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DFCA: Disentangled Feature Contrastive Learning and Augmentation for Fairer
Dermatological Diagnostics
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Abstract

With the increasing integration of AI in medi-
cal research and applications, the issue of fair-
ness has become as critical as diagnostic accuracy.
In dermatology diagnosis, the challenge of class-
imbalanced data, which is sometimes limited and
contains demographic attributes, results in an im-
balanced and insufficient representation within the
feature space of deep learning models. Besides,
feature entanglement within deep learning models
confuses skin tone and disease condition informa-
tion, impairing model performance among vulner-
able groups. Moreover, feature entanglement of-
ten constrains the efforts to mitigate unfairness, en-
tailing a trade-off between fairness and diagnos-
tic accuracy. This paper introduces the Disentan-
gled Feature Contrastive learning and Augmenta-
tion framework (DFCA), aiming to enhance fair-
ness in dermatological diagnoses without compro-
mising accuracy. Initially, DFCA disentangles skin
images into disease related and skin-tone features.
Subsequently, the two sets of features are pro-
jected into normalized spaces for contrastive learn-
ing, each modeled by a mixture of von Mises-
Fisher (vMF) distributions. DFCA then samples
from these vMF distributions to inversely augment
the feature space. To further evaluate the fairness-
accuracy balance, we propose a new metric, the
Accuracy-Fairness Balance Degree (AFBD). Ex-
tensive experiments demonstrate that DFCA signif-
icantly improves both fairness and accuracy com-
pared to state-of-the-art methods.

1 Introduction
With the rapid development of artificial intelligence (AI),
deep learning-based disease diagnosis systems have played
a vital role in universal healthcare [Zhou et al., 2021;
Archana and Jeevaraj, 2024; Li et al., 2024], especially in
remote and impoverished areas where medical resources are

∗ Corresponding author.

severely limited. In the domain of dermatological diagnos-
tics, for example, deep learning models trained on expert-
annotated data are now accessible through mobile phones
[Lee et al., 2022]. As a result, individuals from underdevel-
oped regions can even capture skin images using their smart-
phone cameras to conduct a skin condition diagnosis.

However, these diagnosis models may exhibit distinct per-
formance across different demographic subgroups, partic-
ularly among populations with different skin color, which
namely unfairness [Mehrabi et al., 2021]. Unfair dermato-
logical diagnosis not only hinder the promotion of AI models
but also exacerbate the health gap between different races, po-
tentially tearing society apart and raising serious ethical and
legal issues.

Despite numerous researchers have devoted to the enhanc-
ing the performance of deep learning models [Mirikharaji et
al., 2023; Ye et al., 2024; Choy et al., 2023; Noronha et al.,
2023], research on mitigating unfairness remain rare, compar-
atively. The existing literature for fairness can be divided into
three main groups: pre-processing [Kamiran and Calders,
2012; Krasanakis et al., 2018; Puyol-Antón et al., 2021],
in-processing [Du et al., 2022; Kamishima et al., 2012;
Deng et al., 2023; Xu et al., 2023b] and post-processing
methods [Wu et al., 2022]. Pre-processing methods reduce
possible bias in data before training the model, in-processing
methods intervene during training phase, post-processing ad-
just the output produced by model to mitigate biased predic-
tions. Pre-processing methods often face the challenge due to
limited data [Maluleke et al., 2022]. The latter two methods,
by contrast, seemingly direct operate models’ feature space
or output to remove the useless demographic information,
showing a higher ceiling. However, the reduction of demo-
graphic information in the feature space will also harm the
disease information because of the feature coupling, which
ultimately leading to a phenomenon described as accuracy-
fairness trade-off [Chen et al., 2023].

From the view of representation learning, there are two
main reasons accounting for unfairness in dermatological di-
agnostics: class imbalanced data and entangled feature in
deep learning model. Specifically, different quantities data
among various race (maybe also among various skin disease)
cause unbalanced disease-relevant feature representations.
Besides, deep learning models entangle disease-relevant fea-
tures and skin type statistic information, which further heaven
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the degree of unbalance between different race groups in fea-
ture space. Moreover, public available skin disease datasets
that considering demographic attributes especially race are
rare and some with limited data size [Xu et al., 2023a;
Xu et al., 2024], natively leading to inadequate representa-
tion of disease features in deep learning model. Ultimately,
dermatological diagnostics algorithms show unfairness.

