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Abstract
Pixel-level anomaly detection is indispensable in
industrial defect detection and medical diagnosis.
Recently, Segment Anything Model (SAM) has
achieved promising results in many vision tasks.
However, direct application of the SAM to pixel-
level anomaly detection tasks results in unsatisfac-
tory performance, meanwhile SAM needs the man-
ual prompt. Although some automatically prompt-
based SAM has been proposed, these automated
prompting approaches merely utilize partial image
features as prompts and fail to incorporate cru-
cial features such as multi-scale image features
to generate more suitable prompts. In this pa-
per, we propose a novel Omni Dimensional State
Space Model-driven SAM (ODS-SAM) for pixel-
level anomaly detection. Specifically, the pro-
posed method adopts the SAM architecture, en-
suring easy implementation and avoiding the need
for fine-tuning. A State-Space Model-based resid-
ual Omni Dimensional module is designed to au-
tomatically generate suitable prompts. This mod-
ule can effectively leverage multi-scale and global
information, facilitating an iterative search for op-
timal prompts in the prompt space. The identified
optimal prompts are then fed into SAM as high-
dimensional tensors. Experimental results demon-
strate that the proposed ODS-SAM outperforms
state-of-the-art models on both industrial and med-
ical image datasets.

1 Introduction
Pixel-level anomaly detection [Huang et al., 2022d; Huang
et al., 2024b] is a technique that precisely identifies anomaly
pixels in images, which has emerged as an indispensable tool
for industrial defect detection and medical diagnosis. How-
ever, its reliance on the expertise and proficiency of individ-
ual analysts poses a significant challenge. Consequently, it
is necessary that develop an automated method to replace the
previously labor-intensive and technically demanding manual
detection processes [Huang et al., 2022b].

∗Corresponding author

Deep learning models have emerged as promising tools
for pixel-level anomaly detection due to their ability to learn
complex image features. However, the widespread preva-
lence of Pixel-level anomaly detection algorithms tailored to
specific imaging modalities or objectives hinders progress.
While the specialization of existing methods can achieve
high accuracy in controlled settings, it comes at the cost
of limited adaptability and generalizability across diverse
anomaly scenarios [Mamonov et al., 2014]. Vision Foun-
dation Models (VFMs) have captivated the attention of re-
searchers due to their remarkable generalization capabilities
across diverse downstream tasks. Among these, the Seg-
ment Anything Model (SAM) [Kirillov et al., 2023] has
emerged as a pioneering contribution to image segmenta-
tion due to the widespread acclaim for its ability to gener-
ate precise object masks in both fully automated and inter-
active scenarios. However, pixel-level anomaly detection, a
critical subfield of image segmentation, poses unique chal-
lenges that may impede the performance of SAM in this
field. This stems from the inherent disparities between natu-
ral images and medical images. Some works [Li et al., 2025;
Liu et al., 2024] have demonstrated that the direct applica-
tion of the SAM to pixel-level anomaly detection tasks re-
sults in unsatisfactory performance. Therefore, it’s necessary
to perform specific improvements and optimizations to SAM
so that improve the performance and generalization ability of
the model in pixel level anomaly detection tasks.

Moreover, the work of [Cai et al., 2024] has shown the sig-
nificance of multi-scale features for pixel-level anomaly de-
tection. Nevertheless, we found that the original SAM lacks a
multi-scale feature extraction component. This is due to SAM
being an interactive segmentation model that only requires
segmenting objects in a specified region. However, when
dealing with an image containing numerous anomaly targets,
performing interactive segmentation for each target individu-
ally becomes inefficient. Consequently, some methods [Xie
et al., 2024; Shaharabany et al., 2023] have been proposed to
automatically generate SAM prompts without manual inter-
vention. Nonetheless, these automated prompting approaches
merely utilize partial image features as prompts and fail to in-
corporate crucial features such as multi-scale image features
to generate more suitable prompts. This limitation results
in the generated prompts that cannot fully capture anoma-
lous targets in the image, thereby affecting the accuracy and
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robustness of anomaly detection. Therefore, the challenge
faced in this article is how to design a prompt encoder that
can effectively integrate multi-scale features as prompts to
improve its ability to detect anomalies in complex scenes.

To address this challenge, we propose a novel end-to-end
method for pixel-level anomaly detection in industrial and
medical images. Specifically, we propose a novel prompt en-
coder to generate prompts based on the input image fed into
SAM. This contrasts with the rudimentary prompts (point,
bounding box, and mask) adopted in the vanilla SAM ar-
chitecture. We propose a State-Space Model-based residual
Omni-Dimensional module (SSMODC) for the prompt en-
coder. This module can effectively leverage multi-scale and
global information, facilitating an iterative search for optimal
prompts in the prompt space. The identified optimal prompts
are then fed into SAM as high-dimensional tensors. Notably,
our method does not alter the SAM, which ensures ease of
implementation and avoids finding an optimal training sched-
ule for fine-tuning SAM. Extensive experiments demonstrate
that with our proposed prompt encoder, the detection perfor-
mance of the SAM is significantly improved. It surpasses
state-of-the-art models.

