solution for the
inverse propagation (i.e., source localization) [Huang et al.,
2023]. And the self-supervised strategy in the forward pro-
cess incorporates noise modeling, enabling the flexible learn-
ing of complex patterns or distributions in the data. Based
on this, we develop a Generalized Diffusion Framework for
Source Localization (GDFSL) that can use noise to flexibly
learn each specific pattern in different propagation scenarios.
More specifically, in the forward process, GDFSL redefines
the forward process to converge to a fully infected state that
accurately reflects the underlying propagation dynamics, and
the unbiased noise is further derived to encode the microstates
of various propagation mechanisms. Subsequently, the in-
terpretable close-formed reverse diffusion process leverages
these learned patterns in the unbiased noise to accurately trace
back to the original source. The contributions are as follows:

• We propose a unified localization framework that breaks
traditional source localization methods dependent on a
specific fixed propagation model assumption. By en-
abling flexible adaptation to various propagation dy-
namics, GDFSL expands its applicability and enhances
transferability across diverse scenarios.

• GDFSL redefines the forward diffusion process to con-
verge toward a fully infected state that precisely reflects
real propagation dynamics. This redefinition enables
the derivation of unbiased noise which encodes the mi-
crostates of different propagation mechanisms, thus cap-
turing fine-grained characteristics crucial for accurate
source inference.

• GDFSL derived an interpretable closed-form reverse dif-
fusion solution to trace the fully infected states back to
the original source, which is building on the unbiased
noise learned in the forward process. And this closed-
form expression does not rely on an explicit source la-
bel term, allowing for direct inference of propagation
sources from observed data, rather than depending on
historical datasets with labeled sources for training as in
supervised deep learning methods.

2 Related Work
2.1 Propagation Models
Many propagation models have been proposed to capture
the propagation characteristics. These models are simu-
lated on the static social network and generate the propaga-
tion datasets for evaluating the performance of localization
methods, such as the Susceptible-Infected (SI) model [Yang
et al., 2020; Paluch et al., 2021; Zang et al., 2015] and
the Susceptible-Infected-Recovered (SIR) model [Zhu and
Ying, 2014; Tang et al., 2018]. A variation of SIR is the
Susceptible-Infected-Susceptible (SIS) model where recov-
ered individuals can be re-infected [Dong et al., 2019]. How-
ever, a key limitation of these traditional models is their ho-
mogeneous features. In reality, every individual in social net-
works has unique features, leading to diverse responses to

the same information. Many researchers have further consid-
ered the heterogeneous diffusion models that characterize the
difference between individuals [Karrer and Newman, 2010;
Ellison, 2024]. For instance, models like the Heterogeneous
SI (HSI) and Heterogeneous SIR (HSIR) consider varied in-
fection and recovery rates respectively. In addition to these
diffusion models, influence models such as the Independent-
Cascade (IC) and Linear Threshold (LT) models [Goldenberg
et al., 2001; Granovetter, 1978] have been adopted. These
models underscore the mutual influence dynamics between
individuals. These propagation models attempt to reveal the
underlying patterns of information dynamics through differ-
ent interaction mechanisms and scenario assumptions.

2.2 Source Localization Methods
Due to the convenience and feasibility of snapshot acquisi-
tion, many works focus on snapshot based source localiza-
tion branches [Cheng et al., 2024]. Dong et al. introduce a
GCN based source identification model to tackle the multiple
rumor source localization problem [Dong et al., 2019]. Ad-
ditionally, some methods construct the dynamic features of
propagation before inferring the source, such as IVGD [Wang
et al., 2022], MCGNN [Shu et al., 2021] and SL VAE [Ling
et al., 2022]. Hou et al. employ an encoder-decoder module
to learn the user influence matrix [Hou et al., 2023]. Fur-
thermore, considering the powerful performance of the dif-
fusion model in solving inverse problems, Huang et al. pro-
pose a denoising diffusion model to quantify the uncertainty
in the propagation process to improve the localization perfor-
mance [Huang et al., 2023]. Yan et al. propose a discrete dif-
fusion model for source localization by designing a reversible
residual block with graph convolutional networks [Yan et al.,
2024]. Overall, these methods attempt to infer sources with-
out relying on underlying models, which can enhance the ap-
plication capability in different propagation scenarios. How-
ever, not considering the underlying propagation model can
easily lead to a lack of deep integration with the propagation
dynamics during the source inference process. Developing
a generalized source localization model that can effectively
learn diverse propagation patterns and achieve accurate local-
ization performance across various scenarios remains a sig-
nificant challenge.