In this paper, we introduce the Disentangled Feature
Contrastive learning and Augmentation framework (DFCA),
which aims to reduce unfairness in AI-based dermatological
diagnostics while maintaining accuracy. DFCA employs a
symmetric architecture to disentangle features into disease-
related and disease-unrelated components, capturing lesion
information and demographic statistics (e.g., skin color) sep-
arately. Considering the fact that lesion color is in connec-
tion with both disease condition and skin type, we map these
components into von Mises-Fisher (vMF) distribution spaces
for supervised contrastive learning. This approach, which
has been proven effective in long-tailed data recognition, en-
sures that representations of the same disease condition to be
close and those of different classes distant regardless of skin
tone. The same as skin tone features. To address limited
data, DFCA samples from the learned vMF distributions to
augment the feature space using a reversible flow model. A
perfect diagnosis model should both consider the accuracy
and fairness. However, most of the existing methods mainly
focus on the fairness metrics, at the cost of diagnosis perfor-
mance. To emphasize the importance of the balance of accu-
racy and fairness when researchers designing models, we pro-
pose a new metric for assessing the Accuracy-Fairness Bal-
ance Degree (AFBD). The results of extensive experiments
on two datasets shows that DFCA, by combing disentangled
feature contrastive learning and augmentation, improves both
fairness and accuracy compared to SOTA methods.

Overall, our contributions lie in effectively disentan-
gling dermatologic images into disease-related and skin-tone-
related features, thereby minimizing the interference of de-
mographic attributes in dermatological diagnostics. Addi-
tionally, we introduce spaces based on mixture of von Mises-
Fisher distributions for contrastive learning, which facilitates
the feature disentanglement and clustering. Moreover, we
samples from the learned vMF distributions to inversely aug-
ment the feature space. To emphasize the importance of bal-
ancing fairness and accuracy, we propose a new metric named
Accuracy-Fairness Balance Degree (AFBD). Extensive ex-
periments demonstrate that our framework achieves state-of-
the-art performance in both fairness and accuracy.

2 Related Works
Despite deep learning has been widely applied in dermatolog-
ical diagnosis and has achieved notably performance, its gen-
eralisability remain limited by poor capture of demographic
information[Choy et al., 2023]. The phenomena of unfair-
ness is that those diagnosis models may exhibit distinct per-
formance across different demographic subgroups [Mehrabi
et al., 2021]. In this section, we give a concise survey of un-
fairness mitigation methods and analyze the position of this
paper within the field.

Existing unfairness mitigation can be categorized into pre-
processing, in-processing, and post-processing methods ac-
cording to the implementation phase [Xu et al., 2024].

Pre-processing methods reduce possible bias in data be-
fore training the model, their common practice is to restruc-
ture the training data. The representative work is [Kamiran
and Calders, 2012], where the authors proposed four meth-
ods to pre-processing the dataset, including removing sensi-
tive attribute, massaging the dataset, reweighing and resam-
pling. Similarly, [Zhang et al., 2022; Abernethy et al., 2020;
Puyol-Antón et al., 2021] also upsampled minority groups to
ensure equal presence of each subgroup. [Krasanakis et al.,
2018] proposed an adaptive sensitive reweighting mechanism
model for fair classify. Another technical approach is data
generation. [Burlina et al., 2021] augmented the training data
by generative models for debiasing in retinal diagnostics. To
mitigate the impact of demographic imbalance, [Pombo et al.,
2023] employed generative model to synthesise counterfac-
tual volumetric brain imaging, conditioning on original im-
age and demographic attributes (sex and age). Although pre-
processing methods can achieve high accuracy, they can not
solve feature under representation among vulnerable groups
and may face instability problems in generation due to lim-
ited data. Our method makes the advantage of the learned
vMF distribution in contrastive space and samples from that
to inversely conduct augmentation in feature space.