The contributions of this work can be summarized as:

1) We propose a novel Omni Dimensional State Space
Model-driven SAM (ODS-SAM) for pixel-level anomaly
detection. Specifically, ODS-SAM utilizes an innovative
prompt encoder to adaptively generate prompts based on
input images, effectively integrating multi-scale features.
This adaptive prompt generation mechanism significantly im-
proves the quality of prompts and the accuracy of detection.

2) We design a State-Space Model-based residual Omni-
Dimensional module (SSMODC), which effectively utilizes
multi-scale and global information to iteratively search for
the optimal prompt in the prompt space. The introduction of
the SSMODC module enables the model to comprehensively
understand and respond to the features of the input image,
improving the accuracy and robustness of anomaly detection.

3) Experimental results on medical and industrial image
datasets demonstrate that our proposed ODS-SAM outper-
forms several state-of-the-art methods on the task of pixel-
level anomaly detection.

2 Related Work
2.1 Pixel-level Anomaly Detection
Pixel-level anomaly detection is an anomaly detection[Zhang
et al., 2022; Huang et al., 2021a; Huang et al., 2021b;
Wang et al., 2025; Huang et al., 2022c; Huang et al., 2022a;
Huang et al., 2024c; Huang et al., 2025] task aimed at accu-
rately identifying abnormal regions in an image, which has
attracted attention from both academia and industry due to
its broad application prospects. Initial efforts [Bae and Yoon,
2015; Reiss et al., 2021] employed elemental features like
texture, color, shape, and appearance, but their performance
is often hindered by the inherent limitations of these low-level
features. The advent of deep learning [Chen et al., 2020] rev-
olutionized the pixel-level anomaly detection task, and deep
neural network-based methods achieve remarkable progress.

Notably, encoder-decoder architecture networks, exemplified
by U-Net [Ronneberger et al., 2015] and the enhanced ver-
sion U-Net++ [Zhou et al., 2018], have demonstrated signif-
icant performance gains by leveraging multi-level feature in-
tegration to generate high-resolution detection results. Addi-
tionally, researchers have further enhanced the effectiveness
of anomaly detection models by incorporating supplementary
boundary information [Fang et al., 2019]. These methods
represent the conventional deep learning approaches. In con-
trast, the proposed method leverages the powerful generaliza-
tion and spatial awareness capabilities of the visual founda-
tion model SAM, thus achieving accurate pixel-level anomaly
localization and detection without the need for additional in-
formation.

2.2 Segment Anything Model
SAM (Segment Anything Model, SAM) [Kirillov et al.,
2023] is a groundbreaking prompt-based image segmenta-
tion model. It is trained on the extensive SA-1B dataset.
This dataset has an astounding tens of millions of image-
annotation pairs. It grants the model exceptional zero-shot
generalization capabilities. SAM adopts a Transformer-based
architecture, demonstrating remarkable effectiveness in natu-
ral language processing and image recognition tasks. Specifi-
cally, SAM employs a Vision Transformer (ViT)-based image
encoder [Dosovitskiy, 2020] to extract image embeddings,
a prompt encoder to integrate user interaction through di-
verse prompt modes, and a lightweight mask decoder to pre-
dict segmentation masks by fusing image embeddings and
prompt embeddings. However, existing SAM requires rela-
tively high-quality prompts (i.e., points, boxes, and masks)
to achieve satisfactory performance in segmentation tasks.
In previous methods, the required prompts are generated
from ground-truth labels during testing [Wei et al., 2023].
Nonetheless, creating accurate and reliable prompts still ne-
cessitates specific domain expertise, which may not be read-
ily accessible. Moreover, low-quality prompts arising from
noisy annotations can significantly deteriorate segmentation
accuracy. Consequently, exploring automatic prompt mecha-
nisms aims to establish a robust adaptive framework to allevi-
ate the performance of SAM variability and facilitate more re-
liable and accurate results across various segmentation tasks.
This paper proposes a prompt encoder that generates prompts
tailored to the given prompt for SAM input images. Specif-
ically, it extracts multi-scale features, crucial for pixel-level
anomaly detection tasks, as prompts for SAM. Additionally,
the prompt encoder can identify the optimal prompt mode by
optimizing parameters during training.

3 Methodxiangology
3.1 Preliminaries: State Space Model
State Space Model (SSM) originates from continuous sys-
tems that transform a sequence x(t) → y(t) through a hidden
state function h(t) ∈ RN . It can be expressed as the follow-
ing equations:

h′(t) = Ah(t) +Bx(t), (1)
y(t) = Ch(t), (2)
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Figure 1: Overview of the proposed method. First, given the input image, the SAM encoder is adopted to extract the vision feature. Addi-
tionally, we adopt a feature encoder containing n Efficient Vit block to extract the feature of the abnormal object. Subsequently, the proposed
SSMODC is adopted to generate suitable prompts, which are generated by leveraging both global and multi-scale information. Finally, both
prompt and visual features are fed into the SAM decoder to generate the final anomaly mask. The “OC” is the omni-dimensional convolution
and the “Dw Conv” is the depthwise convolution.

where A ∈ RN×N is a state matrix, and B,C ∈ RN are the
projection matrix.