3 Preliminary
Unlike existing methods that require one or multiple snap-
shots as input, our method can be applied to scenarios where
any number of snapshots for each propagation is available. A
series snapshots of each propagation {Gsj = (V, E ,F , Hsj ) |
j ≥ 1}, conveniently available at different timestamps j, are
collected, where V and E are the node (user) set and edge
(relationship) set, respectively. F is an optional set of node
attributes. H denotes the set of node states where H(vi) = 1
if node vi is observed to be infected or active, and H(vi) = 0
otherwise. And we denote the initial state, viewed from the
perspective of only the source being infected or active, as
Hs0 . Our method first learns the propagation patterns from
the observed state H to a fully infected state. Leveraging the
learned patterns, an inverse diffusion module traces the fully
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infected state back to the original source. And the method
aims to predict an initial state Ĥ0 that maximizes indicators
such as {Hs0=1}∩{Ĥ0=1}

{Hs0=1}∪{Ĥ0=1} . There are various classical propa-
gation dynamics, and our work aims to capture the underly-
ing patterns from these dynamics to facilitate multi-scenario
source localization.

Heterogeneous Diffusion Process (HDP): In HDP, nodes
are either informed or uninformed. The source node initi-
ates propagation at time ts, with only the source informed
initially. The message spreads along the shortest paths, with
each edge (vi, vj) having a propagation delay θvi,vj

sampled
from a uniform distribution U(1, h), introducing heterogene-
ity in delays. This models diverse real-world propagation sce-
narios where different groups experience varying speeds of
information spread.

Time-Varying Diffusion Process (TDP): TDP allows the
diffusion process to adapt over time. The source can activate
at any moment with a probability drawn from U(0, 1). Once
an edge is activated, it incurs a delay θvi,vj ∼ U(0, h) and be-
comes invalid after θvi,vj time units, preventing further prop-
agation along that edge. This reflects real-world interactions
where time constraints limit message dissemination.

Random Walk Propagation Process (RDP): In RDP, the
message performs a random walk in the network. When the
message arrives at node v at time t, it jumps to a randomly
selected neighbor vj with probability 1/kv , where kv is the
degree of v. The message resides on one node at a time, sim-
ulating scenarios such as sequential conversations.

Linear Threshold (LT) Model: The LT model is a classi-
cal diffusion model where each node becomes informed if the
cumulative influence from its informed neighbors exceeds a
certain threshold.

Susceptible-Infected (SI) Model: Each node is either sus-
ceptible or infected stat. At each time step, an infected node
transmits the message to each susceptible neighbor with a
probability.

Independent Cascade (IC) Model: Once a node becomes
infected, it has a single opportunity to infect each of its sus-
ceptible neighbors.

4 Method
In this section, we introduce the Generalized Diffusion
Framework for Source Localization (GDFSL). Initially, we
re-derive the forward diffusion process under the condition
that the Gaussian noise distribution has a mean of one. This
adaptation ensures that the forward diffusion process accu-
rately reflects the underlying dynamics of information over a
complete propagation cycle, from no infection to full infec-
tion within the network. We then derive the reverse diffusion
process of conditional probabilities, providing a robust theo-
retical foundation for GDFSL.

4.1 Forward Process of GDFSL
The forward process of the diffusion model is mathematically
described by the following equations [Ho et al., 2020]:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

100% infection
(non-zero-mean with 1)

. . . . . .

