
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Multimodal Knowledge Retrieval-Augmented Iterative Alignment
for Satellite Commonsense Conversation

Qian Li1∗ , Xuchen Li2 , Zongyu Chang1 , Yuzheng Zhang1 , Cheng Ji3 and Shangguang Wang1

1School of Computer Science, Beijing University of Posts and Telecommunications, China
2Institute of Automation, Chinese Academy of Sciences and Zhongguancun Academy, China

3SKLCCSE, School of Computer Science and Engineering, Beihang University, China
li.qian@bupt.edu.cn, lixuchen2024@ia.ac.cn, changzongyu@bupt.edu.cn, zhangyuzheng@bupt.edu.cn,

jicheng@act.buaa.edu.cn, sgwang@bupt.edu.cn

Abstract
Satellite technology has significantly influenced our
daily lives, manifested in applications such as navi-
gation and communication. With its development, a
vast amount of multimodal satellite commonsense
data has been generated, thus leading to an urgent
demand for conversation about satellite data. How-
ever, existing large language models suffer from
prevalent hallucinations and poor comprehensibil-
ity on multimodal satellite data due to their high
professional content threshold and partial informa-
tion opacity. To address these issues, we propose a
multimodal satellite knowledge retrieval-augmented
iterative alignment framework (Sat-RIA) for satel-
lite commonsense conversation. We first construct
multi-view retrieval expert knowledge to reduce
hallucinations and enhance the interpretability of
responses, which incorporates the satellite expert
database, satellite rule, satellite image database, and
a satellite knowledge graph. We next design com-
monsense conversation instructions to make the an-
swers more legible and understandable. Further-
more, the retrieval-augmented iterative alignment
module refines response precision by aligning out-
puts with task-specific standards through multi-stage
evaluations. Finally, we construct satellite multi-
turn dialogue and visual question-answer datasets
for a more comprehensive evaluation of satellite
commonsense conversation. Experimental results
demonstrate that Sat-RIA outperforms existing large
language models and provides more comprehensible
answers with fewer hallucinations.

1 Introduction
Satellite technology is integral to modern telecommunications,
earth observation, and global navigation, with its applications
spanning critical areas such as climate change monitoring,
disaster management, and the security of global communi-
cations networks [Chen et al., 2023a; Lu et al., 2021]. The
vast amounts of data generated by satellites offer unprece-
dented insights into environmental patterns, human activities,

∗ Corresponding author.

Figure 1: Examples of GPT-4o, LLaMa3, and Sat-RIA (Ours). For
satellite knowledge, GPT-4o and LLaMa3 easily generate fake results,
which are marked in red color. Compared to others, our Sat-RIA
generates more accurate and comprehensible results with fewer hal-
lucinations and provides abundant ways to read easily.

and natural phenomena, making them indispensable tools for
scientific research, government operations, and commercial
ventures [Choi, 2024; Inkollu and Sastry, 2024].

With the increasing sophistication of satellite technologies,
there is a growing demand for advanced digital platforms and
web-based tools capable of efficiently disseminating satellite
knowledge to a wider, more diverse audience, including non-
experts [Gallardo, 2024; Li et al., 2024a]. Traditional methods
of sharing satellite data, such as technical reports and static
datasets, often fail to engage non-specialists and limit the de-
mocratization of satellite knowledge. Despite the potential of
large language models (LLMs) [Chang et al., 2024; Kasneci
et al., 2023] to simplify and popularize satellite knowledge,
existing LLM models [Thirunavukarasu et al., 2023] face sig-
nificant limitations when applied to domain-specific data, as
shown in Figure 1. Firstly, LLMs struggle with hallucinations,
especially in specialized fields like satellite technology, due
to a lack of satellite-specific knowledge in their pre-training
and tuning phases. This leads to the generation of false or
irrelevant information, undermining their reliability. Secondly,
the outputs from current models often lack engagement, partic-
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ularly for non-expert users [Segovia-Dominguez et al., 2021;
Gadiraju et al., 2020], as they tend to be monotonous, redun-
dant, and devoid of interactivity.