S4 and Mamba [Gu and Dao, 2023] are discrete versions
of the aforementioned continuous system, which adopt a time
scale parameter ∆A and ∆B that converts continuous pa-
rameters A, B into discrete parameters A,B. The zero-order
hold is adopted as the discretization rule, defined as follows:

A = exp(∆A), (3)

B = (∆A)−1(exp(∆A)− J) ·∆B, (4)

where J is a unit matrix.
After discretizing A and B, Eq. 1 can be written as fol-

lows:

h′(t) = Ah(t) +Bx(t), (5)
y(t) = Ch(t). (6)

Furthermore, a global convolution is adopted to compute
the output, defined as:

K = (CB,CAB,CA
L−1

B), (7)

y = x ∗K, (8)

where L denotes the length of the input sequence and K ∈
RL is a structured convolution kernel.

3.2 Overview
The proposed method is shown in Fig 1. Specifically, it con-
sists of three parts, the SAM encoder EncSAM , the proposed
prompt encoder Encp, and the SAM decoder DecSAM .
EncSAM is adopted to extract visual features. We freeze

for both components during the training phase to maintain
the powerful feature extraction capabilities of EncSAM and
the remarkable spatial reasoning prowess of DecSAM . Sub-
sequently, the proposed State-Space Model-based residual
Omni-Dimensional module is adopted to comprehensively
explore the global information of anomalous targets from
multiple directions. Moreover, it captures the edge details
of anomalies through multi-scale representation. Thus, the
prompt encoder can deeply understand anomalous features
at different scales while iteratively searching for the opti-
mal prompt in the prompt space, achieving more accurate
anomaly detection results. Finally, both prompt and visual
features are fed into the SAM decoder to generate the final
anomaly mask.

3.3 State-Space Model-based residual
Omni-Dimensional module

Previous research has demonstrated that leveraging multi-
scale representations to capture contextual information can
effectively improve edge segmentation accuracy. Further-
more, global information offers more holistic scene under-
standing, which plays a pivotal role in detecting the overall
structure of anomalous objects. However, current pixel-level
anomaly detection methods fail to integrate global and rich
contextual information containing multi-scale information ef-
fectively. Thus it is hard to accurately segment anomalous
objects in complex scenarios, particularly while both local
details and global context demand comprehensive considera-
tion. To address these limitations, we propose the State-Space
Model-based residual Omni-Dimensional module, which en-
codes these two types of information as prompts and feeds
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them into the SAM model for pixel-level anomaly detection.
Specifically, we adopt the state-space model (SSM) to ex-

tract global information. SSM can process sequence data with
linear complexity, which significantly improves the efficiency
of sequence processing. However, SSM is hard to capture
global information due to the fixed scanning direction. Fur-
thermore, SSMs exhibit a propensity to forget previous in-
puts, causing the model to prioritize recent inputs during pro-
cessing at the expense of early information in the sequence.
This tendency impedes the model’s ability to adequately fo-
cus on the middle region of images in image segmentation
tasks, potentially leading to the oversight of anomalous in-
formation. To address these limitations, we introduce the
Omni-directional State-Space Model (OD-SSM). OD-SSM
improves the extraction of global information by scanning the
input sequence in multiple directions, which can simultane-
ously pay attention to the middle region and corners of the
image. Consequently, it can effectively avoid the omission of
anomalous information. Additionally, we adopted a depth-
wise separable convolution (DW Conv) layer before OD-
SSM to retain local details. It can extract near-neighbor fea-
tures before modeling global information. Depthwise separa-
ble convolution can effectively capture salient features in lo-
cal regions. Notably, this refinement does not impede the pro-
posed method extract global information, which ensures the
integration of local details with global information. As shown
in Fig 2, we adopt Omni-Dimensional Dynamic Convolu-
tion (OD Conv) [Li et al., 2022] with different dilated rates
to extract multi-scale information. OD Conv incorporates
a multi-dimensional dynamic attention mechanism to opti-
mize convolution kernel shapes and enhance feature sensitiv-
ity. This mechanism empowers convolution kernels to adap-
tively focus on crucial information within input data, which
bolsters the representative capacity of the model. Moreover,
the model effectively captures multi-scale features by adopt-
ing ODConv with varying dilation rates, which can learn rich
representations from local to global contexts. This comple-
ments the global information extracted by SSM and provides
the decoder with more comprehensive prompts.

3.4 Loss Function
We adopt a composite loss function in training. This func-
tion combined the Binary Cross-Entropy (BCE) loss and Dice
loss in a weighted manner. This combined function can bal-
ance the prediction accuracy and boundary alignment, which
improves training efficiency and segmentation accuracy for
pixel-level classification tasks.

The BCE and Dice function can be defined as follows:

LBCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] , (9)

LDice = 1−
2
∑N

i=1 ŷiyi + ϵ∑N
i=1 ŷi +

∑N
i=1 yi + ϵ

(10)

where N is the total number of samples, yi is the ground truth
label for the i-th pixel, and ŷi is the predicted probability for
the i-th pixel. Additionally, ϵ is a small constant added for
numerical stability.

The final combined loss function L is defined as follows:

L = λ1LDice + λ2LBCE . (11)

Based on experiments, we set λ1 = 0.5 and λ2 = 0.5.