0th step final step

pθ (H t | H t-1)

reverse process: denoising using 
noise learning module θ

1
1

0

0
0

1
1

1
1

1

1
1

1
1

initial source captured snapshot

ɛ
forward process: learn unbiased

 f ( ). noise    given a dynamic

H*

f (H* , t–t*))q (H t | H*,

Figure 2: Interpretability of the GDFSL in source detection tasks.
The forward process starts from t∗ to T , learning the changes of
node states during the corresponding time step under the propagation
dynamics. The reverse process directly infers the propagation source
from the observation using a closed-form solution back to t0.

q (x1:T | x0) =
T∏

t=1

q (xt | xt−1) . (2)

These equations define the probabilistic progression from any
state xt−1 to xt, where βt are variance parameters that control
the noise level at each step, progressively adding uncertainty
as the process evolves. Generally, β1 << βT .

To enhance the applicability of GDFSL to the source local-
ization task, we introduce 1⃗ as the vector of all ones, whose
dimensionality matches that of the state vectors xt and xt−1.
Then, we use 1⃗ as guiding component to adjust the latent dis-
tribution space:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1+(1−

√
1− βt)1⃗, βtI

)
,

(3)

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) . (4)

The guiding component 1⃗ as a fully infected knowledge en-
sures the ability of the reverse process to trace the original
source.
Theorem 1. T →∞, xT ∼ N (1⃗, I) in Eq. (3).
Proof: Without loss of generality, we define αt = 1 − βt,
and ᾱt =

∏t
i=1 αi. Then starting from the iterative diffusion

equation:

xt =
√
αtxt−1 + (1−√αt)1⃗+

√
1− αtϵt−1

=
√
αtαt−1xt−2+(1−√αt

√
αt−1)1⃗+

√
1− αtαt−1ϵt−2

= · · ·
=
√
ᾱtx0 + (1−

√
ᾱt)1⃗+

√
1− ᾱtϵ,

where ᾱt =
∏t

i=1 αi represents the product of the scal-
ing factors up to time t, ϵt−1, ϵt−2, · · · ∼ N (0, I), and
ϵt−2 merges two Gaussians.

As T → ∞, the product
√
ᾱT tends to zero due to the

properties of the parameters αt which are designed such that
0 ≤ αt < 1. This leads to

√
ᾱTx0 vanishing, and the expres-

sion simplifies to:

lim
T→∞

xT = (1−
√
ᾱT )1⃗+

√
1− ᾱT ϵ.
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Since (1−
√
ᾱT )→ 1 as T →∞, xT converges to 1⃗+ ϵ,

where ϵ ∼ N (0, I). Therefore, xT ∼ N (1⃗, I) as T →∞. ■
Then we can get the closed-form solution of the optimized

forward process for the input of the source localization task
as follows:

q
(
Ht | H0

)
= N

(
Ht;
√
ᾱtH

0 + (1−
√
ᾱt)1⃗, (1− ᾱt)I

)
.

(5)
where H represents the state set of user participation, indicat-
ing whether users are active or inactive. H0 denotes the node
state set at the initial step, where only the earliest source user
is active, and Ht denotes the noised state at the tth step in the
diffusion process.

It is essential to determine the step index t∗ ∈ (t0, T ) of
the snapshot within the forward propagation sequence when
a snapshot G = (V, E ,F , H∗) is given. We can easily get the
step index of a given uniform propagation input G:

t∗ =

∑
H∗ I(H∗(v) = 1)

|V|
∗ T, (6)

where
∑

H∗ I(H∗(v) = 1) represents the sum of the indica-
tor function I , which equals 1 if the condition H∗(v) = 1 for
user v is met.

Then we can get the closed-form conditional forward pro-
cess after (t− t∗) steps by adding noise to the given user state
H∗.

q
(
Ht | H∗) = N(

Ht;

√
αtαt−1 · · ·αt∗H

∗ + (1−√αtαt−1 · · ·αt∗) 1⃗,

(1− αtαt−1 · · ·αt∗) I
)
, s.t. t∗ < t ≤ T,

= N
(
Ht;
√
ᾱtt∗H

∗ +
(
1−
√
ᾱtt∗

)
1⃗,

(1− ᾱtt∗) I
)
, s.t. t∗ < t ≤ T.

