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Abstract
Temporal Equilibrium Logic (TEL) extends An-
swer Set Programming (ASP) with linear-time tem-
poral operators (LTL), enabling reasoning about
dynamic systems. However, TEL enforces strong
minimization criteria that may preclude intuitive
models. Liveness formulas, for instance, tend
to fail to have infinite equilibrium models, as
TEL minimization postpones satisfaction forever.
We address this limitation by introducing eager
temporal operators (eager Until, eager Release,
etc.), and present non-disjunctive temporal pro-
grams (NDTP) as a framework for modeling depen-
dencies, inertia, and non-determinism. The frag-
ment of tight temporal programs (TTP), which can
be recognized efficiently based on automata tech-
niques for loop detections, guarantees polynomial
encodability into LTL. Practical examples, such as
request-grant protocols and user permissions in dis-
tributed systems, illustrate the applicability of our
approach.

1 Introduction
Answer Set Programming (ASP ) [Brewka et al., 2011;
Lifschitz, 2019] has been widely applied in dynamic environ-
ments, including applications in planning, multi-agent sys-
tems, and reasoning about evolving domains [Falkner et al.,
2018]. ASP semantics is particularly well-suited for such
settings due to its capability of expressing transitive closure,
addressing the frame problem (via inertia rules), and provid-
ing both default and strong negation, which enables rich and
flexible modeling possibilities. Temporal Equilibrium Logic
(TEL) [Aguado et al., 2023] builds on this foundation by
bridging the gap between the expressive power of linear-time
temporal logic (LTL) [Pnueli, 1977] operators and the sta-
ble semantics of ASP . By integrating these paradigms, TEL
provides a unified framework for reasoning about dynamic
systems while preserving the non-monotonic reasoning capa-
bilities and desirable properties of ASP .

A key distinction of TEL compared to LTL lies in its ca-
pability to address (i) non-determinism by naturally encoding
various assumptions about unseen data, (ii) the inertia law,
which allows for reasoning about persistence of facts over

time, and (iii) dependencies, expressed in a rule-based man-
ner, that are fundamental to many temporal systems.

Example 1 (Liveness property). A user may issue a ”request”
for a resource in a system that must be granted at some future
point in time. The rules governing this system dictate that a
“grant” action g can only occur if a corresponding “request” r
has been made in a prior step, in formulas □(r → ♢g). Clas-
sical LTL semantics cannot fully capture this dependency,
i.e., a grant g can appear even without a request r. To model
it in LTL, one must also include □(g → ⧫r), ensuring that
every grant g occurs due to a request r. However, this creates
a cascading problem: if requests r themselves must be justi-
fied by other temporal rules, complicating the modeling, cf.
frame problem as discussed in [McCarthy and Hayes, 1981].

While TEL effectively captures these temporal dependen-
cies, its strong minimization condition often leads to unin-
tended consequences. Specifically, if a request is derived in-
finitely often by a formula such as □♢r, no infinite equilib-
rium model exists: after removing the first r from a model, we
still have a model, which leads to an infinite chain of smaller
models that compromises stability. For eventual persistence
conditions such as ♢□p, the situation is similar.

To address this issue, we introduce a novel version of the
until, release, since, and trigger operators, termed eager op-
erators. These operators temper the strong minimization by
suspending it until the operator is fulfilled along the trace.
This yields new versions of derived operators, such as even-
tually and once, which align better with intuitive reading.

The proposed suspension ensures that in Example 1, we
have infinite stable models of infinite length. For finitary se-
mantics, the standard definition of eventually would in Exam-
ple 1 place a grant g only in the very last state, from which
it cannot be removed. However, such behavior does arguably
not align with the intuitive reading of the formulas in Exam-
ple 1. Therefore, even in the case of finite traces, we consider
the eager version of the temporal operator a preferable choice
to accurately capture the intended behavior.

Example 2 (Safety property). For another scenario where de-
pendencies matter, assume there are admin users and regular
user. Admin users can promote a regular user to be an ad-
min while regular users can’t. Thus, a schematic rule such as
□(admin(X), promotes(X,Y ), user(Y ) → admin(Y )),
where X and Y are placeholders for the grounded version of
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the formula, should not self-support the predicate admin.

Our main contributions are summarized as follows.
● We introduce new versions of the temporal operators that
unfold eagerly. While they are indifferent in LTL, they sus-
pend minimization and thus allow for stable models in scenar-
ios where such models are intuitively expected. Notably, the
new versions are expressible in TEL and the resulting exten-
sion of TEL has the same complexity, i.e., TEL-satisfiability
is EXPSPACE-complete [Bozzelli and Pearce, 2015].

● We define NDTP as a rule-based fragment of the new lan-
guage that, on the one hand, overcomes the problem of strong
minimization and, on the other hand, has considerably lower
complexity. The former is achieved by using eager temporal
operators in rule heads and the latter by disallowing disjunc-
tion, which quickly leads to EXPSPACE-hardness [Šimkus,
2010]. We show that NDTP programs have benign proper-
ties and that deciding TEL-satisfiability for them is in EXP-
TIME in general, while model checking is feasible in polyno-
mial time.

● Based on NDTP , we define a tight version of temporal
programs (TTP ). By generalizing results for ordinary tight
logic programs [Erdem and Lifschitz, 2003], we show that
the stable models of TTP programs are obtained as the LTL-
models of their temporal Clark’s completion that we define.
As a result, we obtain a polynomial encoding of TTP into
LTL. Furthermore, we show that the tightness of temporal
programs can be decided efficiently in NL, resorting to one-
counter automata.