4 Experiments
4.1 Dataset
MVTec AD [Bergmann et al., 2020] is adopted to evaluate the
proposed method for pixel-level anomaly detection in indus-
trial scenes. It is a large-scale dataset for industrial anomaly
detection, which contains 1258 abnormal images in 15 cate-
gories. The MoNuSeg dataset [Kumar et al., 2017] comprises
30 microscopy images from 7 organs in the training set, with
annotations for 21,623 individual nuclei. To align with prior
work, we resized the all images to 512 × 512. The Gland seg-
mentation (GlaS) challenge [Sirinukunwattana et al., 2017]
encompasses 85 images for training and 80 images for test-
ing. All images in experiments are resized to 224 × 224.
Moreover, four Polyp datasets (Kvasir-SEG [Jha et al., 2020],
ClinicDB [Bernal et al., 2015], ColonDB [Tajbakhsh et al.,
2015], and ETIS [Silva et al., 2014]) are adopted to evaluate
the proposed method. The experiment setup is followed [Fan
et al., 2020].

4.2 Implementation Details
During the training, we adopted the Adam with an initial
learning rate of 0.001 and a weight decay regularization pa-
rameter of 1e-5. The batch size is 10 and trained on an
NVIDIA A100 GPU. The maximum number of epochs is
200. SAM pre-trained weights adopted in all experiments is
based on ViT-H.

4.3 Evaluation Metrics
To align with prior research, we evaluate the performance
of all methods on the MVTec dataset using the following
two metrics: mean E-measure (mE) [Fan et al., 2021] and
mean absolute error (MAE). Additionally, we assess the per-
formance of all methods on the GlaS, MoNusEG, and four
polyp datasets using Dice and IoU [Li et al., 2023] metrics.

4.4 Comparison Methods
On the medical image datasets, comparison methods in-
clude U-Net [Ronneberger et al., 2015], U-Net++ [Zhou et
al., 2018], SFA [Fang et al., 2019], MSEG [Huang et al.,
2021c], DCRNet [Yin et al., 2022], ACSNet [Liu et al.,
2021], PraNet [Fan et al., 2020], EU Net [Patel et al., 2021],
SANet [Wei et al., 2021], COMMA [Shin et al., 2022],
SAM-EG [Trinh et al., 2024], LViT [Li et al., 2023], and
methods from literature [Huang et al., 2024a], Axial Atten-
tion [Wang et al., 2020], MedT [Valanarasu et al., 2021],
UCTransNet [Wang et al., 2022], 3P-SEG [Shaharabany and
Wolf, 2022], MedAdaptor-SAM [Wu et al., 2023]. The com-
parison methods on industrial images include SFA [Fang et
al., 2019], ACSNet [Zhang et al., 2020], PraNet [Fan et al.,
2020], and methods from literature [Huang et al., 2022b], Au-
toSAM [Shaharabany et al., 2023], I-MedSAM [Wei et al.,
2023].
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Figure 2: The overview of the Omni-Dimensional Dynamic Convolution (OD-Conv).

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean

U-Net MAE ↓ 0.010 0.029 0.006 0.016 0.042 0.011 0.018 0.012 0.005 0.004 0.020 0.037 0.009 0.028 0.011 0.014
mE ↑ 0.679 0.629 0.562 0.915 0.719 0.727 0.866 0.903 0.811 0.431 0.801 0.620 0.882 0.832 0.562 0.724

U-Net++ MAE ↓ 0.009 0.022 0.005 0.013 0.043 0.010 0.015 0.010 0.004 0.004 0.014 0.040 0.009 0.020 0.010 0.012
mE ↑ 0.701 0.742 0.641 0.933 0.566 0.818 0.874 0.911 0.857 0.508 0.877 0.560 0.910 0.928 0.690 0.775

SFA MAE ↓ 0.031 0.083 0.025 0.062 0.133 0.031 0.031 0.077 0.015 0.007 0.095 0.045 0.009 0.037 0.023 0.041
mE ↑ 0.735 0.726 0.552 0.768 0.596 0.690 0.832 0.583 0.737 0.750 0.747 0.738 0.941 0.883 0.718 0.739

ACSNet MAE ↓ 0.022 0.037 0.006 0.016 0.758 0.011 0.013 0.009 0.003 0.003 0.022 0.033 0.008 0.029 0.009 0.036
mE ↑ 0.772 0.825 0.788 0.961 0.189 0.848 0.938 0.960 0.940 0.833 0.809 0.786 0.923 0.898 0.775 0.840

PraNet MAE ↓ 0.010 0.024 0.008 0.024 0.034 0.011 0.018 0.015 0.005 0.006 0.021 0.042 0.011 0.037 0.011 0.015
mE ↑ 0.826 0.828 0.808 0.907 0.616 0.885 0.899 0.902 0.886 0.729 0.885 0.692 0.930 0.850 0.818 0.844

Huang et al. MAE ↓ 0.006 0.018 0.004 0.012 0.032 0.008 0.013 0.008 0.004 0.003 0.013 0.027 0.009 0.017 0.010 0.011
mE ↑ 0.850 0.881 0.765 0.924 0.838 0.855 0.900 0.939 0.878 0.780 0.930 0.729 0.920 0.940 0.806 0.860