(7)
where ᾱtt∗ = αtαt−1 · · ·αt∗ . Based on Eq. (7), after giving
a state set H∗ from snapshot G and a random subsequent step
t > t∗, the forward propagation process can be completed in
an interval of (t− t∗) steps.

Based on the closed-form solution of the forward process,
we can use noise to store and encode the microstates of dif-
ferent propagation dynamics. Instead of randomly initializing
the noise, which is widely acknowledged to introduce bias,
we assign the noise based on the state transitions in the corre-
sponding propagation dynamics. Specifically, we leverage a
propagation mechanism f(·) to transform the observed state
H∗ at t∗ into an unbiased state Ht

real at t in the scenarios of
the corresponding dynamics. Formally,

Ht
real = f

(
H∗, t− t∗

)
, (8)

where f(·) reflects the particular propagation dynamics under
consideration (e.g., SI, IC, LT, etc.).

After obtaining Ht
real, we substitute it into Eq. (7) to solve

for the unbiased noise term ϵ.

ϵ =
Ht

real −
√
ᾱtt∗ H

∗ −
(
1−
√
ᾱtt∗

)
1⃗

√
1− ᾱtt∗

, t∗ < t ≤ T.

(9)

In this way, the noise ϵ is no longer an arbitrary random
variable, instead, the state transitions from uninfected to in-
fected are preserved and reflected in the noise distribution
from H∗ to Ht. By learning ϵ in such a forward process,
the model can effectively capture and distinguish the various
state transitions under different propagation mechanisms.

4.2 Reverse Process of GDFSL
As defined in Sec. 4.1, the optimized noise addition process
enables the forward process to effectively realize the propa-
gation dynamics. Then, the conditional probabilities for the
reverse diffusion process need to be considered. We need to
derive the revised q(Ht−1|Ht).

Consistent with the traditional diffusion model [Ho et al.,
2020], the conditional probability distribution of the reverse
process is as follows:

q(Ht−1|Ht, H0) =
q(Ht−1, Ht, H0)

q(Ht, H0)

=
q(H0)q(Ht−1|H0)q(Ht|Ht−1, H0)

q(H0)q(Ht|H0)

= q(Ht|Ht−1, H0)
q(Ht−1|H0)

q(Ht|H0)
.

(10)

Given that the forward process is a Markov chain,
q(Ht|Ht−1, H0) is independent of H0, thus we can get:

q(Ht−1|Ht, H0) = q(Ht|Ht−1)
q(Ht−1|H0)

q(Ht|H0)
. (11)

In Eq. (11), q
(
Ht | H0

)
is shown in Eq. (5), we can also

get the other two forward equations as follows:

q(Ht|Ht−1) = N (Ht;
√
αtH

t−1 + (1−
√
αt)1⃗, βtI). (12)

q(Ht−1|H0) = N (Ht−1;
√
ᾱt−1H

0+(1−
√
ᾱt−1)1⃗, (1−ᾱt−1)I).

(13)
Based on the Gaussian probability density function,

Eq. (11) can be further expanded as follows:
q(Ht−1|Ht, H0) ∝ exp{
−1

2

((αt

βt
+

1

1− ᾱt−1

)
(Ht−1)2−

(
2
√
αt

βt
(Ht−(1−

√
αt)1⃗)

+
2

1− ᾱt−1
(
√
ᾱt−1H

0+(1−
√
ᾱt−1)1⃗)

)
Ht−1+C(Ht, H0)

)}
.

(14)
Given the properties of the Gaussian distribution, the vari-

ance can be determined as follows:

σ2
t−1|t =

(
αt

βt
+

1

1− ᾱt−1

)−1

=
1− ᾱt−1

1− ᾱt
· βt. (15)

And the mean can be determined as follows:

µt−1|t =
σ2
t−1|t

2
·
(
2
√
αt

βt
(Ht − (1−

√
αt)1⃗)+

2

1− ᾱt−1
(
√
ᾱt−1H

0 + (1−
√
ᾱt−1)1⃗)

)
=
(1− ᾱt−1)

√
αt

1− ᾱt
Ht

+
βt
√
ᾱt−1

1− ᾱt
H0 +

(
(1−

√
ᾱt−1)(1−

√
αt)(1−

√
ᾱt)

1− ᾱt

)
1⃗.