To avoid the erroneous dissemination of satellite common
knowledge by existing LLMs and to enhance the understand-
ability and appeal of the generated results, we propose Sat-
RIA, a multimodal satellite knowledge retrieval-augmented
iterative alignment framework for satellite commonsense
conversation. including the multi-turn dialogue and visual
question-answer tasks. Specifically, we design multi-view re-
trieval expert knowledge construction that integrates our con-
structed satellite knowledge graph to reduce token consump-
tion and combines the satellite expert database, satellite rule,
and a satellite image database, which allows the model to re-
trieve and apply domain-specific information during both train-
ing and inference. We also design commonsense conversation
instructions to make the answers more legible and understand-
able. To further ensure the reliability of the model’s outputs,
we design a retrieval-augmented iterative alignment module,
that employs a multi-stage evaluation process that continually
refines the model’s performance by aligning its generated re-
sponses with established task-specific standards. This iterative
refinement reduces errors and enhances the model’s ability
to handle complex satellite tasks with greater precision. Fi-
nally, we construct satellite commonsense multi-turn dialogue
and visual question-answer datasets for satellite commonsense
conversation evaluation. Experimental results demonstrate
that our approach outperforms existing large language models
in answering satellite-commonsense-related questions and pro-
vides more comprehensible answers with fewer hallucinations.
Our key contributions can be summarized as follows:

• To our best knowledge, we are the first to propose a
novel multimodal knowledge retrieval-augmented iter-
ative alignment framework for satellite commonsense
conversation to provide more comprehensible answers
with fewer hallucinations generation results.

• We design a multi-view retrieval expert knowledge con-
struction to reduce model hallucinations and enhance
the interpretability of responses, alongside a retrieval-
augmented iterative alignment mechanism that refines
outputs through multi-stage evaluations, ensuring task-
specific reliability.

• We construct a satellite knowledge graph, satellite expert
database and a multi-modal dataset containing satellite
multi-turn dialogue and visual question-answer for train-
ing and evaluation across both textual and visual tasks.

2 Related Work
Research on applying language models to satellite tech-
nology has primarily focused on data classification and
anomaly detection [Bondi et al., 2022; Chen et al., 2021;
de Witt et al., 2021; Li et al., 2023]. However, these appli-
cations have not fully exploited the potential of integrating
these models with knowledge graphs to enhance their rea-
soning capabilities [Han et al., 2020; Lebedev et al., 2019].
While large language models [Zhou et al., 2023; Kalyan, 2024;
Huang and Chang, 2023] have shown promise in understand-

ing satellite data, there exists a significant issue of halluci-
nation and a lack of interpretability in their understanding
of satellite common knowledge. In addition, we supplement
the related work on Multi-Modal LLMs and Domain Large
Language Models in the Appendix A.

3 Preliminaries
Satellite commonsense conversation consists of two different
tasks – satellite commonsense multi-turn dialogue (SatDiag)
and satellite commonsense visual question-answer (SatVQA).

Definition 1 (Satellite Commonsense Multi-Turn Dialogue
(SatDiag)). Given a textual query q represented as a set of
words, the objective of the SatDiag task is to generate a re-
sponse r that is coherent and relevant to the context c. The
task can be defined as a function fSatDiag : (q, c) → r, where
q ∈ Q is a textual query from the set of all possible queries Q,
c ∈ C is the context from the set of all possible contexts C, and
r ∈ R is the generated response from the set of all possible
responses R.

Definition 2 (Satellite Commonsense Visual Question-An-
swer (SatVQA)). Given a textual query q and a satellite
image i, the task is to generate a detailed textual description
to answer the question q regarding the satellite image i. It is
worth noting that satellite images here refer to pictures of the
satellite itself rather than images taken by the satellite. The
task can be defined as a function fSatVQA : (q, i) → d, where
q ∈ Q is a textual query from the set of all possible queries Q,
i ∈ I is a satellite image from the set of all possible satellite
images I , and d ∈ D is the generated description from the set
of all possible descriptions D.