The use of NDTP as a starting point can be seen as a
temporal extension of normal programs (or non-disjunctive
programs as in [Erdem and Lifschitz, 2003]), which is the
standard fragment on top of which the notion of tightness is
usually defined [Dodaro et al., 2023; Lin and Zhao, 2003].
However, this approach has not yet been extended to ASP
with modalities, which are highly useful logical operators for
various domains. Our results enable bridging temporal non-
monotonicity with LTL-based model checkers such as SPIN
[Holzmann, 1997], nuXmv [Cavada et al., 2014], and BLACK
[Geatti et al., 2021].
Organization. The remainder of this paper is organized as
follows. Section 2 provides a formal background on TEL.
Section 3 introduces the new operators and shows their prac-
tical applicability. Section 4 introduces the NDTP fragment,
while Section 5 presents tight temporal programs. In Sec-
tion 6, we discuss related work and conclude.

2 Preliminaries
Both TEL and THT [Aguado et al., 2023] share the same
syntax as LTL. Here we introduce the grammar

F ∶∶= ⊺ ∣ � ∣ p ∣ F △ F ∣ ○ F ∣ ● F ∣ F O F (1)

where p ∈ P for a finite set P of propositional atoms, △ ∈ {∧,
∨,→}, and O ∈ {U,R,S,T}. Negation is defined as ¬ϕ ∶=
ϕ → �. As usual, □ (globally) is defined by □ϕ ∶= �Rϕ; ♢
(eventually) by ♢ϕ ∶= ⊺Uϕ; ∎ (historically) by ∎ϕ ∶= �Tϕ;
⧫ (once) by ⧫ϕ ∶= ⊺Sϕ; ○̂ (weak next) by ○̂ϕ ∶= ○ϕ ∨ ¬○⊺;

and ●̂ (weak previous) by ●̂ϕ ∶= ●ϕ ∨ ¬●⊺. Furthermore, for
any unary operator u, we let ×0ϕ denote ϕ and ×i+1ϕ denote
uuiϕ, for i ≥ 0.

The semantics of THT is defined via THT -traces (or sim-
ply traces, if clear from context), which are finite or infinite
sequences ⟨H,T⟩ of pairs ⟨Hi, Ti⟩, where Hi ⊆ Ti ⊆ P for
each 0 ≤ i < λ, where λ can be either in N or ω. Both
H and T are traces as usual (LTL-traces), i.e., sequences
H = H0,H1, . . . resp. T = T0, T1, . . . of sets of atoms. Given
a THT -trace I (or an LTL-trace T), we denote its length by
λI (resp. λT).
Definition 1 (THT -Satisfaction). Satisfaction of a THT for-
mula by a THT -trace I = ⟨H,T⟩ at time k, where 0 ≤ k is
integer, is inductively defined as follows:

1. I, k /⊧ � and I, k /⊧ ⊺
2. I, k ⊧ p if p ∈Hk, for any atom p ∈ P
3. I, k ⊧ ϕ ∨ ψ if I, k ⊧ ϕ or I, k ⊧ ψ
4. I, k ⊧ ϕ ∧ ψ if I, k ⊧ ϕ and I, k ⊧ ψ

5. I, k ⊧ ϕ→ ψ if {⟨T,T⟩, k /⊧ ϕ or ⟨T,T⟩, k ⊧ ψ, and
I, k /⊧ ϕ or I, k ⊧ ψ

6. I, k ⊧ ○ ϕ if k + 1 < λI and I, k + 1 ⊧ ϕ
7. I, k ⊧ ϕ U ψ if there is j ≥ k s.t. I, j ⊧ ψ,

and for all j′ ∈ [k, j), I, j′ ⊧ ϕ
8. I, k ⊧ ϕ R ψ if for all j ≥ k s.t. I, j /⊧ ψ,

there exists j′ ∈ [k, j), I, j′ ⊧ ϕ
9. I, k ⊧ ● ϕ if k > 0 and I, k − 1 ⊧ ϕ

10. I, k ⊧ ϕ S ψ if there is j ≤ k s.t. I, j ⊧ ψ,
and for all j′ ∈ (j, k), I, j′ ⊧ ϕ

11. I, k ⊧ ϕ T ψ if for all j ≥ k s.t. I, j /⊧ ψ,
there exists j′ ∈ [k, j), I, j′ ⊧ ϕ,

We recall that the persistence property holds for THT , i.e.,
that if a proposition is true in a here state Hi, it remains true
in Ti, reflecting the notion that truth is preserved.
Proposition 1 (Persistence, [Aguado et al., 2023]). For any
formula ϕ and THT -trace I = ⟨H,T⟩, I ⊧ ϕ implies T ⊧ ϕ.

As a consequence, interpreting the negation ¬ϕ in ⟨H,T⟩
at time point i amounts to ϕ not holding in T at i. Formally,
Corollary 1. For any formula ϕ and THT -trace I = ⟨H,T⟩,
I ⊧ ¬ϕ iff T /⊧ ϕ.

Furthermore, LTL and THT are strongly related, as
⟨T,T⟩ ⊧ ϕ iff T ⊧ ϕ under LTL semantics, which is easily
verified by comparing the respective satisfaction conditions.