(16)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Combining with Eq. (5), Eq. (16) for µt−1|t can be further
demonstrated as follows:

µt−1|t =
1√
αt

(
Ht − 1− αt√

1− ᾱt

ϵt

)
−(

βt
√
ᾱt−1(1−

√
ᾱt)√

ᾱt(1− ᾱt)
−

(1−
√
ᾱt−1)(1−

√
αt)(1−

√
ᾱt)

1− ᾱt

)
1⃗.

(17)

Thus, the variance σ2
t−1|t of the posterior conditional Gaus-

sian distribution is given by Eq. (15), and the mean µt−1|t
is expressed by Eq. (17). With these closed-form solutions
established, we can train GDFSL for source inference, as
demonstrated in Alg. 1. Training proceeds as follows: Lines
2-11 of Alg. 1 detail the loss computation for unbiased noise
learning, specifically tailored to the given propagation pat-
tern f . This ensures that the learned propagation dynamics
are consistent with the theoretical foundation provided by our
derivation based on the non-zero-mean Gaussian model. Sub-
sequently, lines 12-19 incorporate additional observational
constraints by aligning the node states generated from the re-
verse diffusion process with the corresponding steps and ob-
served snapshots.

It’s worth mentioning that for propagation if there are more
than two captured snapshots at different timestamps, lines 2-
11 of Alg. 1 can be executed based on multiple different t∗.
Subsequently, during the reverse generation process, align-
ment between the generative and observed snapshot can be
made multiple times at the corresponding t∗ step. There-
fore, GDFSL can leverage and integrate any arbitrary number
of multiple observations from a propagation, such flexibil-
ity enhances the model’s robustness across different observed
timestamps of different propagations.

Furthermore, the reverse diffusion process from T to t1 can
realize source prediction. After T iterations, H0 represents
the predicted initial state of all users involved in the given
propagation. The node exhibiting the highest probability in
H0 is identified as the predicted source. The source inference
process is detailed in Alg. 2.

5 Experiments
5.1 Datasets and Setting
We use three datasets collected from two real-world social
media platforms, Weibo and Twitter, for source localization
tasks, namely Weibo [Ma et al., 2017], Twitter15, and Twit-
ter16 [Liu et al., 2015; Ma et al., 2016]. F in the dataset
includes user description, blue verification status, location,
registration date, number of posts, fans list, and followings
list [Hou et al., 2024b]. The user scale ranges from a min-
imum of 10 to a maximum of 57,186, with an average user
scale of 883 across all cascades. Additionally, the cascades
vary in propagation depth, ranging from a minimum of 2 to
a maximum of 22, with an average depth of 6.15. The rele-
vant information of the three datasets is shown in Tab. 1. And
to demonstrate the generalizability of our proposed method,
we employ widely recognized simulated synthetic datasets
for source localization, generated based on the HDP, TDP,
RDP, LT, SI, and IC propagation models, as commonly used
in traditional source localization methods [Ling et al., 2022;

Algorithm 1 Training for GDFSL

Input: Initial parameters: αt, βt for t = 1, . . . , T ; A snap-
shots collection of K propagation cascades {{G(i,sj) =
(V(i), E(i),F (i), H(i,sj))}j≥1}Ki=1.

Output: Optimized parameters θ of H0 prediction module.
1: repeat for each of the K propagation cascades, i.e.,
G(i) = {G(i,sj)=(V(i), E(i),F (i), H(i,sj))}j≥1

2: for (V, E ,F , H∗) ∼ q
(
G(i)

)
do

3: F∗ ← (F , H∗)
4: Determine the step index of H∗, i.e., t∗ =∑

H∗ I(H∗(v)=1)

|V| ∗ T //Eq. (6)
5: t ∼ Uniform{t∗, . . . , T}
6: Compute the time interval tt∗ = t− t∗

7: Execute the given propagation patterns Ht
real =

f
(
H∗, t− t∗

)
//Eq. (8)