AutoSAM MAE ↓ 0.004 0.022 0.017 0.014 0.063 0.007 0.016 0.006 0.004 0.005 0.012 0.007 0.008 0.018 0.007 0.014
mE ↑ 0.900 0.791 0.429 0.954 0.390 0.900 0.860 0.906 0.915 0.789 0.939 0.806 0.918 0.948 0.859 0.820

I-MedSAM MAE ↓ 0.006 0.024 0.010 0.012 0.105 0.007 0.017 0.007 0.004 0.002 0.011 0.007 0.007 0.019 0.006 0.016
mE ↑ 0.878 0.831 0.841 0.954 0.590 0.912 0.880 0.930 0.904 0.903 0.947 0.839 0.930 0.947 0.842 0.875

Our MAE ↓ 0.004 0.020 0.007 0.011 0.023 0.010 0.012 0.006 0.004 0.002 0.010 0.003 0.007 0.017 0.005 0.009
mE ↑ 0.947 0.833 0.850 0.968 0.913 0.893 0.892 0.908 0.914 0.905 0.950 0.876 0.914 0.936 0.865 0.904

Table 1: Quantitative results on MVTec AD. The digits indicate categories: ‘pill’, ‘cable’, ‘capsule’, ‘tile’, ‘transistor’, ‘carpet’, ‘wood’,
‘hazelnut’, ‘leather’, ‘screw’, ‘metal nut’, ‘toothbrush’, ‘zipper’, ‘bottle’, and ‘grid’, respectively. ↑ (or ↓) indicates that the higher (or the
lower) the better.

4.5 Comparison with State-of-the-Art Methods
Result on MVTec Dataset
As shown in Table 1, the proposed method outperforms all ex-
isting SOTA methods on the MVTec AD dataset. Specifically,
the proposed method achieves the best mean MAE and mean
squared error (mE) results. The method achieves an MAE of
0.009, which outperforms the SOTA method [Huang et al.,
2022b] by 18.2%. Moreover, our method increases mE by
5.1% compared to the SOTA method [Huang et al., 2022b].
These results demonstrate that the proposed method can ac-
curately detect pixel-level anomalies on industrial datasets.

Result on Medical Image Dataset
Table 2 and Table 3 demonstrate that the proposed method
outperforms other methods across all medical image datasets.
Specifically, compared with existing SOTA methode SAM-
EG, our method achieved 0.6% and 1.4% improvement in
Dice and IoU scores on the Kvasir33 dataset, respectively.

Method Kvasir33 Clinic Colon ETIS

Dice(%) IoU(%) Dice(%) IoU(%) Dice(%) IoU(%) Dice(%) IoU(%)

U-Net 81.8 74.6 82.3 75.5 51.2 44.4 39.8 33.5
U-Net++ 82.1 74.3 79.4 72.9 48.3 41.0 40.1 34.4

SFA 72.3 61.1 70 60.7 46.9 34.7 29.7 21.7
MSEG 89.7 83.9 90.9 86.4 73.5 66.6 70.0 63.0

DCRNet 88.6 82.5 89.6 84.4 70.4 63.1 55.6 49.6
ACSNet 89.8 83.8 88.2 82.6 71.6 64.9 57.8 50.9
PraNet 89.8 84.0 89.9 84.9 71.2 64.0 62.8 56.7
EU-Net 90.8 85.4 90.2 84.6 75.6 68.1 68.7 60.9
SANet 90.4 84.7 91.6 85.9 75.3 67.0 75.0 65.4

COMMA 90.4 86.0 91.6 87.1 75.4 68.9 71.1 64.8
SAM-EG 91.5 86.2 93.1 87.9 77.4 68.9 75.7 68.1

Ours 92.1 87.6 93.0 87.5 79.3 71.3 78.6 71.5

Table 2: Quantitative comparison of the proposed and other SOTA
methods on Kvasir33, Clinic, Colon, and ETIS datasets.

Surprisingly, our method achieves significant improvement,
with Dice and IoU scores increasing by 3.68% and 5.19% on
the MoNuSeg dataset, respectively. These results underscore
the superiority of our method for pixel-level anomaly detec-
tion in medical images.
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Method MoNuSeg GlaS

Dice(%) IoU(%) Dice(%) IoU(%)

FCN 28.84 28.71 - -
U-Net 79.43 65.99 75.12 75.12

U-Net++ 79.49 66.04 79.03 79.03
Axial Attention 76.83 62.49 - -

MedT 79.55 66.17 88.85 78.93
FCN-Hardnet 79.52 66.06 89.37 82.09
UCTransNet 79.87 66.68 89.84 82.24

3P-SEG 80.13 67.09 91.19 84.34
MedAdaptor-SAM 80.34 67.33 92.02 85.88

Our 84.02 72.52 92.74 87.01

Table 3: Quantitative comparison of the proposed method and other
SOTA methods on MoNuSeg and GlaS datasets

SAM OD-SSM OD Conv MoNuSeg GlaS

Dice(%) IoU(%) Dice(%) IoU(%)