In-processing methods intervene during training phase,
they usually combine the architecture of model and extra
losses to mitigate unfairness. [Stanley et al., 2022] added
an adversarial branch to minimize the influence of sex and
race in brain MRI image classification. FairAdaBN [Xu et
al., 2023b] reduces unfairness by adding extra adapters to the
original model which can adaptively adjust the mean and vari-
ance of the feature vector according to the sensitive attribute.
[Pakzad et al., 2022] adopted a domain invariant representa-
tion learning method to remove the skin tone information in
the classifer. [Du et al., 2022] is most closely to our work,
which proposed FairDisCo framework to mitigate the neg-
ative effects of skin tone in dermatology diagnosis. Simi-
larly, FairDisCo also used contrastive learning to boost the
diagnoise accuracy and disentangled learning with different
branches to reduce impede of skin tone information. How-
ever, its contrastive learning constrained by limited data and
different branches constrained by highly coupled feature in
the feature extractor. Our method adopts a symmetric ar-
chitecture for disentanglement. Besides, we uses the vMF
distribution based contrastive learning to further promote the
diagnosis performance.

Post-processing methods adjust the output produced by
model to mitigate biased predictions. [Pleiss et al., 2017]
employed calibration for specific subgroup thresholds in fair
classification. [Wu et al., 2022] utilized a pruning strategy
to remove the sensitive information associated with a specific
subgroup. [Huang et al., 2023] considered age and gender
and also proposed a pruning method. However, these meth-
ods may face the accuracy-fairness trade-off because of the
feature coupling. A portion of the model parameters may be
associated with both disease condition and skin type, which
can be settled by feature disentanglement in our method.
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Figure 1: Overview of the Disentangled Feature Contrastive learning and Augmentation (DFCA) Framework. The upper box illustrates the
symmetric architecture and training process of DFCA. Given a mini-batch of real skin images, DFCA generates six augmented versions for
each image. I2 and I3 use the same augmentation method, distinct from that of I1. Each Id differs from Is due to diverse tasks. DFCA then
disentangles the input images into disease-related and skin-type-related feature spaces using Ed and Es. The disentangled features f1

d and
f1
s are fed to the Disease Classifier Cd and Skin Tone Classifier Cs for supervised learning. Meanwhile, f2

d , f3
d , f2

s , and f3
s are projected

into contrastive spaces by the Inverse Flow Models IFd and IFs for contrastive learning. The bottom box shows the Inverse Flow Model
and its training process. This model consists of two inverse processes to learn the conversion between feature space and contrastive space.
In the forward stage, an input feature vector f is down-sampled and passed through a series of MLP blocks to capture minute changes dx at
each step. The final feature fT is normalized to a unit space modeled by a mixture of vMF distributions. In the backward stage, fT is used to
reconstruct the original feature f for training the Inverse Flow Model. Red arrows indicate the feature augmentation process. After training
with real skin data, we sample from the vMF distributions for feature augmentation, incorporating real images into the training process.

3 Methods

As mentioned previously, unbalanced data and feature en-
tanglement are the primary causes of unfairness. Class im-
balanced data brings the imbalanced feature representation
and feature entanglement in deep learning model further mix
the disease condition information and skin tone information,
thereby cause unfairness dermatological diagnosis. Our goal
is to reduce the performance differences of the diagnostic
model across different populations while maintaining accu-
racy, thereby alleviating unfairness. To achieve this, DFCA
is proposed. To eliminate the impact of skin tone on disease
diagnosis, we employ a symmetric disentangled structure to
obtain disease-related features and skin tone related features.
To overcome the imbalanced feature representation, DFCA
adopts surpervised contrastive learning based on a mixture of
von Mises-Fisher (vMF) distributions, as described in Section
3.1. Moreover, we samples from the vMF distribution-based
contrastive spaces and inversely generate features to further

augment the feature space and boost diagnosis performance,
as described in Section 3.2.

3.1 Feature Disentanglement and Contrastive
Learning

We consider the problem of dermatological diagnosis un-
der the influence of skin tone information. Let X =
{x1, . . . , xN} be the training set, where xi denotes the ith
sample. X has two sets of labels: YD = {y1d, . . . , yNd }
and YS = {y1s , . . . , yNs }, where yid, y

i
s correspond to the

disease label and skin tone label of xi, respectively. Y i
d ∈

{0, 1, . . . , C} and Y i
s ∈ {0, 1, . . . , S} The perfect situation

is that the diagnostic results are independent of the skin tone
labels of the data:

P (ŶD = i|YD = i, YS = a) = P (ŶD = i|YD = i, YS = b)
(1)
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where a ̸= b and a, b ∈ YS . We strive to achieve this goal by
feature disentanglement and contrastive learning.