We are now ready to introduce the semantics of
TEL[Aguado et al., 2023].
Definition 2 (Stable (Equilibrium, TEL) Model). A trace T
is a stable (equilibrium, TEL) model of formula ϕ if (i) T ⊧
ϕ, i.e., T is an LTL model of ϕ, and (ii) no H ≠ T exists s.t.
⟨H,T⟩ ⊧ ϕ.
Example 3. For a predicate admin(X) varying over time
and its negation n admin(X), inertia default rules are as
follows:
□(admin(X) ∧ ¬○n admin(X)→ ○admin(X)) (2)
□(n admin(X) ∧ ¬○admin(X)→ ○n admin(X)) (3)
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(2) states that, in any situation where admin(X) holds and
there is no evidence that in the next state n admin(X)
holds, then admin(X) remains true; (3) is analogous for
n admin(X). The conjunction of (2), (3), and the for-
mula ○○admin(X) ∧ ○○♢n admin(X) grounded to X =
u1 has the stable models given by the regular expression
∅ ⋅ ∅ ⋅ {admin(u1)}+ ⋅ {n admin(u1)} ⋅ {n admin(u1)}λ,
where λ ranges over N ∪ {ω}, i.e., induces finite and infinite
traces.

3 Eager Unfoldable Operators
Even though TEL effectively captures the intended meaning
of scenarios like Example 2, where local positive loops are
considered, it struggles to fully capture the intended seman-
tics of Example 1. Consider the following formula:

□(♢r) ∧ □(r → ♢ g). (4)

This formula does not admit any infinite stable model. Intu-
itively, given a candidate LTL model T, it is always possible
to construct a smaller H such that ⟨H,T⟩ ⊧ φ by omitting
g in Hi for some arbitrary time point i, even if g occurs in
Ti. This minimization condition undermines the satisfaction
of the formula’s intended meaning. The issue persists in the
finite case, where the unique stable model involves finitely
many occurrences of r, with g appearing only in the last state.
Under TEL, any finite LTL model where g appears earlier in
the trace is unstable, as we can remove it from H.

A similar argument applies to the sub-formula □(♢r) by
itself. As r must occur infinitely often, we can always re-
move an occurrence of r from H and still have THT -satis-
faction. This highlights a fundamental limitation of TEL’s
strong minimization criterion in scenarios like Example 1.

The operators ♢ and U are non-deterministic in Defini-
tion 1, as their satisfaction depends on arbitrary points in the
trace, akin to temporal disjunction. In contrast, □ and ○ are
deterministic, and evaluated directly at specific points. To
address this, we propose eager variants of Ue, Re, Se, and
Te, which unfold deterministically once a T-trace is fixed.
These operators are equivalent to the standard ones in LTL
but weaker in THT , resolving non-determinism for clearer
computational and modeling benefits.

Definition 3. The eager variant Oe of the operator O ∈
{U,R,S,T} is as follows. For any THT -trace I = ⟨H,T⟩
and time point k ≥ 0,

12. I, k ⊧ ϕ Ue ψ if there exists some j ≥ k s.t. I, j ⊧ ψ, and
for all j′ ∈ [k, j), I, j′ ⊧ ϕ and T, j′ /⊧ ψ;

13. I, k ⊧ ϕ Re ψ if for all j ≥ k s.t. (a) I, j /⊧ ψ or (b)
T, j ⊧ ϕ andI, j /⊧ ϕ, some j′ ∈ [k, j) exists s.t. I, j′ ⊧ ϕ;

14. I, k ⊧ ϕ Se ψ if there is some j ≤ k s.t. I, j ⊧ ψ, and for
all j′ ∈ (j, k), I, j′ ⊧ ϕ and T, j′ /⊧ ψ;

15. I, k ⊧ ϕ Te ψ if for all j ≥ k s.t. (a) I, j /⊧ ψ or (b) T, j ⊧
ψ and I, j /⊧ ψ, some j′ ∈ [k, j) exists s.t. I, j′ ⊧ ϕ.

From these new operators, we can derive as usual oper-
ators such as: □e (eager globally) by □eϕ ∶= � Re ϕ; ♢e
(eager eventually) by ♢eϕ ∶= ⊺ Ue ϕ; ∎e (eager historically)
by ∎eϕ ∶= � Te ϕ; etc.

The notion of stable model in Definition 2 naturally ex-
tends to the new operators. In Example 1, we mentioned
that one might be interested in expressing the following prop-
erties: (i) every request must eventually be satisfied with a
grant, and (ii) a grant is given only if there was a prior re-
quest. In other words, intuitively, point (ii) requires a justifi-
cation for every grant.

With the novel temporal operators, We can effectively cap-
ture points (i) and (ii) under stable semantics.

□(♢er) ∧ □(r → ♢e g). (5)

This formula yields infinitely many infinite models, where
all occurrences of g along the trace following a request are
considered stable. Intuitively, the new operators can be in-
terpreted as suspending the minimization for a stable (Defini-
tion 2), introducing a temporal instance of the excluded mid-
dle axiom, which is propagated until the temporal formula is
fulfilled. Note that if ⟨H,T⟩, i ⊧ p∨¬p, then p ∈Hi iff p ∈ Ti.

From Corollary 1 we obtain that the new operators are ex-
pressible in THT .
Lemma 1. In THT ,

ϕ Ue ψ ≡ (ϕ ∧ ¬ψ) U ψ ϕ Re ψ ≡ ϕ R (ψ ∧ (ϕ ∨ ¬ϕ))
ϕ Se ψ ≡ (ϕ ∧ ¬ψ) S ψ ϕ Te ψ ≡ ϕ T (ψ ∧ (ϕ ∨ ¬ϕ))
Notably, □e coincides with □ and ∎e with ∎. According to

Theorem 1 in [Cabalar and Diéguez, 2014], THT -equivalent
formulas ϕ and ψ are strongly equivalent in TEL, i.e., re-
placing any occurrence of ϕ in a formula χ with ψ, or vice
versa, results in the same stable models for χ. Consequently,
the formula τe(ϕ) that results from a formula ϕ by exhaustive
application of Lemma 1 has the same stable models as ϕ.