4 Sat-RIA Framework
LLMs are prone to hallucination, especially in domain-specific
fields where professional terminology may be confused or mis-
interpreted. To address this, we propose a satellite common-
sense multimodal knowledge retrieval-augmented iterative
alignment framework (Sat-RIA) that not only inputs the query
q but also retrieves relevant information from the satellite
database s, related parameter satellite design rules r, satellite
images i, and the knowledge graph G, as shown in Figure
2. This retrieval-augmented iterative alignment mechanism
reduces errors and enhances the model’s ability to handle com-
plex satellite tasks with greater precision into the Sat-RIA,
enhancing response accuracy and minimizing hallucinations.

4.1 Multi-View Retrieval Knowledge Construction
To effectively support the satellite-specific tasks of Sat-RIA,
we propose the multi-view retrieval knowledge construction.
It integrates data from various sources, including satellite
databases, expert knowledge, and visual datasets, to ensure a
robust and contextually rich knowledge base. The multi-view
retrieval knowledge construction enables the model to dynam-
ically retrieve relevant information across multiple modalities,
such as text, images, and structured satellite data, ensuring
accurate and informed outputs.
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Figure 2: The framework of the Sat-RIA.

Satellite Expert Database Construction. To address the
limitations of existing satellite datasets, we propose the con-
struction of an extensive satellite expert database. Initially,
data were collected from Nanosats.eu, which provides infor-
mation on 2,064 satellites. However, recognizing the limita-
tions of this dataset, we expanded the database by utilizing
Google’s API to query over 7,000 satellites. The data were
further enriched with key parameters from curated expert satel-
lite sources to ensure comprehensive data quality. To resolve
discrepancies between multiple data sources, we employ a
weighted voting mechanism, defined as follows:

P ∗ =
n∑

i=1

wi∑n
j=1 wj

· vi, (1)

where P ∗ represents the final parameter value, vi denotes the
value from the i-th source, and wi corresponds to the weight
assigned to that source based on its reliability. This mechanism
generates a high-quality, comprehensive satellite database for
LLM usage.
Satellite Rule Construction. We propose the design of a
Satellite Rule Collection to integrate domain-specific expert
knowledge and ensure accurate reasoning in satellite appli-
cations. This collection includes a Satellite Design Rules
Library, containing 41 guidelines on structural integrity, ther-
mal control, power management, and communication systems,
alongside a Satellite Design Formulas Library, comprising
48 key formulas related to orbital mechanics and thermal dy-
namics (e.g., Kepler’s equations). To ensure the robustness
and quality of these rules, a validation mechanism was devel-
oped, integrating both physical and engineering constraints.
The consistency-checking algorithm cross-validates each rule
within the Satellite Design Rules Library against these con-
straints, with the validation process governed by the following

scoring function:

Srule (ri) =
1

n

n∑
k=1

F (ri, ck) , (2)

where ri denotes the satellite design rule under evaluation, and
ck represents the k-th physical or engineering constraint. The
function F (ri, ck) outputs a binary value indicating whether
the rule ri satisfies constraint ck. A score closer to 1 signifies
higher compliance with essential constraints. Additionally,
these rules are verified against real-world satellite data, en-
hancing both their reliability and applicability.
Satellite Knowledge Graph Construction To systemati-
cally organize satellite data, we propose the construction of
a comprehensive Satellite Knowledge Graph (more details in
Appendix B). This knowledge graph G = (V , E) integrates
structured data, such as design parameters, mission objectives,
operational status, and historical records. The graph com-
prises nodes V (e.g., satellite, launch vehicle) and edges E
(e.g., launched by, operated by). To ensure the integrity and
accuracy of the knowledge graph, we propose a consistency-
check mechanism that validates the relationships and data
within the graph using multi-relational embeddings. The rela-
tionships between entities vk via relationship ej are validated
with the following scoring function:

f (vi, ej , vk) = |vi + ej − vk|2 . (3)
It ensures that relationships are consistent and represent valid
connections between satellite components, mission data, and
operational parameters. Relationships exceeding a threshold
of k are flagged for further review.
Satellite Image Database Construction. We propose the
construction of a comprehensive satellite image dataset, en-
compassing visual data on satellites and launch vehicles. The
dataset is compiled through two primary sources: the Google
Images Crawler, which retrieves the three most relevant im-
ages for each entity using image recognition algorithms, and
the Nanosats.eu Crawler, which extracts high-quality images
from the Nanosats.eu website, including detailed specifica-
tions and mission descriptions. To ensure the relevance and
integrity of the image data, we introduce a cross-validation
algorithm that evaluates image quality using the Structural
Similarity Index (SSI) [Wang et al., 2003] between retrieved
images and reference images from trusted databases:

SSI =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (4)

where µx and µy are the means of the reference and retrieved
images, σ2

x and σ2
y are the variances, and σxy is the covariance

between the images. By maximizing the SSI, we ensure that
the retrieved satellite images are of high quality and relevant
for downstream tasks, such as satellite image analysis.

4.2 Commonsense Conversation Instruction
To ensure comprehensive and robust handling of satellite-
related tasks, we design and implement a multi-faceted ap-
proach that integrates both dialogue and visual question-
answer tasks. It allows Sat-RIA to effectively process and
generate high-quality responses, tailored to both experts and
non-experts in the satellite domain.
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SatDiag Instruction. We design a prompt-based satellite
multi-turn dialogue system that facilitates natural and coherent
interactions between users and Sat-RIA. The key to effective
dialogue generation lies in the precise design of prompts, en-
suring each interaction targets specific satellite-related knowl-
edge. To elicit accurate satellite-related information, we design
prompts for question-answering tasks that guide the model
towards retrieving specific knowledge from the satellite knowl-
edge graph. This enables the model to generate factually accu-
rate and contextually relevant responses. A typical prompt for
question answering would be:

"Given the specific context provided by the retrieval
knowledge [knowledge], how would you address the
following query: [query]?"

We next design prompts for multi-turn dialogues to simulate
realistic, ongoing conversations about satellite technology.
These dialogues allow the model to maintain a coherent flow
while addressing multiple aspects of satellite operations or
research in a single conversation. A sample prompt for this
type of dialogue might be:

"Continuing from the previous discussion on satel-
lite technology, how would you address the follow-
ing point: [next topic]?"

This design ensures that the model can engage in up to 10
exchanges per satellite, offering a dynamic and engaging dia-
logue experience. To facilitate the accessibility and compre-
hension of satellite-related concepts for a diverse audience,
we propose a series of commonsense conversation instruction.
These instructions focus on enhancing the clarity and engage-
ment of model-generated responses, ensuring that complex
ideas are communicated effectively.

1. Tabular Format: Present responses in tabular form
to improve clarity and comprehension.
2. Simplified Language: Use simple language and
avoid technical jargon to ensure that technical terms
are easily understood.
3. Use of Analogies: Incorporate everyday analogies
to simplify complex satellite concepts.
4. Storytelling: Engage users with narratives, either
real or fictional, to illustrate satellite technologies or
discoveries.
5. Proof Links: Provide references to authoritative
literature or official sources to enhance verification
and credibility.
6. Highlighting Key Points: Highlight critical infor-
mation with bold text or larger fonts, and incorporate
engaging elements like emoticons.
7. Fine-Grained Perception: Identify detailed char-
acteristics, such as color, material, and shape, for a
more comprehensive understanding.