A Feature Disentanglement
As shown in Figure 1, given a sample from a mini batch of
training data, we initially employ a distinctive data augmen-
tation to get six versions. Each three of them form a group
as the inputs to the following designed network, denoted as
ID = {I1d , I2d , I3d} and IS = {I1s , I2s , I3s}. In each group, I2
and I3 employ the same weak augmentation method, distinct
from a strong augmentation method of I1, as the manner of
[Zhu et al., 2022]. To maximize the reduction of the impact
of skin tone information in the data on disease diagnosis, we
adopt a symmetric architecture to disentangle the feature into
disease-related part and disease-unrelated part, which mainly
contain the disease condition information and skin tone in-
formation, respectively. We named them the branch d and
branch s. Correspondingly, we adopt different augmentation
methods between ID and IS . While ID focus on diverse gray
scale variation and flip for robust lesion feature analysis abil-
ity and IS focus on different fuzzy degree for the judgment
of skin tone.

After the image augmentation, DFCA employ Ed, Es

to encode {I1d , I2d , I3d}, {I1s , I2s , I3s} into the feature space
{f1

d , f
2
d , f

3
d} and {f1

s , f
2
s , f

3
s }. Ed and Es have the same

structure but without shared weights. Suppose that the fea-
tures of sample xi are {f i1

d , f i2
d , f i3

d } and {f i1
s , f i2

s , f i3
s } We

employ an orthogonality loss to ensure that the two feature
spaces are mutually independent and semantically continu-
ous:

Lof =

N∑
i=1

{
3∑

j=1

3∑
a=1

< f ij
d , f ia

s > + <

3∑
j=1

f ij
d ,

3∑
a=1

f ia
s >}

(2)

Next, we take the branch d as an example while the branch
s undergoing the same operations. Given the {f1

d , f
2
d , f

3
d},

DFCA send f1
d into the disease classifer Cd and training in a

surpervised manner:

Lcd = − 1

N

N∑
i=1

yidlog(ŷ
i
d) (3)

and the same with Lcs for branch s.
Considering the fact that lesion color is in connection with

both disease condition and skin type, we assigned a small
weight to Lof in practice. Moreover, we design a inverse flow
model takeing f2

d and f3
d as input for supervised contrastive

learning, making the distance of representation from same
disease condition close and from different class far away no
matter which skin tone it belongs to, and the same with f2

s
and f3

s .

B Supervised Contrastive Learning
The von Mises-Fisher (vMF) distribution is often described
as the Normal Gaussian distribution on a hypersphere and is
sometimes used as a substitute for Y in some scenarios. Re-
cently, vMF distribution has also demonstrated its potential

for application in the contrastive learning especially for the
long-tailed recognition problem [Du et al., 2024]. Similar to
Gaussian distribution, it can be parameterized by µ indicat-
ing the mean direction and k representing the concentration
around µ. The larger the value of k, the greater is the clus-
tering aruond the mean direction µ. When k = 0, the dis-
tribution is uniform. The probability density function of the
vMF distribution for a random d-dimensional unit vector z is
defined as:

f(z;µ, k) = (
k

2
)p/2−1 1

Γ(p/2)Ip/2−1(k)
ekµ

T x (4)

Cp(k) = (
k

2
)p/2−1 1

Γ(p/2)Ip/2−1(k)
=

kp/2−1

(2π)p/2IP/2−1(k)
(5)

where k ≥ 0, ∥µ∥2 = 1, Cp(k) is the normalizing constant
and Iv denotes the modified Bessel function of the first kind
at order v:

IP/2−1(z) =
∞∑

K=0

1

k!Γ(p/2− 1 + k + 1)
(
z

2
)2k+p/2−1 (6)

In this paper, we introduce a mixture of vMF distributions
as the distribution in the contrastive space for each branch.
To model the conversion from feature space to contrastive
space, we adopt a simple but effective inverse flow model.
This paves the way for feature enhancement, which will be
introduced in the next section.

