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Abstract
Traffic forecasting is crucial for transportation sys-
tems optimisation. Current models minimise the
mean forecasting errors, often favouring periodic
events prevalent in the training data, while over-
looking critical aperiodic ones like traffic inci-
dents. To address this, we propose DualCast, a
dual-branch framework that disentangles traffic sig-
nals into intrinsic spatial-temporal patterns and ex-
ternal environmental contexts, including aperiodic
events. DualCast also employs a cross-time at-
tention mechanism to capture high-order spatial-
temporal relationships from both periodic and ape-
riodic patterns. DualCast is versatile. We inte-
grate it with recent traffic forecasting models, con-
sistently reducing their forecasting errors by up to
9.6% on multiple real datasets.

1 Introduction
Traffic forecasting is essential for intelligent transportation
systems (ITS), enabling real-time solutions like route plan-
ning and transportation scheduling.

Deep learning-based solutions have dominated the traffic
forecasting literature in recent years. They typically adopt
graph neural networks (GNNs) for modelling spatial patterns
and sequential models for modelling temporal patterns [Song
et al., 2020; Wang et al., 2020; Li and Zhu, 2021; Fang et
al., 2021; Liu et al., 2022; Qi et al., 2022]. Besides, a series
of recent studies adopt the attention mechanism to capture
dynamic relationships in traffic patterns [Guo et al., 2019;
Liu et al., 2023; Tang et al., 2024].

These solutions are primarily designed to minimise mean
forecasting errors, a common evaluation metric [Xu et al.,
2020; Zheng et al., 2020; Jiang et al., 2023a]. This optimisa-
tion focuses on periodic traffic patterns, which are both easier
to forecast and more prevalent in the traffic data, resulting in
an easier reduction in mean errors.

These models struggle with rare and random aperiodic
events, such as traffic incidents, making them difficult to fore-
cast. However, promptly identifying and adapting to such
events is essential for effective real-time traffic forecasting.

∗Corresponding author.

Figure 1: An example of a recent model PDFormer forecasting 60-
minute-ahead traffic flows. The model has strong overall results but
fails to respond to sudden changes (highlighted by the red boxes).

Fig. 1 shows PDFormer [Jiang et al., 2023a] forecasting the
traffic flow on a California freeway 60 minutes ahead for one
day (detailed in Section 5.2). There are two substantial gaps
between the forecasts (the orange dashed line) and ground
truth (the green solid line) at around 07:00 and 13:00. These
gaps would be overlooked if only mean forecasting error is
considered, as the overall patterns are similar.

In this paper, we propose DualCast – a model framework
to address the issue above. DualCast is not yet another traf-
fic forecasting model. Instead, we aim to present a generic
structure to power current traffic forecasting models with
stronger learning capability to handle aperiodic patterns
from traffic series. DualCast has a dual-branch design to
disentangle a traffic observation into two signals: (1) the in-
trinsic branch learns intrinsic (periodic) spatial-temporal pat-
terns, and (2) the environment branch learns external environ-
ment contexts that contain aperiodic patterns. We implement
DualCast with three representative traffic forecasting mod-
els, that is, STTN [Xu et al., 2020], GMAN [Zheng et al.,
2020] and PDFormer [Jiang et al., 2023a], due to their re-
ported strong learning outcomes.

The success of our dual-branch framework relies on three
loss functions: filter loss, environment loss, and DBI loss.
These functions guide DualCast to disentangle the two types
of signals and later fuse the learning outcomes to generate the
forecasting results.

(1) The filter loss computes the reciprocal of Kullback-
Leibler (KL) divergence between the feature representations
learned from two branches, ensuring that each branch cap-
tures distinct signals from the input. (2) The environment
loss is designed for the environment branch. It computes the
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reciprocal of KL divergence between a batch of training sam-
ples and a randomly permuted sequence of those samples in
the same batch. This loss encourages DualCast to learn the
diverse environment contexts at different times, as the sam-
ples of the training pair used in the KL divergence are drawn
from different periods. (3) The DBI loss is designed for the
intrinsic branch. It encourages DualCast to learn more sepa-
rated representations for training samples with different (peri-
odic) traffic patterns while closer representations for samples
within the same traffic patterns.