By structuring responses in this way, Sat-RIA is designed to
effectively communicate complex satellite knowledge, making
it more accessible and engaging for a broad audience.
SatVQA Instruction. We propose a detailed multi-step pro-
cess for constructing satellite visual question-answer to ensure

diversity, accuracy, and depth in image interpretation. The
construction of this dataset involves collecting a diverse range
of satellite images and using advanced language models to
generate comprehensive descriptions. In the first step, we use
GPT-4V to generate detailed descriptions for each satellite im-
age. These descriptions are crafted using a variety of prompts
that focus on different visual and contextual aspects of the
image. For example, a prompt might ask the model to describe
the visual experience evoked by the image, considering factors
such as style, theme, and setting:

"Please observe and describe the experience or feel-
ings elicited by this picture, discussing aspects such
as style, theme, setting, mood, and quality."

We further propose a draft creation process wherein the gen-
erated descriptions are consolidated with the original descrip-
tions provided on satellite-related websites. This is achieved
by instructing GPT-4V to merge information from multiple
sources, ensuring consistency and accuracy across descrip-
tions. The prompt used for this task is as follows:

"You are a text information integration expert.
Merge the information from two texts describing
an image from different perspectives into one com-
prehensive and detailed description. Retain as much
valid information from both texts as possible. En-
sure the integrated text is accurate and consistent
with the original descriptions."

To ensure accuracy and comprehensiveness, the initial drafts
are reviewed by multiple human annotators. These experts
refine the descriptions by adding additional details and correct-
ing any errors in multiple rounds of verification, ensuring that
the final text is both precise and exhaustive. The final dataset
includes 1-5 description dialogues for each satellite image, en-
suring depth and variability. Finally, we propose a structured
methodology for generating detailed visual question-answers.
These descriptions aim to provide enough detail to allow indi-
viduals unfamiliar with the image to accurately reconstruct its
content based solely on the description.

1. Accuracy: Ensure that descriptions are detailed, fac-
tually correct, and free from misinformation. Provide
specifics such as object names (e.g., satellite names)
and their attributes (e.g., color, material, shape), and
summarize key points in a table for clarity.
2. Question Splitting: For complex queries, divide
the description into sub-questions, ensuring that each
is addressed thoroughly.
3. Proof Links: Include links to authoritative scientific
sources and official websites to ensure the credibility
of the description.
4. Highlighting Key Points: Use bold text or larger
fonts to emphasize key information, and incorporate
engaging elements like emoticons where appropriate.
5. Length: Ensure each visual question-answer is at
least 300 words in length, providing sufficient detail
for a comprehensive understanding.
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4.3 Retrieval-Augmented Iterative Alignment
Retrieval. To optimize response accuracy, we propose a
retrieval mechanism that dynamically fetches relevant infor-
mation from the satellite knowledge graph. The relevance
between the query Q and the knowledge graph nodes K is
computed using the following function:

Re(Q,K) = Sim(Q,K) + W(K,Q) · Imp(K,G), (5)

where Q is the query vector, K represents nodes in the knowl-
edge graph, and Sim(Q,K) calculates the similarity between
the query and the nodes using the cosine similarity function.
W(K,Q) is a weighting function that quantifies node rele-
vance to the query, and Imp(K,G) reflects the node’s impor-
tance within the graph based on its connectivity and strategic
position. During inference, these scores are used to retrieve
the most pertinent information, ensuring contextually aligned
and well-informed responses.

Iterative Alignment. We propose a deconfounded strategy
to generate alignment responses during training, allowing the
model to progressively align its outputs with the expected
form. The model generates multiple candidate responses
{y1, y2, . . . , yn} using sampling with different random seeds,
while keeping the input x and decoding parameters constant.
We also propose an evaluation mechanism based on large
locally deployed models (e.g., LLaMa), which use five eval-
uation criteria to assess each candidate’s response. The best
response is selected based on a comprehensive score, thereby
allowing the model to produce more refined outputs during
training. To reduce the cost of data collection at each optimiza-
tion step, we propose an iterative alignment approach. At each
iteration, N multi-modal instructions are selected, and the de-
confounded strategy is used to generate n candidate responses
with the current model Mi. Each response is evaluated using
a locally deployed model L, and the resulting alignment data
Di are used to further optimize the model, resulting in Mi+1,
which forms the basis for the next iteration. This iterative pro-
cess continuously improves the model’s performance, particu-
larly for multi-modal tasks, while minimizing data collection
costs. We implement a weighted optimization approach for
alignment, minimizing the discrepancy between the model’s
output and the expected output with the following formula:

Mi+1 = Mi − η · 1
n

n∑
j=1

wj · ∇θL (yj , x,Mi) , (6)

where Mi is the model at iteration i, η is the learning rate, yj
is the j-th candidate response, wj is the weight assigned to
yj based on its comprehensive score S(yj), and L (yj , x,Mi)
is the loss function that measures the discrepancy between yj
and the expected output. The comprehensive score S(yj) for
each response is computed as:

S (yj) =
1

m

m∑
k=1

ck (yj) , (7)

where ck(yj) represents score for the k-th evaluation criterion,
which includes m metrics such as consistency, correctness,
context relevance, detail orientation, and keyword accuracy.

5 Experiments
5.1 Evaluation Datasets
To evaluate our models on satellite commonsense conversa-
tion, we construct two datasets: one for satellite multi-turn
dialogues (SatDiag) and one for satellite visual question-
answering (SatVQA) (more details in Appendix C). The Sat-
Diag dataset includes 2,000 dialogues focused on satellite op-
erations and related knowledge, covering topics like satellite
design, formulas, and parameters. Each dialogue is annotated
with intent, key entities, and contextual information to assess
contextual understanding and response accuracy. The SatVQA
dataset consists of 2,000 labeled examples describing satellite
images from various scenarios, including components, config-
urations, and operations. Annotations highlight the primary
subjects, notable features, and context, enabling evaluation of
multi-modal understanding.

5.2 Evaluation Metrics
To evaluate model performance on SatVQA and SatDiag
datasets, we use both traditional and custom metrics (more
details in Appendix D). Traditional metrics include BLEU,
METEOR, GLEU, and CIDEr, which assess the quality, co-
herence, relevance, and accuracy of generated text. Custom
metrics, evaluated by ChatGPT-4v, measure four dimensions:
1) Consistency: Ensures the response is free from contradic-
tions. 2) Context: Assesses how well the response fits the
broader context. 3) Correctness: Evaluates the factual accu-
racy of the response. 4) Detail: Measures the richness and
specificity of the details provided. Each criterion is scored
from 0 to 10, with higher scores indicating better performance.
Additionally, we evaluate keyword hits using recall, preci-
sion, and F1 scores to assess the model’s ability to incorporate
relevant satellite-related terms.

5.3 Comparison Methods
We compare our model with several state-of-the-art LLM base-
lines (more details in Appendix E): 1) InternVL 2 [Chen et
al., 2023b] is a multi-modal model with 8B parameters, ex-
celling in visual question-answer tasks but slightly weaker
in dialogue generation. 2) LLaVa 1.6 [Liu et al., 2023b;
Liu et al., 2023a] is a 7B-parameter model focused on fine-
grained vision-language alignment, performing well in visual
question-answer. 3) Deepseek-VL [Lu et al., 2024] uses 7B
parameters for complex image and dialogue tasks, excelling
in detail-rich scenes. 4) Yi-VL [Young et al., 2024] is a 6B-
parameter model optimized for fast dialogue generation with
efficient handling of vision language tasks.

5.4 Implementation Details
The Sat-RIA was trained using the PyTorch framework, lever-
aging the computational power of NVIDIA GPUs to expedite
the training process. we use InternVL 2 8B [Chen et al.,
2023b] as the foundational LLM provided a strong baseline
for our fine-tuning efforts. We use a total batch size of 1
throughout the training process. The AdamW [Loshchilov
and Hutter, 2019] optimizer is applied with a cosine learning
rate decay and a warm-up period. In the training stage, every
alignment epoch number is 1 with a learning rate of 1× 10−5
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Model Size Satellite Multi-Turn Dialogue (SatDiag) Satellite Visual Question-Answer (SatVQA)
BLEU METEOR GLEU CIDEr BLEU METEOR GLEU CIDEr