We then obtain the following result.
Theorem 1. Deciding TEL-satisfiabilty of a formula ϕ in
which eager operators occur is EXPSPACE-complete.

The membership part follows from EXPSPACE-
completeness of TEL-satisfiability and the fact that τe(ϕ)
and ϕ have the same stable models; an exponential blowup
can be avoided using Tseitin-style [Tseitin, 1983] naming
of subformulas ψ, i.e., using atoms pψ and adding pψ ↔ ψ.
The EXPSPACE-hardness follows from the fragment with
arbitrary nesting of □ and implication [Bozzelli and Pearce,
2015] as well as from the fragment with □ and ○ [Šimkus,
2010].

4 Non Disjunctive Temporal Programs
In this section, we introduce NDTP programs, a nondisjunc-
tive, rule-based fragment extending the class considered in
[Erdem and Lifschitz, 2003] to the temporal case by incor-
porating TEL modalities in the body and allowing arbitrary
nesting of eager unfoldable operators in the head.
Definition 4 (NDTP ). A Non-Disjunctive Temporal Pro-
gram π consists of

(i) a set init(π) of initial rules of the form

r ∶ ψ → ϕ (6)

where ϕ is either � or a head formula from the grammar
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ϕ ∶∶= η[ϕ] ∣ ϕ Oe ϕ for Oe ∈ {Ue,Re,Se,Te}
ψ ∶∶= ψ1 ∣ ψ2

ψ1 ∶∶= η[ψ1] ∣ ψ1 ∨ ψ1 ∣ ψ1O ψ1 for O ∈ {U,R,S,T}
ψ2 ∶∶= η[ψ2] ∣ ¬γ ∣ ψ2 ∨ ψ2

η[µ] ∶∶= ⊺ ∣ p ∣ ○η[µ] ∣ ○̂η[µ] ∣ ●η[µ] ∣ ●̂η[µ] ∣
η[µ] ∧ η[µ] ∣ µ

where p ∈ P and γ is an arbitrary TEL formula, η[⋅] is
parameterized by a grammar symbol (ϕ, ψ1 or ψ2), and

(ii) a set dyn(π) of dynamic rules of the form □r, where r
is an initial rule.

For each rule r we denote ψ as body(r) and ϕ as head(r).
The NDTP fragment disallows: (i) nesting of implications

outside the scope of a negation, (ii) negation within temporal
unfoldable operators, and (iii) disjunctions in the head. It per-
mits (i) eager operators in the head, and (ii) arbitrary formulas
under negation. Notably, all examples from above are in this
fragment.

The eager operators unfold deterministically along a given
trace due to the restricted temporal disjunctions, making them
conceptually similar to “shiftable” operators. This determin-
istic behavior ensures a clear justification for atoms appearing
along a trace T, while the body admits richer syntax under the
condition that the negated sub-formulas can be evaluated and
replaced with ⊺ or � without the need for further unfolding
beyond the one for the dynamic rules.

As for properties of NDTP , a notable one is that eager
operators in rule heads do not eliminate stable models.

Proposition 2 (Equilibrium Persistence). Given an NDTP
program π, let π′ be a formula obtained from π by replacing
some eager operators Oe with O. Then every stable model of
π′ is a stable model of π.

Furthermore, as for ordinary logic programs, negation is
necessary to prevent stability. Let us call ¬-free NDTP pro-
grams positive. Then

Theorem 2 (Positive NDTP ). Every positive NDTP pro-
gram π that is LTL-satisfiable has a stable model.

In particular, if π in Theorem 2 has no heads � it has some
stable model. For example, recall that □♢er has infinitely
many stable models, while its counterpart □♢r has none.

Next, we observe that using a Tseitin-style transformation
with auxiliary atoms as mentioned above, it is possible to ob-
tain a normal form for head formulas.

Proposition 3 (Head Normal Form). Every NDTP program
π is rewritable in polynomial time to an NDTP program π′
that has the same stable models as π modulo auxiliary atoms
where π′ has only head formulas of the form p, ○p, and �.

This result is particularly useful for simplifying inference
and deriving complexity results.

We next present a characterization of stable models in
terms of a program reduct.

Definition 5 (λ-Unfolding). For any NDTP program π and
λ ≥ 1, the temporal program πλ is πλ ∶= init(π)∪{○ir ∣ □r ∈
πdyn, i ∈ [0, λ)}.

It is easy to see that πλ and π share the same LTL, THT
and TEL models, for any NDTP program π and λ ≥ 1, and
that □r holds iff r holds in every state i ∈ [0, λ) according
to Defn. 1. We can now introduce temporal program reducts.
Denote by sub¬(ϕ) the maximal subformulas of ϕ of the form
¬ψ, i.e., not within the scope of another negation.

Definition 6 (Temporal reduct). The temporal reduct πT of
an NDTP program π w.r.t. an LTL trace T results from πλ

by (1) replacing every ○ir ∈ πλ with τe(○ir); (2) unfolding
temporal operators if they are finitely fulfilled; (3) if R (or T)
unfolds infinitely, replace it with □ (resp. ∎); (4) replace each
ψ ∈ sub¬(○ir) with ⊺ if T, i ⊧ ψ, and with � otherwise.