The three models [Xu et al., 2020; Zheng et al., 2020;
Jiang et al., 2023a] with which DualCast is implemented all
use self-attention. To enhance their self-attention modules
to capture spatial-temporal correlations, we identify two
issues: (1) Existing self-attention-based models [Xu et al.,
2020; Zheng et al., 2020; Jiang et al., 2023a] learn spatial
and temporal patterns separately, focusing on nodes at the
same time step or the same node across time. They neglect
correlations between different nodes across time, while such
correlations are important for modelling the impact of ape-
riodic events like the impact of traffic incidents propagating
spatially over time. (2) Existing models take either a local at-
tention [Jiang et al., 2023a] or a global attention [Zheng et al.,
2020] setup. They compute attention only among connected
nodes (based on the adjacency matrix) or among all nodes.
This limits receptive fields or loses hierarchical relationships
critical for traffic flow propagation.

To address these issues, we propose: (1) a cross-time
attention module using hierarchical message passing based
on a conceptual space-time tree, enabling attention across
nodes and time steps to better model spatial-temporal traf-
fic propagation without extra storage or computational over-
head. (2) an attention fusion module to combine local and
global attention, expanding the receptive field and capturing
hierarchical node relationships.

Overall, this paper makes the following contributions:

(1) We propose DualCast – a model framework equipped
with two branches and three loss functions to disentangle
complex traffic observations into two types of signals for
more accurate forecasting. DualCast is versatile in terms of
the models to form its two branches – we use self-attention-
based models for their reported strong learning outcomes.

(2) We propose two enhancements for self-attention-based
forecasting models: (i) A cross-time attention module to cap-
ture high-order spatial-temporal correlations, and (ii) An at-
tention fusion module to combine global and local attention,
enlarging DualCast’s receptive field and learning the hierar-
chical relationships among the nodes.

(3) We conduct experiments on both freeway and urban
traffic datasets, integrating DualCast with three self-attention-
based models GMAN, STTN, and PDFormer. The results
show that: (i) DualCast consistently reduces the forecasting
errors for these models, with stronger improvements at times
with more complex environment contexts and by up to 9.6%
in terms of RMSE; (ii) DualCast also outperforms the SOTA
model consistently and by up to 2.6%. Our source code is
available at https://github.com/suzy0223/DualCast.

2 Related Work
Traffic forecasting typically employs sequence models [Box
et al., 2015; Hochreiter and Schmidhuber, 1997; Wu et al.,
2019] to capture temporal patterns and GNNs for spatial cor-
relations [Tian and Pan, 2015; Kumar and Vanajakshi, 2015;
Zhao et al., 2017; Yu et al., 2018; Jin et al., 2022; Zheng
et al., 2023; Ma et al., 2024; Su et al., 2024b]. Spatial and
temporal layers can be arranged sequentially or in parallel,
and fused via methods such as gated fusion [Arevalo et al.,
2017]. Some GNN-based models [Zhao et al., 2023] connect
graph snapshots over time to reduce the negative impact of
the ripple effect, which still overlooks time-varying relation-
ships. Self-attention based traffic forecasting models handle
this issue easily [Liu et al., 2023; Li et al., 2024].

Moreover, some studies disentangle traffic series into pe-
riodic components [Chen et al., 2021; Deng et al., 2021;
Fang et al., 2023; Qin et al., 2024; Sun et al., 2024;
Yi et al., 2024], different levels [Chang et al., 2024], or
invariant and environment signals [Xia et al., 2023; Zhou
et al., 2023]. Others adopt memory augmentation to en-
hance sensitivity to aperiodic signals [Wang et al., 2022;
Jiang et al., 2023b]. Our proposed DualCast employs a dual-
branch structure with three loss functions and cross-time at-
tention to flexibly capture diverse, aperiodic patterns and en-
vironment contexts without relying on predefined patterns. A
full discussion is provided in Appendix A of our online tech-
nical report [Su et al., 2024a].

3 Preliminaries
Traffic forecasting. We model a network of traffic sensors
as a graph G = (V,E,A), where V denotes a set of N
nodes (each representing a sensor) and E denotes a set of
edges representing the spatial connectivity between the sen-
sors based on the underlying road network. A ∈ RN×N is an
adjacency matrix derived from the graph. If vi, vj ∈ V and
(vi, vj) ∈ E, then Ai,j = 1; otherwise, Ai,j = 0.