8: Using the unbiased noise to record the propaga-

tion mechanism ϵ=
Ht

real−
√
ᾱtt∗ H∗−

(
1−

√
ᾱtt∗

)
1⃗

√
1−ᾱtt∗

//Eq. (9)
9: Define a denoising module ϵθ(H

t
real,tt

∗,V,E ,F∗)

10: Take gradient descent step on: ∇θ ∥ϵ− ϵθ∥2
11: end for
12: HT ∼ N (1⃗, I), ĤT ← HT

13: for t = T, . . . , 1 do
14: z ∼ N (0, I)
15: σ2

t−1|t =
1−ᾱt−1

1−ᾱt
· βt //Eq. (15)

16: µt−1|t =
1√
αt

(
Ĥt− 1−αt√

1−ᾱt
ϵθ(Ĥ

t, t,V, E ,F∗)
)
−(

βt
√
ᾱt−1(1−

√
ᾱt)√

ᾱt(1−ᾱt)
−(1−√

ᾱt−1)(1−
√
αt)(1−

√
ᾱt)

1−ᾱt

)⃗
1//Eq. (17)

17: Ĥt−1 = µt−1|t + σt−1|t · z
18: end for
19: Take gradient descent step on: ∇θ

∥∥∥H∗ − Ĥ∗
∥∥∥2 for

each observed snapshot at t∗
20: until converged
21: return optimized parameters θ

Wang et al., 2022; Wang and Sun, 2020]. Similar to the set-
tings of those studies, we simulated these propagation pro-
cesses until the state of 1% of users became active or infected
in a network with 677,058 nodes and 828,546 edges1.

5.2 Evaluation Metrics and Comparison Methods
By comprehensively comparing the proposed methods and
the baseline methods, we use two evaluation metrics, i.e., the
standard F1-score [Sokolova et al., 2006] (F1) and average
error distance (AED) [Dong et al., 2022].

F1-score =
2 ∗ Precision ∗Recall

Precision+ Recall
, (18)

∆AED =
1

K

K∑
k=1

d (r∗, r), (19)

1Drawing from K′ historical cascades Ck=(Vk, Ek,Fk) in a so-
cial media platform, we construct the historical relationship network
, which is a union graph by combining structural information of dif-
ferent cascades based on the same UIDs [Ramezani et al., 2023].
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Algorithm 2 Source inference process of GDFSL

Input: The optimized denoising module θ; An observed
propagation cascade {G∗ = (V, E ,F , H∗)}.

Output: The predicted source ŝ.
1: HT ∼ N (1⃗, I), ĤT ← HT

2: F∗ ← (F , H∗)
3: for t = T, . . . , 1 do
4: z ∼ N (0, I) if t > 1, else z = 0

5: σ2
t−1|t =

1−ᾱt−1

1−ᾱt
· βt //Eq. (15)

6: µt−1|t = 1√
αt

(
Ĥt− 1−αt√

1−ᾱt
ϵθ(Ĥ

t, t,V, E ,F∗)
)
−(

βt
√
ᾱt−1(1−

√
ᾱt)√

ᾱt(1−ᾱt)
−(1−√

ᾱt−1)(1−
√
αt)(1−

√
ᾱt)

1−ᾱt

)⃗
1//Eq. (17)

7: Ĥt−1 = µt−1|t + σt−1|t · z
8: end for
9: return ŝ = argmaxv∈V Ĥ0(v)

Statistic Twitter15 Twitter16 Weibo

#users 480,987 289,675 2,856,741
#relationships 580,593 362,871 3,713,763

#cascades 1490 818 4664
#rumor cascades 370 205 2244

#non-rumor cascades 746 412 2082

Table 1: Statistics of the real-world datasets. Some invalid cascades
do not belong to rumor or non-rumor cascades.

where Recall is the proportion of ground-truth sources that
are successfully predicted. And Precision is the proportion
of ground-truth sources in the predicted nodes. Here, Recall
and Precision have the same weight in the standard F1. And
d(r∗, r) is the shortest distance between the predicted source
and the ground-truth source.