We note that the temporal reduct is well-defined as nega-
tion is not allowed inside unfoldable temporal operators such
as U, R, S, T, or their derived operators. The deterministic na-
ture of rule heads in NDTP programs is formally evidenced
by the fact that they admit a single minimal Here-Trace. Such
a result can be shown by defining a fixed-point operator over
a lattice of H-traces using the unfolded reduct πT as rules.

Proposition 4. Let π be an NDTP program and T an LTL
model of π. Then there exists an H such that H ≤ H′ when-
ever ⟨H′,T⟩ ⊧ πT.

We call T a λ-stable model of π if T is an LTL-minimal
model of πT (equivalently, T coincides with H in Proposi-
tion 4). We link the equilibrium-based (Defn. 2) and reduct-
based (Defn. 6) stable models, showing that they coincide.

Proposition 5 (Equivalence). A trace T is a stable model of
an NDTP program π iff T is a λ-stable model of πT.

Regarding the form of stable models, any TEL-satisfiable
formula ϕ that has an infinite stable model has one of the form
T = TP ⋅Tω

C , where the length of TP ⋅TC is at most double-
exponential in the size of ϕ [Bozzelli and Pearce, 2015]. In
the case of NDTP programs, this falls back to a single expo-
nential length, and a finite stable model (if any) of exponential
length exists. Details are given in the appendix.

Turning to complexity, it is well known that model-
checking of an LTL formula ϕ on a trace T is feasible in
polynomial time [Demri and Schnoebelen, 2002]. This simi-
larly holds for stable model checking of NDTP programs.

Theorem 3. Given an NDTP program π and a (finitely rep-
resented) trace T, deciding whether T is a stable model of π
is feasible in polynomial time.

As for deciding TEL-satisfiability of NDTP programs, we
have the following result.

Theorem 4. Deciding whether an NDTP program π is
TEL-satisfiable is in EXPTIME.

Proof. (Sketch) The proof proceeds by encoding the pro-
gram π into a Büchi automata using well-established LTL-to-
automata techniques. To address the two-world semantics of
THT , we employ the star-translation, which maps the two-
world structure into single-world representation by introduc-
ing fresh atoms for the Here-world formulas.

The automata construction involves two components: the
(i) HT-local automata, which enforces local consistency for
the There-world, and closure for head and body formulas for
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the Here-world. So if p, q are in the Here part of a node,
and p ∧ q appears as a sub-formula in π, then we want also
p ∧ w in the Here part of a node; the (ii) T-eventuality au-
tomata, which imposes fairness conditions, requiring that if
an U formula is derived infinitely often, it must also be ful-
filled infinitely often. We compute the synchronous product
of these two automata.

The minimality of the H-trace is achieved via a fix-point
computation. Starting with a list of nodes where nothing
positive is derived in the Here-part, we iteratively apply the
immediate consequence operator, propagating head formulas
through the list of nodes once derived. Once a set of head for-
mulas is derived, we update the list of nodes with new nodes
with the minimal set of formulas in the Here part such that
they contain the derived formulas. Identifying such nodes is
deterministic due to the syntactic restrictions of NDTP pro-
grams.

Consequently, NDTP programs have, besides appealing
semantic properties, significantly lower complexity than the
full language of TEL. A matching lower bound is open,
while PSPACE-membership of the problem is plausible.

5 Tight Temporal Programs
In this section, we introduce tight temporal programs (TTP ),
a fragment of TEL designed to keep complexity low by re-
lying on LTL solvers. In ASP , the notion of tightness –
programs without positive recursive dependencies – ensures
that stable models can be obtained as supported models via
Clark’s completion. We establish similar results for NDTP
programs, despite the challenges of defining support when
(nested) temporal operators are allowed.

We start by defining the concept of support for head formu-
las, which will serve as the foundation for introducing support
in NDTP programs.
Definition 7 (Supporting Head). Given a head formula φ, a
trace T, and i, j ∈ [0, λT), we say that p ∈ Ti is supported by
φ at time j, denoted suppT(φ, j, p, i), if T, j ⊧ φ and

• φ = p: i = j and i < λT;
• φ = φ1 ∧ φ2: supp(φk, j, p, i) for some k ∈ {1,2};
• φ = φ1Ueφ2: if T, j ⊧ φ2 then suppT(φ2, j, p, i) else

either suppT(φ1, j, p, i) or suppT(φ, j + 1, p, i);
• φ = φ1Reφ2: if T, j ⊧ φ1 then either suppT(φ1, j, p, i)

or suppT(φ2, j, p, i), else either suppT(φ2, j, p, i) or
suppT(φ, j + 1, p, i);

• φ = φ1Seφ2: if T, j ⊧ φ2 then suppT(φ2, j, p, i) else
either suppT(φ1, j, p, i) or (b2) suppT(φ, j + 1, p, i);

• φ = φ1Teφ2: if T, j ⊧ φ1 then either suppT(φ1, j, p, i)
or suppT(φ2, j, p, i) else either suppT(φ2, j, p, i) or
suppT(φ, j − 1, p, i);

• φ = ○φ1 or φ = ○̂φ1: suppT(φ1, j + 1, p, i);
• φ = ●φ1 or φ = ●̂φ1: suppT(φ1, j − 1, p, i).

Furthermore, suppT(ϕ, j) = {(p, i) ∣ suppT(ϕ, j, p, i)}.
Note that Definition 7 is more straightforward in the atem-

poral case unless one wants to cover also boolean operators
in the head, see e.g. [Alviano et al., 2016].