! 82.43 70.17 92.10 86.02
! ! 82.99 71.01 92.58 86.62
! ! 83.36 71.59 92.60 86.81
! ! ! 84.02 72.52 92.74 87.01

Table 4: Effectiveness of each proposed component on MoNuSeg
and GlaS

4.6 Ablation Studies
Effectiveness of Each Component
Table 4 reports the ablation experimental results about the ef-
fectiveness of each component. These results indicate that all
of these components are effective for the proposed method.
Our ablation study aimed to assess the contributions of OD-
SSM and multi-scale OD Conv to medical image segmenta-
tion. When employed individually, OD-SSM led to modest
performance gains on MoNuSeg and GlaS, validating its ef-
fectiveness. OD-SSM enhances global context extraction by
scanning the input sequence multi-directionally. Simultane-
ously, it ensures comprehensive image coverage, which en-
hances the perception ability of anomalies.

Furthermore, the exclusive utilization of multi-scale OD
Conv results in substantial performance improvements. It
indicates that multi-scale representations can improve edge
segmentation accuracy due to the multi-scale feature contains
richer contextual information.

The combination of OD-SSM and OD Conv yielded the
best performance, demonstrating a synergistic effect. Ex-
tracting global context can provide a more comprehensive
scene understanding, which improves the ability of the model
to parse the overall structure of anomalies. Meanwhile, OD
Conv effectively integrated global and multi-scale contextual
information, enhancing segmentation accuracy in complex
scenarios.

Impact of different OD Conv quantities
Table 5 presents an ablation study for varying numbers of OD
Conv. Specifically, the model exhibited optimal performance
when equipped with two ODDC convolutional layers. This

OD Conv MoNuSeg GlaS

Dice(%) IoU(%) Dice(%) IoU(%)

1 83.63 71.97 92.37 86.38
2 84.02 72.52 92.74 87.01
3 82.52 70.32 92.63 86.93

Table 5: Impact of different OD Conv quantities on MoNuSeg and
GlaS

Number MoNuSeg GlaS

Dice(%) IoU(%) Dice(%) IoU(%)

1 84.02 72.52 92.74 87.01
2 83.21 71.35 92.61 86.77
3 83.14 71.22 92.53 86.66

Table 6: Impact of different OD-SSM quantities on MoNuSeg and
GlaS

Methods Time complexity (GFLOPs) Parameters (106)

AutoSAM 80.314 88.569
I-MedSAM 648.060 92.520

Our ODSSAM 53.902 53.687

Table 7: Time and space complexity analysis.

(a)Image (b) GT (f) Ours(d)SFANet (e) PraNet(c) ACSNet

Figure 3: Visualization results of different models on MVTec
dataset.

superior performance can be attributed to the following rea-
sons: firstly, the integration of two ODDC layers could pro-
vide a balanced capacity for feature extraction. Secondly, the
dual-layer configuration may enhance the model to capture
multi-scale and multi-dimensional features, which is essential
for the nuanced detection of anomalies within the pixel-level
domain. Furthermore, the results suggest that the addition of
more than two ODDC layers does not significantly improve
the performance of the model, which is due to the diminishing
returns on the complexity added to the network architecture.
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Impact of Different OD-SSM Quantities
In the ablation study, we further explored the impact of the
number of Omni-directional State-Space Models (OD-SSMs)
on the performance of pixel-level anomaly detection. The re-
sults are shown in Table 6. We constructed model variants
with 1, 2, and 3 layers of OD-SSMs on the MoNuSeg and
GlaS datasets, respectively. It demonstrates that when the
model incorporates a single OD-SSM layer, it achieves Dice
coefficients of 84.02% on MoNuSeg and 92.74% on GlaS,
corresponding to IoU scores of 72.52% and 87.01%, respec-
tively. These results suggest that a solitary OD-SSM layer
is sufficient to capture anomalous features within images and
produce reasonably accurate anomaly segmentation. Increas-
ing the number of OD-SSM layers to two resulted in a slight
decrease in the Dice coefficient on MoNuSeg to 83.21% and
a corresponding decrease in IoU to 71.35%. On GlaS, the
Dice coefficient was 92.61% and the IoU was 86.77%. These
findings suggest that while an additional OD-SSM layer can
provide supplementary global information, it offers diminish-
ing returns in terms of performance improvement, and may
even introduce a marginal performance degradation.

Time and Space Complexity Analysis
A comparative analysis of time complexity was conducted
between the proposed method and two existing automatic
prompt SAMs, AutoSAM and I-MedSAM. The results are
shown in Table 7. Due to the strategy of freezing SAM image
encoder and decoder adopted by each method, we focus on
comparing the time complexity of learnable modules. Com-
putational complexity (measured in GFLOPs) was chosen as
the metric, as it directly reflects the number of floating-point
operations required by the algorithm. In addition, the space
complexity of learnable modules is provided for compari-
son in the form of parameter quantities. It can be seen that
the proposed method is significantly lower than AutoSAM in
terms of the number of parameters and computational com-
plexity of the learnable module, reducing them by 39.4% and
32.9%. This result indicates that our method can achieve bet-
ter anomaly detection results at lower complexity.