For each sensor (i.e., a node hereafter, for consistency)
vi ∈ V , we use xi,t ∈ RC to represent the traffic obser-
vation of vi at time step t, where C is the number of types
of observations, e.g., traffic flow and traffic speed. Further,
Xt = [x1,t, x2,t . . . , xN,t] ∈ RN×C denotes the observations
of all nodes in G at time step t, while X̂t ∈ RN×C denotes
the forecasts of the nodes in G at time step t. We use Xti:tj
to denote the consecutive observations from ti to tj .

Problem statement. Given a sensor graph G = (V,E,A),
a traffic forecasting model generally adopts an encoder-
decoder structure to learn from the traffic observations of the
previous T steps and generate forecasts for the following T ′

steps X̂t+1 : t+T ′ = gω(fθ(Xt−T+1 : t)), where fθ and gω de-
note the encoder and the decoder, respectively, and θ ∈ Θ
and ω ∈ Ω denote the learnable parameters. We aim to find
fθ and gω to minimise the errors between the ground-truth
observations and the forecasts:

argmin
θ∈Θ, ω∈Ω

E
t∈T

∣∣∣∣ gω(fθ(Xt−T+1 : t)
)
−Xt+1 : t+T ′

∣∣∣∣
p
, (1)

where T denotes the time range of traffic observations of the
dataset, and p is commonly set as 1 or 2.
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Figure 2: The DualCast framework. DualCast maps the input traffic observations Xt−T+1:t (X, for simplicity) into a D-dimensional space
and uses a node filter to disentangle them into intrinsic signals (Xi) and environment signals (Xe). Each signal is fed into a separate
branch (intrinsic or environment branch) formed by an encoder (STLayers with CT attention), a decoder, and a function generating traffic
representation Zi (Ze) and graph representation gi (ge). Three loss functions are designed to optimise DualCast: (1) Filter loss computes
KL divergence between gi and ge to guide each branch to capture distinct signals from the input. (2) The environment loss computes KL
divergence between ge and permute(ge) to encourage DualCast to learn different environment contexts for different times, and (3) The DBI
loss promotes learning distinctive representations for different periodic traffic patterns. DualCast finally fuses Zi, Ze, and Ψ to produce Z′,
which is then mapped into the output space and compared with the ground truth to compute the prediction loss.

We propose a model optimisation framework named Dual-
Cast compatible with recent self-attention-based (STF here-
after) models [Xu et al., 2020; Zheng et al., 2020; Jiang et
al., 2023a]. Due to space limit, we detail these models in our
technical report [Su et al., 2024a] (Appendix B).

4 The DualCast Framework
Fig. 2 shows our proposed DualCast with a dual branch struc-
ture (Section 4.1), which disentangles traffic observations
into two types of underlying signals, namely intrinsic (pe-
riodic) signals and environmental (aperiodic) signals for ac-
curate traffic forecasting. We introduce three loss functions:
filter loss, environment loss, and DBI loss, to guide the model
to generate distinct representations for these signals.

As self-attention-based traffic forecasting models have
competitive performance, we use them as baseline models.
We design rooted sub-tree cross-time attention (CT attention)
module (Section 4.2) which can efficiently capture dynamic
and high-order spatial-temporal correlations between sensors
on both branches to enhance their performance.

4.1 Dual-branch Structure and Optimisation
Dual-branch structure. The dual-branch structure disen-
tangles the traffic observations into intrinsic and environ-
ment signals. The intrinsic branch (IBranch) and environment
branch (EBranch) share an identical structure with separate
parameters. The intrinsic signals reflect intrinsic (periodic)
traffic patterns, while the environment signals reflect external
environment (aperiodic) contexts, such as traffic incidents.
The two signals together determine the traffic forecasts.

Given a batch of input observations X ∈ RB×T×N×C , we
compute disentangling coefficients µi, µe for intrinsic and en-
vironment signals as µi, µe = softmax(Linear(X)), where
Linear denotes a linear layer with an output size of 2; Both
µi and µe have shape RB×T×N . Then, we produce the in-
trinsic signals Xi = µi ⊙ X and the environment signals

Xe = µe ⊙X, where ⊙ is element-wise product, and µi, µe

are expanded along the last dimension. These signals are fed
into IBranch and EBranch to generate representations Zi and
Ze, respectively. The process is detailed for IBranch, with
EBranch operating similarly.