Definition 8 (Supported LTL Models). Trace T is supported
by an NDTP π, if for every j ∈ [0, λT) and p ∈ Tj , either
some (a) □r ∈ dyn(π) or (b) r ∈ init(π) exists s.t T, i ⊧
body(r) and suppT(head(r), i, p, j), where i=0 in case (b).

We notice that the stable models of the theory in Example
3 coincide with its supported models. More in general, as for
the relationship to LTL- and TEL semantics, we show that
supported LTL models relax TEL-models.

Proposition 6. Every stable model T of an NDTP program
π is a supported LTL model of π.

Furthermore, the supported LTL-models can be expressed
in LTL. To this end, we introduce a temporal version tcc of
Clark’s completion [Clark, 1977] such that T is a supported
model of π iff T is an LTL model of tcc(π).
Definition 9 (Temporal Clark’s Completion). For any
NDTP π, its temporal completion is

tcc(π) = π ∧⋀p∈P∪{⊺}□γ(p), (7)

where γ(p) ∶= p → ⋁r∈π justifypr(head(r), body(r)) and
justifypr(ϕ,ψ) is inductively defined as follows:

• ϕ = p: if r ∈ init(π) then ¬●⊺ ∧ ψ else ψ;

• ϕ = q ≠ p, ϕ = ⊺, or ϕ = �: �;

• ϕ = ϕ1 ∧ ϕ2: justifypr(ϕ1, ψ) ∨ justifypr(ϕ2, ψ);
• ϕ = ϕ1 Oe ϕ2, for O ∈ {U,R,S,T}: γO,1 ∨ γO,2, where

γU,1 = justifypr(ϕ2, ϕ2 ∧ (ψ ∨ ●((ψ ∧ ¬ϕ2) S ψ)),
γU,2 = justifypr(ϕ1,¬ϕ2 S (ψ ∧ ¬ϕ2));
γR,1 = justifypr(ϕ1, ϕ1 ∧ (ψ ∨ ●(¬ϕ1 S (¬ϕ1 ∧ ψ)))),
γR,2 = justifypr(ϕ2, ψ ∨ ●(¬ϕ1 S (¬ϕ1 ∧ ψ)));
γS,1 = justifypr(ϕ2, ϕ2 ∧ (ψ ∨ ○((ψ ∧ ¬ϕ2) U ψ))
γS,2 = justifypr(ϕ1,¬ϕ2 U (ψ ∧ ¬ϕ2));
γT,1 = justifypr(ϕ1, ϕ1 ∧ (ψ ∨ ○(¬ϕ1 U (¬ϕ1 ∧ ψ))))
γT,2 = justifypr(ϕ2, ψ ∨ ○(¬ϕ1 U (¬ϕ1 ∧ ψ)));

• ϕ = ○ϕ1, ϕ = ○̂ϕ1: ●justifypr(ϕ1, ψ),
• ϕ = ●ϕ1, ϕ = ●̂ϕ1: ○justifypr(ϕ1, ψ).
Temporal operators like Ue, Se, ○ introduce dependencies

between states, meaning that the support for an atom might
need to be propagated among states.

Example 4. Consider the NDTP π with two dynamic rules
□(r1) and □(r2), where r1 = ○p → p and r2 = □(○⊺),
and no initial rules. As easily seen, □(r2) enforces infi-
nite models; we are thus in the infinitary (standard) setting
of LTL. Applying the temporal Clark’s completion, we ob-
tain γ(p) = p→ ○p∨�. Thus tcc(π) = π ∪ {□(p→ ○p∨�)},
which has the LTL models T = {p}ω and H = ∅ω .

In Example 4, T is supported by π but not a TEL-model
of π (as ⟨H,T⟩ ⊧ π). However, without r2, finite models
of tcc(π) would coincide with stable models. In general, we
have:

Proposition 7 (Characterization). For any NDTP program
π and an LTL model of π, T ⊧ tcc(π) iff T is a supported
LTL model of π.
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On the other hand, the LTL semantics of a program π is
easily recovered from the supported LTL models of an aug-
mented program, by adding □(p→ p) for each p ∈ P to π.

We remark that the completion formula tcc(π) can be ex-
ponential in the nesting depth of operators Oe in rule heads.
For a polynomial LTL encoding, we can introduce Tseitin-
style naming of subformulas as described above.

We next introduce notions of parents and relevance.

Definition 10. For the unfolded program πT of an NDTP
program π and a trace T, an atom pi is a parent of qj if some
rule ○kr exists s.t. T, i ⊧ body(r), suppT(head(r), k, q, j)
and pi is relevant for body(r) w.r.t. T. We call pi relevant for
body(r)w.r.t. T when in checking recursively T, k ⊧ body(r)
(w.r.t. Defn. 1) we may end up evaluating T, i ⊧ p.

Note that given a head formula ϕ, (p, i) ∈ suppT(ϕ, j) iff
pi is relevant for ϕ w.r.t. T.

In the following definition, we use the “being parent” re-
lation over atoms. We assume that there is an order over the
atoms in P , and we use the subscript k in pik to refer to the
k-th atom in P at time point i.

Definition 11. An NDTP program π is tight on T, if there
are no infinite sequences pi0j0 , p

i1
j1
, . . . such that for each k ≥ 1,

pikjk is a parent of pik−1jk−1
.