Visualization Results
Figures 4 and 5 show the visualization results of our method
on the MVTec AD dataset and medical image dataset, re-
spectively. The visualization results show that the proposed
method can achieve excellent pixel-level anomaly detection
performance in diverse and challenging industrial and med-
ical image scenarios. This achievement is attributed to the
carefully constructed modules in this work. Specifically, the
SSMODC module effectively searches and determines the
best prompt for SAM to use. This method maintains the pa-
rameters of each component of SAM unchanged during the
training process, aiming to preserve SAM’s excellent spatial
perception ability, thus enabling high-precision anomaly de-
tection on different datasets.

5 Conclusion
This work presents a novel pixel-level anomaly detection ap-
proach based on the Segment Anything Model (SAM), en-
hanced by the integration of the State-Space Model-based

(a)Image (b) GT (f) Ours(d) U-Net++ (e) PraNet(c) U-Net

Figure 4: Visualization results of different models on Medical Image
dataset.

residual Omni-Dimensional module (SSMODC). Unlike con-
ventional pixel-level anomaly detection techniques, our ap-
proach eliminates the need for manual prompt generation and
the fine-tuning of SAM, thereby streamlining the implemen-
tation process while maintaining the generalization capabili-
ties of the model. It can accurately capture anomalous regions
within images by combining multi-scale features and global
information, especially in complex scenarios. Extensive ex-
perimental results confirms the superior performance of our
method on multiple datasets, particularly on the MVTec AD,
MoNuSeg, and GlaS datasets, where it outperforms exist-
ing state-of-the-art methods across various metrics, including
mean Absolute Error (MAE) and mean E-measure (mE). Ab-
lation studies further substantiate the effectiveness of the pro-
posed SSMODC module and multi-scale Omni-Dimensional
Convolution.
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Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
and Håvard D Johansen. Kvasir-seg: A segmented polyp
dataset. In MultiMedia modeling: 26th international con-
ference, MMM 2020, Daejeon, South Korea, January 5–8,
2020, proceedings, part II 26, pages 451–462. Springer,
2020.

[Kirillov et al., 2023] Alexander Kirillov, Eric Mintun,
Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C
Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
pages 4015–4026, 2023.

[Kumar et al., 2017] Neeraj Kumar, Ruchika Verma, Sanuj
Sharma, Surabhi Bhargava, Abhishek Vahadane, and Amit
Sethi. A dataset and a technique for generalized nuclear
segmentation for computational pathology. IEEE TMI,
36(7):1550–1560, 2017.

[Li et al., 2022] Chao Li, Aojun Zhou, and Anbang Yao.
Omni-dimensional dynamic convolution. In ICLR, pages
1–20, 2022.

[Li et al., 2023] Zihan Li, Yunxiang Li, Qingde Li, Puyang
Wang, Dazhou Guo, Le Lu, Dakai Jin, You Zhang, and
Qingqi Hong. Lvit: language meets vision transformer in
medical image segmentation. IEEE TMI, 2023.

[Li et al., 2025] Jingtao Li, Ting Chen, Xinyu Wang, Yanfei
Zhong, and Xuan Xiao. Adapting the segment anything
model for multi-modal retinal anomaly detection and lo-
calization. Information Fusion, 113:102631, 2025.

[Liu et al., 2021] An-An Liu, Hongshuo Tian, Ning Xu,
Weizhi Nie, Yongdong Zhang, and Mohan Kankanhalli.
Toward region-aware attention learning for scene graph
generation. IEEE TNNLS, 33(12):7655–7666, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Liu et al., 2024] Jiaqi Liu, Kai Wu, Qiang Nie, Ying Chen,
Bin-Bin Gao, Yong Liu, Jinbao Wang, Chengjie Wang,
and Feng Zheng. Unsupervised continual anomaly de-
tection with contrastively-learned prompt. In AAAI, vol-
ume 38, pages 3639–3647, 2024.

[Mamonov et al., 2014] Alexander V Mamonov, Isabel N
Figueiredo, Pedro N Figueiredo, and Yen-Hsi Richard
Tsai. Automated polyp detection in colon capsule en-
doscopy. IEEE TMI, 33(7):1488–1502, 2014.

[Patel et al., 2021] Krushi Patel, Andrés M Bur, and
Guanghui Wang. Enhanced u-net: A feature enhancement
network for polyp segmentation. In 2021 18th conference
on robots and vision (CRV), pages 181–188. IEEE, 2021.

[Reiss et al., 2021] Tal Reiss, Niv Cohen, Liron Bergman,
and Yedid Hoshen. Panda: Adapting pretrained features
for anomaly detection and segmentation. In CVPR, pages
2806–2814, 2021.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In MICCAI 2015, Mu-
nich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

[Shaharabany and Wolf, 2022] Tal Shaharabany and Lior
Wolf. End-to-end segmentation of medical images via
patch-wise polygons prediction. In MICCAI, pages 308–
318. Springer, 2022.

[Shaharabany et al., 2023] Tal Shaharabany, Aviad Dahan,
Raja Giryes, and Lior Wolf. Autosam: Adapting sam to
medical images by overloading the prompt encoder. arXiv
preprint arXiv:2306.06370, 2023.