The bottom box of Figure 1 exhibits the structure of our
inverse flow model for supervised contrastive learning. IFd

has two reversible flow process. Given the d-dimensional fe-
acture vetor f , we firstly downsample it to a d/2-dimensional
vector f0 as the input at the starting moment (t = 0). Through
the repeated MLP blocks, the model learn the minute changes
from feature space to contrastive space:

f1 = f0 +M(f0) ∗ dt, . . . , fT = fT−1 +M(fT−1) ∗ dt
(7)

where dt = 1
T , M() stands for MLP block and ft is the vector

at the t th moment. Note that MLP blocks would not change
the dimensionality of the vectors. The final vector fT is sub-
sequently projected into the contrastive space by normaliza-
tion. We also use an orthogonality loss to ensure the indepen-
dence of two contrastive spaces:

Loc =
N∑
i=1

{
3∑

j=2

3∑
a=2

< f ij
dT , f

ia
sT > + <

3∑
j=2

f ij
dT ,

3∑
a=2

f ia
sT >}

(8)

[Du et al., 2024] has given a closed form of expected
supervised contrastive loss LProCo based on the estimated
vMF distribution when the sampling number tends to infinite.
LProCo can address the issue of insufficient performance in
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contrastive learning due to a small number of contrastive sam-
ple pairs. We use the LProCo as:

LProCod = −log(πyj

Cp(k̂yj
)

Cp(kyj )
) + log(

C∑
j=1

πj
Cp(k̂j)

Cp(kj)
) (9)

where πyj
is the class frequency in the training set.

{f2
dT , f

3
dT } are used to calculate the LProCod loss and the

same with LProCos for {f2
dS , f

3
dS}.

The backward process of inverse flow model follows:

f ′
T−1 = fT −M(fT ) ∗ dt, . . . , f ′

0 = f ′
1 −M(f ′

1) ∗ dt
(10)

which is just the inverse process of Eq.(7). Through the back-
ward process, f0 is gradually recovered from fT denoted as
f ′
0. A recontruction loss Lrecd is ultilized to train the inverse

flow model IFd and the same with Lrecs:

Lrecd = ∥f − IF−1
d (IFd(f))∥2 (11)

3.2 vMF distribution based Feature Augmentation
Through feature disentanglement and contrastive Learning
mentioned before, DFCA learns a mixture of vMF distribu-
tions in contrastive space. Despite LProCo has given a closed
form of expected supervised contrastive loss when the sam-
pling number tends to infinite, we observe that its capabil-
ity becomes constrained in some situations where the dataset
contains a very limited number of samples. To take advantage
of the learned vMF distributions, we sample from contrastive
space to inversely augment the feature space for further en-
hancing the capability of disease classifer.

Consider the vMF distribution:

f(z;µ, k) = Cp(k)e
k<µT ,x> (12)

where Cp(k) is the normalizing constant. Given the µj of
vMF distribution of class j, the density depends on x only
through µTx. We decomposition x as:

x = ωµ+ (1− ω2)
1
2 v (13)

where µ ⊥ v and ω can be seen as the cosine of the angle
between x and µ. The probability density function of ω is
given in [Mardia and Jupp, 2000]:

f(ω) = (
k

2
)p/2−1{Γ(p− 1

2
)Γ(

1

2
I(p−1)/2(k))}−1

· ekω((1− ω2)(p−3)/2 (14)

with ω ∈ [−1, 1]. We calculate the f−1(ω) to get the distri-
bution of ω. Then we can sample the x from the vMF distri-
bution through Eq.13, defined as fsamT .

Red arrows in Figure 1 shows the training process in this
stage. We firstly inverse the fsamdT to feature vector ysamd.
Afterwards, ysamd is sent into the disease classifer with the
loss functions:

Lcsamd = − 1

M

M∑
i=1

yisamdlog(ŷ
i
samd) (15)

where M is the number of sampled features and ŷsamd is the
label of sampled feature ysamd. Similar with Lrecd, we in-
versely reconstruct the fsamdT with the constrain of:

Lrecsamd = ∥fsamdT − IFd(IF
−1
d (fsamdT ))∥2 (16)

while the same with Lrecsams and Lcsams. Noted that we
also use the real data for mixed training in this stage.