In IBranch, Xi is fed into the spatial-temporal encoder f i
θ

to produce a hidden representation Hi, which is passed to
the decoder giω to produce the output representation of the
branch, Zi ∈ RB×T×N×D. We concatenate the outputs of
both branches to obtain Z = Concat(Zi,Ze) and generate
the forecasts X̂ from Z through another linear layer goutω .
Model training. We train DualCast using three loss func-
tions: (1) filter loss to separate branch feature spaces, (2) en-
vironment loss to learn the impact of environment contexts,
and (3) DBI loss to learn different periodic patterns.
Filter loss. Denoted as Lflt, is based on KL divergence. It
encourages each branch to capture distinct signals. We ag-
gregate the output Zi from IBranch along the time dimension
by a linear layer and then along node with mean pooling to
produce an overall representation gi ∈ RB×D of each input
sample. This process is denoted as riδ , where δ refers to lin-
ear layer parameters. Similarly, we obtain ge through reδ from
EBranch. We use softmax(·) to map ge and gi into distribu-
tion and compute the filter loss as follows:

Lflt = KL
(
gi,ge)−1

. (2)

Environment loss. Denoted as Lenv , guides the EBranch
to learn external environment signals (aperiodic events). Our
intuition is that the environment context of different samples
from different time periods should be random and hence dif-
ferent (otherwise this becomes a periodic signal). To cap-
ture such varying environment contexts, the environment loss
guides different samples to generate different environment
representations. We randomly permute ge along the batch
dimension to obtain ge′ = π(ge). We then obtain B sam-
ple pairs (ge

i ,g
e′

i ), i ∈ [1, B]. We use softmax(·) to map ge
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Figure 3: Periodic patterns for the intrinsic branch.

and ge′ . We aim to separate the representations of the sam-
ple pairs to guide DualCast to generate diverse environment
representations for different times. Thus:

Lenv = KL
(
π(ge),ge)−1

. (3)

DBI loss. Denoted as Ldbi and inspired by the
Davies–Bouldin index (DBI) [Davies and Bouldin, 1979],
guides IBranch to learn representative intrinsic patterns.
Traffic observations exhibit different periodic patterns based
on time (e.g., workdays vs. weekends, and peak hours vs.
off hours). We define 17 time-based patterns (Fig. 3): 15
for workdays (morning peak, off-hour, and evening peak
for each weekday), one for Saturdays, and one for Sundays,
due to the reduced variation on weekends [Jin et al., 2023;
Dey et al., 2023]. Public holidays are treated as Sundays.
The output Zi of IBranch contains B samples. We classify
each sample based on its start time into one of the 17
patterns. This gives a set of sample representations for each
pattern. Let P denote the set of 17 patterns, and p ∈ P refer
to one such set. We define a matrix Ψ ∈ R|P |×T×N×D as
the prototype for 17 patterns and optimise Ψ during training.
The intuition of Ψ is that each of 17 patterns may consist of
T distinct sub-patterns for each node, with each sub-pattern
represented as a D-dimensional vector. The DBI loss guides
DualCast to learn more separated representations for the
training samples with different periodic patterns, and closer
representations for those with the same periodic patterns.
We first compute two metrics S and P that evaluate the
compactness of a pattern and the separation among patterns,
respectively.

Sp(Z
i,Ψp) =

1

|p|
∑
Zi

j∈p

||Ψp − Zi
j ||2. (4)

Here, p is an element (also a set) of set P , j is the j-th sample
in Zi, and Ψp denotes the slicing of Ψ along the dimension of
number of patterns that corresponds to p. Next, we compute
Pp,q to evaluate the separation between sets p, q ∈ P , Pp,q =
||Ψp −Ψq||2. Another metric Rp,q balances the compactness
of the two sets and the separation between them:

Rp,q(Z
i,Ψ) = (Sp + Sq)P−1

p,q . (5)

Based on Rp,q(Z
i,Ψ), we obtain a quality (in terms of

compactness and separation) score of set p, denoted by Dp:

Dp(Z
i,Ψ) = maxp̸=qRp,q. (6)

Finally, we can compute the DBI loss:

Ldbi =
1

|P |
∑
p∈P

Dp(Z
i,Ψ) =

1

|P |
∑
p∈P

Dp(g
i
ω(f

i
θ(X

i)),Ψ). (7)

Based on the DBI loss, we can optimise prototype repre-
sentations for each periodic pattern. We enhance the repre-
sentation Z = Concat(Zi,Ze) by aggregating Ψ as follows:

Z′ = Z+WΨ. (8)

Here, W ∈ RB×|P | is a matrix where each row contains a
one-hot vector indicating the pattern set to which each sample
belongs, i.e., wj,p = 1 if Zi

j ∈ p, otherwise wj,p = 0. Based
on Eq. 8, we rewrite the prediction loss as follows:

Lpred = E(||goutω (Z′)−Y||p) (9)

Final loss. Our final loss combines the three loss terms
above with the prediction loss (Eq. 9), weighted by hyper-
parameters α, β, and γ:

L = Lpred + αLflt + βLenv + γLdbi. (10)

We include model time complexity in Appendix B.2 [Su et
al., 2024a].