LLaVA 1.6 7B 4.71 24.41 7.17 5.35 1.29 20.78 4.67 6.92
Deepseek-VL 7B 8.20 21.41 11.33 6.42 2.27 15.17 6.92 6.85
Yi-VL 6B 3.10 14.07 8.46 4.97 3.37 18.00 7.87 7.42
InternVL 2 8B 8.27 26.28 11.38 9.92 5.92 24.06 10.41 7.41

Sat-RIA (Ours) 8B 14.86 (↑6.59) 36.18 (↑9.90) 17.74 (↑6.36) 11.75 (↑1.83) 17.64 (↑11.72) 44.41 (↑20.35) 21.60 (↑11.19) 10.54 (↑3.12)

Table 1: Performance comparison of different baseline models. The best results are highlighted in bold and the underlined values are the
second-best result. “↑” means the increase compared to the underlined values.

Variant Satellite Multi-Turn Dialogue (SatDiag) Satellite Visual Question-Answer (SatVQA)
Consistency Context Correctness Detail Consistency Context Correctness Detail

Sat-RIA 9.78 9.78 9.83 8.17 7.51 8.30 7.58 6.61

w/o Satellite Rule 9.39 9.56 9.78 7.65 7.29 8.09 7.51 6.16
w/o Satellite Expert Database 3.00 2.78 3.09 2.22 4.72 5.20 6.26 5.18
w/o Iterative Alignment 9.48 9.61 9.43 7.65 7.39 8.22 7.49 6.47
w/o Retrieval Mechanism 2.04 3.09 2.22 2.78 4.97 5.03 6.54 5.07

Table 2: Variant experiments evaluating by ChatGPT-4v. “w/o” means removing the corresponding module from complete model.

and a warmup ratio of 0.05. Hyperparameters were fine-tuned
iteratively based on the performance metrics observed during
validation. We have trained our model through the method of
full parameter fine-tuning, using a 2xA800 80G machine, and
All experiments were conducted on the same machine. For
alignment response evaluation, we use the locally deployed
LLaMa3 8B model (more details in Appendix F).

5.5 Main Results

To verify the effectiveness of our model, we report the overall
average results in Table 1. We experimented with the tradi-
tional metrics. From the table, we can observe that: 1) Our
model outperforms all others across metrics in both the Satel-
lite Multi-turn Dialogue and Satellite Visual Question-Answer
tasks, indicating its superiority in generating accurate and rel-
evant satellite content. 2) In Satellite Multi-turn Dialogue,
our model achieves the highest BLEU score of 14.86, well
above InternVL 2’s 8.27, demonstrating its ability to generate
fluent dialogues through satellite expert data and retrieval. 3)
Our model’s METEOR score of 36.18 for Satellite Multi-turn
Dialogue reflects its strength in generating semantically mean-
ingful responses. 4) For Satellite Visual Question-Answer,
our model leads with a BLEU score of 17.64, showcasing its
capability to produce detailed descriptions. 5) It also excels in
METEOR, GLEU, and CIDEr metrics, with scores of 44.41,
21.60, and 10.54, respectively, underlines the robustness and
effectiveness of our approach in handling diverse satellite-
related information generation tasks. 6) Compared to baseline
models like InternVL 2 and LLaVa 1.6, our model consistently
achieves higher scores, confirming the effectiveness of our
proposed architecture. All the observations demonstrate the
effectiveness of the Sat-RIA framework.
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Figure 3: Variant experiments on evaluating keyword hits.

5.6 Discussion for Model Variants

To investigate the effectiveness of each module in Sat-RIA,
we conducted a series of variant experiments, with the results
presented in Tables 2 and Figure 3. We evaluated performance
using two different types of metrics. In Table 2, we assessed
consistency, context, correctness, and detail orientation, as
scored by GPT-4V. In Figure 3, we evaluated performance
based on Recall, Precision, and F1, which calculate the proba-
bility of keyword hits, i.e., the extent to which the generated
results cover the keywords.