[Shin et al., 2022] Wooseok Shin, Min Seok Lee, and
Sung Won Han. Comma: Propagating complementary
multi-level aggregation network for polyp segmentation.
Applied Sciences, 12(4):2114, 2022.

[Silva et al., 2014] Juan Silva, Aymeric Histace, Olivier Ro-
main, Xavier Dray, and Bertrand Granado. Toward embed-
ded detection of polyps in wce images for early diagnosis
of colorectal cancer. International journal of computer as-
sisted radiology and surgery, 9:283–293, 2014.

[Sirinukunwattana et al., 2017] Korsuk Sirinukunwattana,
Josien PW Pluim, Hao Chen, Xiaojuan Qi, Pheng-
Ann Heng, Yun Bo Guo, Li Yang Wang, Bogdan J
Matuszewski, Elia Bruni, Urko Sanchez, et al. Gland seg-
mentation in colon histology images: The glas challenge
contest. Medical image analysis, 35:489–502, 2017.

[Tajbakhsh et al., 2015] Nima Tajbakhsh, Suryakanth R Gu-
rudu, and Jianming Liang. Automated polyp detection in
colonoscopy videos using shape and context information.
IEEE TMI, 35(2):630–644, 2015.

[Trinh et al., 2024] Quoc-Huy Trinh, Hai-Dang Nguyen,
Bao-Tram Nguyen Ngoc, Debesh Jha, Ulas Bagci, and
Minh-Triet Tran. Sam-eg: Segment anything model with
egde guidance framework for efficient polyp segmenta-
tion. arXiv preprint arXiv:2406.14819, 2024.

[Valanarasu et al., 2021] Jeya Maria Jose Valanarasu, Poo-
jan Oza, Ilker Hacihaliloglu, and Vishal M Patel. Medical
transformer: Gated axial-attention for medical image seg-
mentation. In MICCAI 2021, Strasbourg, France, Septem-
ber 27–October 1, 2021, proceedings, part I 24, pages 36–
46. Springer, 2021.

[Wang et al., 2020] Huiyu Wang, Yukun Zhu, Bradley
Green, Hartwig Adam, Alan Yuille, and Liang-Chieh
Chen. Axial-deeplab: Stand-alone axial-attention for
panoptic segmentation. In ECCV, pages 108–126.
Springer, 2020.

[Wang et al., 2022] Haonan Wang, Peng Cao, Jiaqi Wang,
and Osmar R Zaiane. Uctransnet: rethinking the skip
connections in u-net from a channel-wise perspective with
transformer. In AAAI, volume 36, pages 2441–2449, 2022.

[Wang et al., 2025] Benfeng Wang, Chao Huang, Jie Wen,
Wei Wang, Yabo Liu, and Yong Xu. Federated weakly
supervised video anomaly detection with multimodal
prompt. In AAAI, volume 39, pages 21017–21025, 2025.

[Wei et al., 2021] Jun Wei, Yiwen Hu, Ruimao Zhang, Zhen
Li, S Kevin Zhou, and Shuguang Cui. Shallow atten-
tion network for polyp segmentation. In MICCAI 2021,
France, September 27–October 1, 2021, Proceedings, Part
I 24, pages 699–708. Springer, 2021.

[Wei et al., 2023] Xiaobao Wei, Jiajun Cao, Yizhu Jin, Ming
Lu, Guangyu Wang, and Shanghang Zhang. I-medsam:
Implicit medical image segmentation with segment any-
thing. arXiv preprint arXiv:2311.17081, 2023.

[Wu et al., 2023] Junde Wu, Wei Ji, Yuanpei Liu, Huazhu
Fu, Min Xu, Yanwu Xu, and Yueming Jin. Medical sam
adapter: Adapting segment anything model for medical
image segmentation. arXiv preprint arXiv:2304.12620,
2023.

[Xie et al., 2024] Bin Xie, Hao Tang, Bin Duan, Dawen Cai,
and Yan Yan. Masksam: Towards auto-prompt sam with
mask classification for medical image segmentation. arXiv
preprint arXiv:2403.14103, 2024.

[Yin et al., 2022] Zijin Yin, Kongming Liang, Zhanyu Ma,
and Jun Guo. Duplex contextual relation network for polyp
segmentation. In 2022 IEEE 19th international symposium
on biomedical imaging (ISBI), pages 1–5. IEEE, 2022.

[Zhang et al., 2020] Ruifei Zhang, Guanbin Li, Zhen Li,
Shuguang Cui, Dahong Qian, and Yizhou Yu. Adap-
tive context selection for polyp segmentation. In MICCAI
2020, Lima, Peru, October 4–8, 2020, Proceedings, Part
VI 23, pages 253–262. Springer, 2020.

[Zhang et al., 2022] Dasheng Zhang, Chao Huang,
Chengliang Liu, and Yong Xu. Weakly supervised
video anomaly detection via transformer-enabled tem-
poral relation learning. IEEE Signal Processing Letters,
29:1197–1201, 2022.

[Zhou et al., 2018] Zongwei Zhou, Md Mahfuzur Rah-
man Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image
segmentation. In MICCAI 2018, Granada, Spain, Septem-
ber 20, 2018, Proceedings 4, pages 3–11. Springer, 2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