4.2 Rooted Sub-tree Cross-time Attention
The rooted sub-tree cross-time attention module consists of
global and local attention mechanisms, which jointly cap-
ture high-order and dynamic spatial-temporal dependencies
by learning correlations across time. This module is applied
only within the spatial layers. For brevity, we omit the su-
perscript ‘sp’ in the notation. At each spatial layer, the input
Hl−1

t (with H0
t = Xt) is first projected into three subspaces

to obtain the query Ql, key Kl, and value Vl. These repre-
sentations are then used to compute the output Hl. For sim-
plicity, we omit the superscript ‘l’ in the following notation.

Computing cross-time attention adds nodes from other
time steps to the graph Gt has O(T 2N2) time complexity
when using scaled dot products as in prior models (detailed
in Appendix B [Su et al., 2024a]). To reduce time complexity
in cross-time attention, we first use a feature mapping func-
tion [Huang et al., 2023]:

ht,n =
ϕ(Qt,n)

∑N
m=1(Mn,mϕ(Kt,m))TVt,m

ϕ(Qt,n)
∑N

m=1 Mn,mϕ(Kt,m)T
, (11)

where ϕ denotes a ReLU activation function; n and m
are nodes in the graph; and M represents the connec-
tion (edge) between them. The two summations terms∑N

m=1 Mn,mϕ(Kt,m)T and
∑N

m=1(Mn,mϕ(Kt,m))TVt,m

are shared by all nodes, which are computed once. Thus, we
reduce the time complexity.
Global attention. We apply Eq. 11 to compute the self-
attention among all nodes at time t, obtaining N vectors ht,n

(n ∈ [1, N ]), which form a global attention matrix Hglo
t . As

Fig. 4(c) shows, the global attention computes attention co-
efficients between all nodes (i.e., M in Eq. 11 is a matrix of
1’s). We then update the representations of nodes by aggre-
gating those from all other nodes, weighted by the attention
coefficients. The time complexity of this process is O(TN).
Local attention. The local attention captures high-level
correlations between nodes within a local area across differ-
ent times. We achieve this goal by constructing an elabo-
rate graph, where nodes from different times are connected.
To learn high-level correlations, we reuse the feature map-
ping function-enhanced self-attention (Eq. 11), instead of the
stacked spatial-temporal GNN layers, for better efficiency
and effectiveness.

We use two types of edges to help learn cross-time correla-
tions between nodes. For a series of graph snapshots between
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Figure 4: Rooted sub-tree cross-time attention. For simplicity, we
set t′ − t′′ = 1. (a) Cross-time attention. Node #1 at time step t
serves as the root of the subtree in (b). The red dashed line denotes
an edge between observations of Node #1 at different times. The
green dotted line denotes an edge between Node #1 and its one-hop
neighbour at different times. The black lines denote edges between
nodes and their one-hop neighbours observed at a time. (b) The
subtree structure is used in local attention. (c) The global attention.

times t′ and t′′, we construct (1) edges between the same
node across different times (red dashed line in Fig. 4(a)), and
(2) edges between a node and its one-hop neighbours from
other times (green dotted line in Fig. 4(a)). This process
yields a large cross-time graph with N |t′′ − t′ + 1| nodes
and edges from the original sensor graph at every time step,
and the newly created edges. We use the adjacency matrix of
the cross-time graph as M in Eq. 11, as visualised in Fig. 8
(Appendix B.3 [Su et al., 2024a]), where Ak is derived from
A1 and k indicates k-hop neighbours.

A simple way to learn high-order relationships from graphs
is to apply self-attention Eq. 11, but it ignores the local hierar-
chical information. For example, the red dashed line and the
green dotted line have different traffic propagation patterns
and propagation time costs in Fig. 4(a) as a red dashed line
only concerns the same node across different times, while a
green dotted line concerns nodes at different space and times,
which should not be ignored.