We recall and accommodate Proposition 3 from [Erdem
and Lifschitz, 2003] to our terminology:

Proposition 8. A program π is tight on a trace T iff there
exists a function f from P × [0, λT) to ordinals such that
for every rule ○i in πT with T, i ⊧ body(r) ∧ head(r), for
every (p, i) ∈ suppT(head(r), j), and for every qk relevant
for body(r) w.r.t T, we have f(p, j) < f(q, k).

Based on this, we can then show:

Theorem 5. For any NDTP program π and any LTL model
of π tight on T, T is an stable trace for π iff T is supported
by π iff T ⊧ π ∧ tcc(π).

We proceed to a variant of Theorem 5 that is not parame-
terized by an LTL model T, but works for all possible traces.
To achieve this goal, we need a notion of dependence among
atoms that does not rely on a specific trace.

The dependency graph is an important tool in logic pro-
gramming and is the basis of many relevant results, among
them the semantic properties of tight logic programs. For our
concerns, the dependency graph is defined as follows.

Definition 12 (Dependency Graph). Given an π be a NDTP
program, we define its dependency graph, denoted DG(π) =
⟨V,E⟩ where:

• Each vertex v ∈ V corresponds to an indexed sub-
formula ϕj in the ω-unfolding πω of π, representing the
instance of ϕ holding at position j in the trace.

• The arcs in E are defined recursively as follows:
● head-to-body links:

– for ○ir in πω , E has an arc head(r)i → body(r)i;
● head formulas dependencies:

– an arc from (ϕ1 ∧ ϕ2)i to ψj implies an arc ϕik → ψj;

– an arc ϕi → ψj resp. ○̂ϕi → ψj implies an arc ϕi+1 →
ψj;

– an arc (●ϕ)i → ψj resp. (●̂ϕ)i → ψj implies an arc
ϕi−1 → ψj if i − 1 ≥ 0;

– an arc (ϕ1 Oe ϕ2)i → ψj , for Oe ∈ {Ue,Re, Se,Te}),
implies an arc ϕsk → ψj for every k ∈ {1,2} and every
s ≥ i if Oe ∈ {Ue,Re} and s ∈ [0, j] otherwise;

● body formulas dependencies:

– an arc ϕi → (ψ1 △ ψ2)j , for △ ∈ {∨,∧}, implies an
arc ϕi → ψjk for k ∈ {1,2};

– an arc ϕi → ○(ψ)j resp. ϕi → ○̂(ψ)j implies an arc
ϕi → ψj+1;

– an arc ϕi → ●(ψ)j resp. ϕi → ●̂(ψ)j implies an arc
ϕi → ψj−1 if j − 1 ≥ 0;

– an arc ϕi → (ψ1 O ψ2)j for O ∈ {U,R,S,T}) implies
an arc ϕi → ψsk for every k ∈ {1,2} and every s ≥ i if
O ∈ {U,R} and s ∈ [0, j]; otherwise;

Intuitively, the construction parses each rule in π to ex-
tract its head and body, analyzing recursively its structure.
As customary in logic programming, the transitive closure of
DG(π) represents the positive dependencies in program π.
Definition 13 (Tight Temporal Program). A tight temporal
program (TTP ) is an NDTP program π that is tight, which
means that DG(π) has no infinite path.

Definition 13 ensures the following property.
Lemma 2. If an NDTP program π is tight, then it is tight
w.r.t. any possible trace T.

As a corollary of Theorem 5 and Lemma 2, we then obtain:
Theorem 6. Let π be a TTP program π. Then T is a TEL-
model of π iff T is a supported LTL-model of π iff T ⊧ π ∧
tcc(π).

From Theorem 6 and the fact that the Clark completion
tcc(π) is constructible in polynomial time, we thus obtain
the following complexity result.
Theorem 7 (Satisfiability). Deciding whether a given TTP
program π has a stable model is PSPACE-complete.

The membership comes from LTL, which is well-known
to be PSPACE-complete. The PSPACE-hardness holds as
we can express an LTL formula ϕ by ¬ϕ → � and impos-
ing □(¬¬p → p) for each atom p; note that ¬¬p → p is in
THT equivalent to ¬p ∨ p (excluded middle).

Thus, for this class of programs TEL-satisfiability has the
same complexity as classical LTL-satisfiability. However, to
exploit this, we must check for tightness, which could be ex-
pensive. Fortunately, it turns out that this is not the case.
Deciding Tightness. We utilize a finite representation of the
temporal dependency graphDG(π) in terms of a one-counter
automaton [Comon and Jurski, 1998]. Such an automaton is a
non-deterministic finite-state automaton operating on a single
counter variable with value increments from {−1,0,1}.
Definition 14 (One-Counter Automaton). A one-counter au-
tomaton (OCA) A is a tuple (Q,Qt0 ,∆), where:

• Q is a finite set of control states,
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• Qt0 ⊆ Q is a subset of control states,
• ∆ ⊆ Q ×Q × {−1,0,1} is a finite transition relation.

Informally, Qt0 represents the set of states that can only
be accessed if the counter equals zero. A configuration of an
OCA is a pair (q, c) of a state q ∈ Q and an integer c ≥ 0
that represents the current value of the counter. The transition
relation (q1, c1) → (q2, c2) between configurations holds if
some (q1, q2, c) ∈ ∆ exists such that c2 = c1 + c, where in
case qi ∈ Qt0 we must have ci = 0, for i ∈ {1,2}.