In order to highlight the performance of the proposed
methods, we choose eight SOTA methods for comparison.
These SOTA methods includes DDMSL [Yan et al., 2024],
GIN-SD [Cheng et al., 2024], Diff [Huang et al., 2023],
TGASI [Hou et al., 2023], IVGD [Wang et al., 2022],
SL VAE [Ling et al., 2022], GCSSI [Dong et al., 2022], and
DRSDBFL [Wang et al., 2024].

5.3 Performance on Synthetic Cascades
The source localization performance based on the synthetic
simulation datasets is shown in Tab. 3. To ensure the general-
izability and reusability of the proposed framework, we em-
ploy a convenient GCNs and GATs as the denoising module.
For the performance on synthetic propagation datasets, when
benchmarked against the optimal baseline DDMSL, GDFSL
without utilizing the label information during training ex-
hibits an average improvement of 7.4% in simulated datasets
based on the F1 metric. Furthermore, using the average error
distance as a metric, GDFSL also exhibits a smaller source
error distance than all established baseline methods, reduc-
ing the error distance in the source evaluation by about 0.1
to 0.2 compared with the optimal baseline DDMSL. There
are three key reasons for the significant improvement in real-

Dataset Twitter15 Twitter16 Weibo
Algorithm F1 AED F1 AED F1 AED
DDMSL 0.663 0.442 0.651 0.450 0.622 0.672
GIN-SD 0.578 0.541 0.564 0.556 0.523 0.912

Diff 0.612 0.532 0.605 0.539 0.578 0.774
TGASI 0.515 0.637 0.511 0.642 0.497 0.921
IVGD 0.368 0.851 0.342 0.884 0.330 1.211

DRSDBFL 0.356 0.858 0.362 0.805 0.320 1.256
SL VAE 0.355 0.855 0.342 0.871 0.346 1.271
GCSSI 0.228 1.031 0.224 1.062 0.255 1.413
GDFSL 0.752 0.325 0.738 0.364 0.707 0.485

Table 2: Source localization performance on the real-world cascades
in Twitter15, Twitter16, Weibo. The bold values represent the best
results, while underlined values denote the second-best.

world datasets: (1) The different signals of dynamic propa-
gation features are learned and the influence of user profiles
is dynamically enhanced in the source inference process. (2)
The closed-form solutions of the forward and reversed diffu-
sion process guarantees the interpretability of the proposed
methods in source localization tasks. (3) User profiles, repre-
senting key social attributes, can positively guide the source
localization process when explicitly embedded into the model
architecture.

5.4 Performance on Real-world Cascades
The source localization performance based on the real-world
datasets is illustrated in Tab. 2. For traditional synthetic
datasets, due to the inability to capture the dynamics of prop-
agation data, GDFSL directly learns the random noise at each
diffusion step. Nevertheless, GDFSL continues to exhibit
superior performance. However, the performance improve-
ments in real-world datasets are more pronounced than those
in synthetic datasets. More specifically, the enhancements of
GDFSL have increased from 7.4% of synthetic cascades to
approximately 13.4% of real-world cascades. This increment
in performance is due to the user-driven propagation scenar-
ios in real-world networks, where the representation learning
of user profiles provides a positive contribution to propaga-
tion source localization. While in the simulated propagation
models, where user profiles do not exert the same unique in-
fluence as they do in the real world, the model is less capa-
ble of learning the relevance between complex dynamic and
diverse profiles. Thus, the evaluation of practical characteris-
tics by the attention module becomes less effective. This also
underscores the necessity of source localization in real-world
propagation scenarios.

5.5 Ablation Study
We further study the effectiveness of the components de-
signed within our proposed methods to validate their contri-
butions to source detection performance. Here we present the
ablation study of GDFSL in the Twitter15 dataset. The criti-
cal ablation settings include:
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Dynamic HDP TDP RDP LT IC SI
Algorithm F1 AED F1 AED F1 AED F1 AED F1 AED F1 AED
DDMSL 0.568 0.720 0.685 0.630 0.698 0.710 0.574 0.760 0.602 0.620 0.591 0.600
GIN-SD 0.582 0.690 0.611 0.680 0.645 0.760 0.554 0.800 0.517 0.750 0.506 0.690