3.3 Learning Loss
Briefly, we define the loss fuctions by: Lo = Lof+Loc, Ld =
Lcd+LProCod+Lcsamd, Ls = Lcs+LProCos+Lcsams and
Lrec = Lrecd + Lrecs + Lrecsamd + Lrecsams. Therefore,
the joint loss function can be represented as:

L = Lrec + αLd + βLs + γLo (17)

where α, β, γ are the weights of the loss terms.

4 Experiment
4.1 Datasets and Evaluation Metrics
We use two well-known dermatology datasets to evaluate our
proposed method: Fitzpatrick-17k dataset [Groh et al., 2021]
and DDI dataset [Daneshjou et al., 2022]. Both of the datasets
contain skin tone attribute.

The Fitzpatrick-17k dataset [Groh et al., 2021] contains
16,577 dermatology images with disease condition labels and
skin tone labels. They have two kinds of methods for dis-
ease condition classification: 3 (malignant, non-neoplastic,
benign) and 9. There are six categories of skin tones labeled
by 1-6. The higher the number, the darker the skin tone.

The DDI dataset [Daneshjou et al., 2022] contains 656 der-
matology images with disease condition labels and skin tone
labels. Its disease condition labels contains malignant (0) or
not (1). And its skin tones are categorised into 3 groups: 1, 2,
3, corresponding to the skin tone of {1, 2}, {3, 4}, {5, 6} in
Fitzpatrick-17k dataset, respectively.

We use three common metircs for evaluating the fairness
toward the effection of skin tone attributes: Predictive Quality
Disparity (PQD), Demographic Disparity (DP) and Equality
of Opportunity (EO). PQD measures the prediction quality
difference between each subgroup, DP computes the percent-
age diversities of positive outcomes for each subgroup and
EO asserts that different subgroups should have similar true
positive rates, just as [Du et al., 2022].

Moreover, a perfect diagnosis model should both consider
the accuracy and fairness. However, most of the existing
methods mainly focus on the fairness metrics. To emphasize
the importance of the balance of accuracy and fairness when
researchers designing models, we propose a new metric for
assessing the Accuracy-Fairness Balance Degree (AFBD):
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Method Avg T1 T2 T3 T4 T5 T6 PQD DP EO AFBD

RESM 85.45 82.27 82.63 86.45 89.39 90.11 89.17 91.31 46.98 67.56 20.25
REWT 85.23 81.77 83.04 85.57 89.39 89.40 89.17 91.47 48.92 70.64 21.08
FairAdaBN 84.78 82.99 82.52 85.60 86.32 86.45 85.76 93.21 56.32 69.99 33.78
FairPrune 85.19 84.29 82.50 86.32 87.45 87.88 83.48 91.78 52.43 66.32 29.41
LFF 86.26 83.27 83.74 87.50 89.67 91.26 84.21 91.25 51.87 65.12 22.30
FairDisCo 85.76 84.45 82.94 86.60 88.49 90.11 87.50 92.04 55.53 75.62 26.00
DFCA(ours) 87.94 87.28 85.91 88.63 88.73 91.28 89.37 89.89 59.57 77.62 35.29

Table 1: In-domain comparative analysis of accuracy across different methods on Fitzpatrick-17k dataset. Avg means micro average accuracy
computed over all skin tones. T1-T6 represent the classfication accuracy on each skin tone. The larger the values, the better they are regarded.
All values are expressed as percentages, except for the last four columns.

Method Avg T12 T34 T56 PQD DP EO AFBD

RESM 82.58 83.78 80.39 84.09 95.60 79.28 93.01 31.36
REWT 82.58 81.08 78.43 88.64 88.49 83.39 82.45 16.84
FairAdaBN 80.67 89.17 74.54 81.24 87.89 81.23 78.56 13.30
FairPrune 74.79 68.48 73.56 85.21 85.02 63.33 62.07 10.70
LFF 84.21 84.09 81.39 86.12 95.82 83.75 82.50 32.18
FairDisCo 83.33 83.78 84.31 81.82 97.04 83.62 83.46 42.09
DFCA(ours) 87.88 89.23 87.19 88.53 93.26 84.11 82.69 46.33

Table 2: In-domain comparative analysis of accuracy across different methods on DDI dataset. Avg means micro average accuracy computed
over all skin tones. T12-T56 represent three classes of skin tone in DDI. The larger the values, the better they are regarded. All values are
expressed as percentages, except for the last four columns.