A path from a configuration (q1, c1) to a configuration
(q2, c2), denoted by π ∶ (q1, c1) →∗ (q2, c2), is a sequence
of transitions leading from (q1, c1) to (q2, c2). We rep-
resent the dependency graph of a program π by an OCA
ADG(π) = ⟨Q,Q0,∆⟩ as follows:

• Q = Qb ∪Qh ∪P , where Qb (resp. Qh) contains ϕb (ϕh)
for each sub-formula ϕ in the body (head) of some rule
r in π, where we let pb = pb = p for each atom p ∈ P ;

• Q0 = {body(r)b, head(r)h ∣ r ∈ init(π)};
• ∆ is defined recursively akin to E for DG(π), in-

tuitively with a level increase or decrease in the ω-
unfolding of the program π. It contains
● head-to-body links:

– (head(r)h, body(r)b,0), for each rule r ∈ init(π) ∪
dyn(π);

● head formulas dependencies: for each γh ∈ Q of form

– (ϕh1 ∧ ϕh2)h: (ϕkk, γh,0);
– (○ϕh)h, (○̂ϕh)h: (ϕh, γh,−1);
– (●ϕh)h, (●̂ϕh)h: (ϕh, γh,+1);
– (ϕh1 Oe ϕh2)h, Oe ∈ {Ue, Re}): (γh, γh,+1),
(γh, ϕhk ,0) for k ∈ {1,2};

– (ϕh1 Oe ϕh2), Oe ∈ {Se,Te}): (γh, γh,−1),
(γh, ϕhk ,0) for k ∈ {1,2};

● body formulas dependencies: for each γb ∈ Q of form

– (ϕb1 △ ϕb2)b, △ ∈ {∧,∨}: (γb, ϕbk,0) for k ∈ {1,2};
– (○ϕb)b, ○̂ϕb) ∈ Q: (γb, ϕb,+1);
– (●ϕb)b, (●̂ϕb)b ∈ Q: (γb, ϕb,−1);
– (ϕb1Oϕb2)b, O ∈ {U,R}: (γb, γb,−1), (γb, ϕbk,0) ∈

∆ for k ∈ {1,2};
– (ϕb1Oϕb2)b, O ∈ {S,T}: (γb, γb,+1), (γb, ϕbk,0) for
k ∈ {1,2}.

Intuitively, ADG(π) keeps track of the dependencies be-
tween atoms in the dependency graph, by emulating arcs with
counter increments resp. decrements. It faithfully represents
DG(π) as follows.

Proposition 9 (OCA Correspondence). For any NDTP pro-
gram π and atoms pi, qj , it holds that pi reaches qj inDG(π)
iff (p, i)→∗ (q, j) in ADG(π).

We now exploit Proposition 9 to conclude that

Theorem 8. Deciding whether a given NDTP program π is
tight for either finite or infinite semantics is in NL.

Proof. (Sketch) By Proposition 9, we can use the automaton
ADG(π) instead of DG(π) and distinguishes cases.

Finitary case. We can only have infinite paths by looping.
To check this, we can search for a loop under the follow-
ing two restrictions: (i) we start from a non-deterministically
chosen p ∈ P with a counter value 0, i.e, from (p,0), and (ii)
we limit the possible configurations to those with a counter
value at most n3 + n2, where n is the number of nodes in
ADG(π). The bound can be obtained by adjusting a result
from [Lafourcade et al., 2005] to our needs.

Infinitary case. Besides loop checking, we need to check
for infinite paths with no configuration repetition. We first
notice that there is such a path iff there exists a path of length
n with an atom p such that there is a path from (p, i) to (p, j)
with i < j. Therefore, one can try to search for a path where
(i) the path passes by an initial configuration at least once and
(ii) a path where no initial configurations are visited.

The NL membership follows then as we can construct
ADG(π) using logarithmic workspace; used as an oracle, we
can check in NL whether ADG(π) has a cycle.

6 Conclusion
Recent efforts aim to bridge ASP and Linear Temporal Logic
(LTL), in particular in the context of planning [Cabalar et al.,
2019] and monitoring [Soldà et al., 2023]. Motivated by is-
sues of the strong minimization criterion for stable models,
we introduced eager unfolding temporal operators and de-
fined non-disjunctive temporal programs (NDTP ) and tight
temporal programs (TTP ), which amount to fragments of
TEL. The latter can be readily translated in polynomial time
into LTL using a temporal Clark completion, achieving an ex-
ponential complexity drop compared to full TEL and opening
a possibility to use LTL-based model checkers.

Temporal Answer Set Programs (TASP) [Aguado et al.,
2023] are a rule-based fragment of TEL that has been con-
ceived as an extension of ASP . However, despite a rather
plain form of rules, such programs harbour the full complex-
ity of TEL [Cabalar, 2010] which is due to disjunction and
♢ in rule heads. This similarly follows from results about
bidirectional answer set programs [Eiter and Šimkus, 2009;
Šimkus, 2010] with a single function symbol, which amount
to a fragment of TASP involving only ○ and □ as tempo-
ral operators; excluding disjunction in rule heads results in
PSPACE-complexity. Our NDTP programs cater for a much
richer syntax, with tight programs allowing for a polynomial
translation into LTL.

Walega et al. [2021] also considered temporal dependency
graphs, yet more for imposing a syntactic constraint to ensure
that an immediate consequence operator reaches a fix-point
in finite time; forward propagation, for instance, is ruled out.
Beck et al. [2018] defined support of atoms from rules with
temporal operators and complex formulas in the head. How-
ever, their notion is semantic without structural decomposi-
tion of formulas, requesting that turning the supported atom
to false will violate the rule.

Future work will be devoted to implementation and appli-
cation of the results for monitoring, as well studying possible
restrictions and extensions of the program classes introduced.
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