Diff 0.578 0.710 0.669 0.660 0.702 0.710 0.565 0.770 0.572 0.670 0.553 0.660
TGASI 0.556 0.760 0.584 0.790 0.610 0.780 0.528 0.830 0.532 0.800 0.544 0.770
IVGD 0.413 0.950 0.387 1.110 0.405 1.260 0.367 1.200 0.357 1.250 0.346 1.300

DRSDBFL 0.432 0.920 0.358 1.150 0.403 1.280 0.350 1.220 0.366 1.250 0.361 1.220
SL VAE 0.314 1.060 0.333 1.200 0.327 1.350 0.351 1.220 0.388 1.220 0.355 1.250
GCSSI 0.207 1.360 0.215 1.350 0.188 1.520 0.105 1.550 0.146 1.500 0.122 1.550
GDFSL 0.634 0.590 0.688 0.650 0.715 0.650 0.585 0.750 0.648 0.590 0.635 0.560

Table 3: Source localization performance based on six different propagation dynamics. The bold values represent the best results, while
underlined values denote the second-best.

• “N (1⃗, I) → N(0, I)” uses the standard Gaussian noise
in the DDPM instead of the non-zero mean at the T step.

• “-∇θ

∥∥∥H∗ − Ĥ∗
∥∥∥2” does not use the observation con-

straints (i.e., lines 12-19 in Alg. 1) as a training loss item.

• “-∇θ ∥ϵ− ϵθ∥2” does not use the noise estimation loss
(i.e., lines 2-11 in Alg. 1) as a training loss item.

• “-Att” removes the graph attention module, and only the
GCNs are available.

• “-PE” does not consider the time step index in the de-
noising module.

As shown in Tab. 4, it will lead to a performance decrease
or a delay in the convergence training speed no matter remov-
ing or exchanging any critical modules. As for replacing the
non-zero mean with a standard Gaussian noise (N (1⃗, I) →
N(0, I)), the non-zero mean is crucial as it aligns the dif-
fusion process with the fully infected final state, which is
essential for accurate source detection. Otherwise, the in-
terpretability of the diffusion process will be lost. As for

excluding the observation constraints ∇θ

∥∥∥H∗ − Ĥ∗
∥∥∥2, the

observation constraints ensure that the generated snapshots
are consistent with the observed data, which is vital for the
GDFSL model to learn accurate representations. As for ex-
cluding the noise estimation loss∇θ ∥ϵ− ϵθ∥2 from the train-
ing loss, estimating the noise accurately is fundamental to the
denoising process, and removing it results in an incomplete
diffusion training process.

Furthermore, the influence of the diffusion framework is
found to be greater than that of the denoising module. This
highlights the crucial role of the proposed diffusion frame-
work in ensuring effective source localization. The results
indicate that the GDFSL framework benefits most from its
novelly designed forward and reverse processes.

6 Conclusion
In this paper, we propose the GDFSL, a flexible and general-
ized framework to source localization tasks in diverse prop-

Modules Variants F1 AED Epoch

Diffusion
N (1⃗, I)→ N(0, I) 0.417 0.872 5

-∇θ

∥∥∥H∗ − Ĥ∗
∥∥∥2 0.692 0.408 5

-∇θ ∥ϵ− ϵθ∥2 0.676 0.437 4

Denoising -Att 0.713 0.396 4
-PE 0.725 0.364 3

Origin GDFSL 0.752 0.325 3

Table 4: The performance evaluation of variant models from GDFSL
in the Twitter15 dataset. - signifies that the corresponding modules
are removed or masked with zeros. And the symbol → indicates that
the original module is replaced by a new part.

agation scenarios. GDFSL overcomes the limitations of tra-
ditional methods that rely on specific propagation models by
leveraging noise to learn the unique propagation pattern of
each dynamic. Through the redefined forward process and an
interpretable closed-form reverse diffusion solution, GDFSL
accurately infers the source from observed data without rely-
ing on adequate labeled historical datasets for training. Ex-
perimental results demonstrate that GDFSL outperforms ex-
isting SOTA localization methods across various synthetic
and real-world scenarios, highlighting its effectiveness and
transferability.
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