AFBD =
ACC

1 +AD
,AD =

1

N

N∑
i=1

|ACC −ACCi| (18)

where AD is the averaged disparity between average accuracy
ACC and accuracy of subgroup ACCi with skin tone i.

4.2 Experiment Settings
We implement our DFCA model by PyTorch. DFCA is
trained for 150 epochs firstly with the real datasets and 100
epochs with the mixture of feature augmentation. After all
the trainging stages, we only use the Feature Extractor Ed

and Disease Classifer Cd for evaluation. Both of the feature
extractors are ResNet-101 [He et al., 2016] pretrained on Im-
ageNet. We use the same image augmentation mechanisms as
[Zhu et al., 2022]. Our model is trained by Adam optimizer
with a learning rate lr = 0.0001. The batch size is 32. The
weights are α = 10, β = 0.5 and γ = 1.

4.3 Baseline Methods
We compare our DFCA with six state-of-the-art models,
including the pre-processing methods RESM and REWT
[Kamiran and Calders, 2012], in-processing methods FairAd-
aBN [Xu et al., 2023b], LFF [Wang et al., 2024], FairDisCo
[Du et al., 2022], post-processing methods FairPrune [Wu et
al., 2022] ,according to the intervene stage for fairness.

4.4 Performance Comparison with SOTA
In this section, we conduct the in-domain experiment for the
comparison of fair diagnosis and out-domain experiment for

observing the model’s generalization ability. Due to the samll
datasize of DDI dataset, we only conduct the in-domain ex-
periment on it, just as [Du et al., 2022].

Table 1 and table 2 show the results of in-domain compar-
ison on Fitzpatrick-17k and DDI datasets. We see that our
method has the biggest average accuracy and the best diagno-
sis performance in almost all the skin tones as well as three
fairness evaluation metrics, both on Fitzpatrick-17k and DDI
datasets. It is noteworthy that in table 2, DFCA achieve a
significant enhancement on DDI, suggesting that our method
can promote the performance on small dataset. While Fair-
Prune and FairAdaBN gain the worst performance, because
of the feature entanglement in their model. As to AFBD, we
found that our method also attaines the optimal performance
on both of the datasets, indicating that DFCA also taken the
accuracy-fairness balance into consideration. Overall, the re-
sults demonstrate that our contrastive feature disentangment
and augmentation method is able to enhance fairness in der-
matological diagnoses as well as accuracy.

Table 3 exhibts the out-domain comparison on Fitzpatrick-
17k dataset. ’-’ represents that we use data of this skin tone
for training and test in other skin tones. And we conduct
three groups of experiments. Due to the poor performance
of FairPrune and FairAdaBN in both the accuracy and fair-
ness metrics especially when data is limted (as seen in Table
2), we discarded them in the out-domain experiment. We can
see that our proposed method achieves highest scores in al-
most every average accuracy and diagnosis accuracy of each
skin tone among all of the three groups. Especially in the
group two, DFCA has elevated average accuracy metric by
nearly 4 percentage points. Moreover, DFCA has also deliv-
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Method Avg T1 T2 T3 T4 T5 T6 PQD DP EO AFBD

RESM 80.33 - - 80.20 80.65 79.58 81.42 94.17 79.49 63.29 51.08
REWT 79.13 - - 80.44 79.11 77.76 75.75 98.60 69.56 72.30 31.40
LFF 79.97 - - 80.18 80.89 78.92 80.93 95.23 68.48 62.42 44.80
FairDisCo 80.37 - - 81.41 81.12 78.02 77.32 94.98 74.34 62.11 28.73
DFCA(ours) 82.45 - - 83.07 82.88 80.83 82.52 92.69 79.52 72.41 48.93