From Table 2 and Figure 3, we can observe that: 1) Remov-
ing the Satellite Expert Database leads to significant perfor-
mance drops in both tasks. Consistency and context scores fall
to 2.78 and 3.00 in Satellite Multi-turn Dialogue, and recall
and F1 drop to 0.32 and 0.33, highlighting the importance
of expert knowledge. 2) Removing the Retrieval Mechanism
results in the lowest scores across most categories. Consis-
tency and correctness for Satellite Multi-turn Dialogue drop
to 2.04 and 2.22, and recall and precision for Satellite Visual
Question-Answer fall to 0.28 and 0.33, demonstrating the
mechanism’s crucial role. 3) The variant without the Satellite
Rule module exhibits a noticeable decrease in performance,
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(a) Sat-RIA on commonsense dialogue. (b) Sat-RIA on visual question-answer.

Figure 4: Result on different LLM models and Sat-RIA on commonsense dialogue and visual question-answer.

particularly in the detail metric for Satellite Visual Question-
Answer in Table 2, dropping from 6.61 to 6.16. In Figure 3,
the F1 score for Satellite Visual Question-Answer drops from
0.64 to 0.61. This suggests that predefined rules are essential
for maintaining the detail and accuracy of generated descrip-
tions. 4) Removing Iterative Alignment lowers performance
in both tasks. For Satellite Multi-turn Dialogue, detail drops
to 7.65, and F1 drops to 0.50. This demonstrates the impor-
tance of iterative alignment in refining content and improving
relevance and accuracy. 5) The full model (Ours) consistently
achieves the highest scores across all metrics, confirming that
combining all modules results in the best performance for both
tasks. All these observations demonstrate the effectiveness of
each component in our model.

5.7 Analysis on SatDiag
We present examples of results generated by our approach
compared to other methods, as shown in Figure 4 (a). Results
generated using ChatGPT-4o exhibit hallucinations. Addition-
ally, incorporating our designed commonsense conversation
instruction makes the generated results more readable and
comprehensible. However, due to the inherent hallucinations
in LLMs, the provided reference links either do not exist or do
not match the answers. Results generated using the LLaMa-8B
model not only exhibit hallucinations but also fail to under-
stand questions in the satellite domain accurately. Incorporat-
ing commonsense conversation instruction in this model does
not yield satisfactory results either. Our model can generate
easily understandable results by integrating satellite knowl-
edge, thereby reducing hallucinations. Moreover, the provided
references completely match the answers. By incorporating a
KG, the responses are enriched and more comprehensible.

5.8 Analysis on SatVQA
We further present examples of results on Satellite Visual
Question-Answer generated by our approach compared to
other methods, as shown in Figure 4(b). Results generated
using ChatGPT-4 are accurate but often fail to capture the key
points, making it difficult for those unfamiliar with satellites
to quickly comprehend the information. Conversely, results
from the LLava 7B model are not only inaccurate but also
challenging for laypersons to understand. Our model, on the
other hand, generates results that include object detection and
recognition within the images, along with some characteristics
of the targets. Additionally, by presenting the results in a sim-
ple, easy-to-understand manner, including the use of emojis,
comprehension is significantly improved. We also provide
relevant satellite links, enhancing the explanatory power and
reliability of the generated results.

6 Conclusion
This paper introduces a multimodal, retrieval-augmented
framework for satellite commonsense conversation. Our
framework integrates a satellite knowledge graph, expert
database, and image database to reduce hallucinations and
enhance response interpretability. It also features a com-
monsense conversation instruction to improve answer clarity.
The retrieval-augmented iterative alignment module refines
responses through multi-stage evaluations aligned with task-
specific standards. To evaluate our model, we construct satel-
lite multi-turn dialogue and visual question-answer datasets.
Experiments on satellite dialogue and VQA datasets show
superior performance over existing LLMs, with fewer halluci-
nations and more comprehensible answers.
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