RESM 78.74 74.96 78.62 - - 85.91 81.10 86.94 71.03 74.96 18.07
REWT 77.60 72.89 77.18 - - 85.58 83.31 85.17 53.97 64.90 13.60
LFF 76.63 71.23 76.98 - - 80.64 80.07 82.63 50.60 74.33 17.82
FairDisCo 78.61 74.62 78.56 - - 85.52 80.79 87.25 71.44 69.53 18.36
DFCA(ours) 82.18 77.33 81.16 - - 86.21 83.63 86.98 73.23 74.97 21.41

RESM 73.70 69.05 71.83 74.56 80.76 - - 85.50 63.23 77.65 15.99
REWT 69.75 61.70 66.95 72.30 79.93 - - 77.20 56.24 75.50 10.12
LFF 70.81 62.73 70.69 73.11 79.67 - - 83.42 65.96 74.33 12.13
FairDisCo 73.64 70.63 71.64 73.61 80.25 - - 88.01 70.69 83.69 18.82
DFCA(ours) 74.22 72.32 73.02 74.62 80.69 - - 86.92 72.11 85.32 21.25

Table 3: Out-domain comparative analysis of accuracy across different methods on Fitzpatrick-17k dataset. Avg means micro average
accuracy computed over all skin tones. ’-’ represents we use data of this skin tone for training and test in other skin tones. The larger the
values, the better they are regarded. All values are expressed as percentages, except for the last four columns.

w/o Dis w/o IF w/o Ctr DFCA

ACC 85.45 86.39 86.95 87.94
AFBD 29.98 35.16 33.56 35.29

Table 4: Abalation study: the contribution of each component

ered a satisfactory performance in terms of fairness metrics
and our propose AFBD. Overall, the results demonstrate that
our method possess robust generalization capabilities under
the fairness dermatological diagnostics as well.

4.5 Abalation Study
To understand the contribution of each component in the
DFCA, we perform ablation studies on the Fitzpatrick-17k
dataset. Table 4 shows the comparison results of ACC and
AFBD. ’w/o Dis’ means we conduct the experiment without
feature disentanglement, ’w/o IF’ means no feature augmen-
tation while with contrastive learning, and ’w/o Ctr’ means no
contrastive learning while with feature augmentation. The re-
sults indicate that feature disentanglement makes the greatest
contribution both in diagnosis accuracy and fairness. While
the proposed feature augmentation from vMF distribution can
enhance diagnosis accuracy while ensuring fairness. And the
LProCo loss of contrastive learning can better take the bal-
ance between accuracy and fairness into consideration.

Furthermore, we conduct another abalation study to inves-
tigate the impact brought by the structure of inverse model,
which is designed to model the inverse conversation between
feature space and contrastive space, as exhibited in Table 5.
We take three methods for comparision: diffusion model, one
MLP network and our proposed inverse flow model IF . The
results show that MLP can achieve comparable performance
to DFCA in terms of accuracy. However, MLP is relatively

Diff MLP DFCA(IF)

ACC 86.67 87.23 87.94
AFBD 31.69 32.76 35.29

Table 5: Abalation study: the impact of structure to inverse model

weak in terms of fairness, indicating the flow model can bet-
ter handle the complex conversions between feature space and
contrastive space. Diffusion model achieves the worst perfor-
mance in both metrics, due to its training instability expe-
cially for the certain vMF distribution.

5 Conclusion and Future Work
In this paper, we propose a Disentangled Feature Contrastive
learning and Augmentation framework (DFCA) to reduce un-
fairness in dermatological diagnostics. DFCA employs a
symmetric architecture to disentangle features into disease-
related and skin-tone-related components, thereby minimiz-
ing the impact of skin tone on disease diagnosis. We intro-
duce a contrastive learning framework based on von Mises-
Fisher (vMF) distributions and use it to inversely augment
the feature space. Extensive comparisons and ablation stud-
ies demonstrate the effectiveness of our approach.

Despite our method presents a promising approach to solv-
ing the fairer dermatological diagnostics problem, there are
several limitations. Dermatological datasets with skin tone
attributes remain scarce, which limits the development in this
direction. Our proposed inverse flow model for feature aug-
mentation is computationally complex. Further research is
needed to provide larger datasets and computationally effi-
cient methods. Additionally, improving interpretability and
extending applications to a broader range of diseases are key
directions for future work.
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