To fill this gap, we use a sub-tree structure that decouples
the attention into multiple levels, as shown in Fig. 4(b). This
structure enables fine-grained control over the contributions
from different hops within the graph. In the sub-tree construc-
tion process, red dashed lines represent the formation of 1-
hop neighbours, while green dotted lines denote 2-hop neigh-
bours. At each level k (k ∈ [1,K], where K denotes the num-
ber of levels), we compute the attention weights among the
neighbours of a node n. These neighbours’ representations
are aggregated to obtain the localised representation hk,loc

t,n ,
as formalised in Eq. 12. After computing hk,loc

t,n for all nodes,
the resulting vectors are assembled into the matrix Hk,loc

t .
Subsequently, we aggregate representations from all levels
to form the final local attention Hloc

t =
∑K

k=0 wkH
k,loc
t .

Here, wk is a learnable parameter to control the contribution
of each hop. This computation process can be seen as a k-
hop message-passing process. Based on the k-hop message-
passing process, the mask Mk in each step equals to A1, de-
noted as A. Fig. 8(b) shows this matrix, where IN denotes an
identity matrix of size N . Since the message-passing process
runs for each edge and among all nodes, we obtain Hloc

t with
time complexity O(|E′|). Here, E′ represents the number of

edges after we build the edges across graphs from different
time steps (i.e., number of 1’s in A).

h0,loc
t,n = Vt,n,

hk,loc
t,n =

ϕ(Qt,n)
∑N

m=1(M
k
n,mϕ(Kt,m))TVt,m

ϕ(Qt,n)
∑N

m=1 M
k
n,mϕ(Kt,m)T

. (12)

After obtaining Hloc
t and Hglo

t , we fuse them as follows:

Ht = Hloc
t + wgloH

glo
t , (13)

where wglo is a learnable parameter. Then, we concatenate
Ht from each time step t to obtain the output of the spatial
self-attention layer H = ||Tt=0Ht.

We also use a temporal self-attention module to capture the
temporal features from the full input time window. We merge
Hsp with Hte to obtain the final output of each layer.
Discussion. The high-order and dynamic spatial-temporal
relationships play an important role in traffic forecasting. Pre-
vious graph-based methods [Li and Zhu, 2021; Song et al.,
2020] stack GNNs to capture such correlations, with sub-
optimal effectiveness, while the vanilla self-attention mod-
els suffer in their quadratic time complexity. Our work ad-
dresses these issues and presents a versatile self-attention-
based method to exploit the high-order and dynamic spatial-
temporal relationships effectively and efficiently.

5 Experiments
5.1 Experimental Setup
Datasets. We use two freeway traffic datasets and an urban
traffic dataset: PEMS03 and PEMS08 [PeMS, 2001] contain
traffic flow data collected by 358 and 170 sensors on freeways
in California; Melbourne [Su et al., 2024b] contains traffic
flow data collected by 182 sensors in the City of Melbourne,
Australia. The traffic records in PEMS03 and PEMS08 are
given at 5-minute intervals (288 intervals per day), while
those in Melbourne are given at 15-minute intervals (96 in-
tervals per day). Melbourne has a higher standard deviation
and is more challenging. See Table 3 (Appendix C.1 [Su et
al., 2024a]) for the dataset statistics.

Following Li et al., we use records from the past hour to
forecast for the next hour, i.e., T = T ′ = 1 hour in Eq. 1 over
all datasets. We split each dataset into training, validation,
and testing sets by 7:1:2 along the time axis.
Competitors. DualCast works with spatial-temporal mod-
els that follow the described self-attention-based struc-
ture. We implement DualCast with three such models:
GMAN [Zheng et al., 2020], STTN [Xu et al., 2020], and
PDFormer [Jiang et al., 2023a], denoted as DualCast-G,
DualCast-S, and DualCast-P, respectively. We compare
with the vanilla GMAN, STTN, and PDFormer models, plus
GNN-based models GWNet [Wu et al., 2019], MTGNN [Wu
et al., 2020], and STPGNN [Kong et al., 2024]. We further
compare DualCast with MegaCRN [Jiang et al., 2023b] and
EAST-Net [Wang et al., 2022], which focus on modelling
non-stationarity in spatial-temporal series. We also compare
with STWave [Fang et al., 2023] and STNorm [Deng et al.,
2021], which consider disentanglement in forecasting.
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Model PEMS03 PEMS08 Melbourne
RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓

GWNet 26.420±0.839 15.404±0.052 25.796±0.318 16.314±0.230 25.778±0.136 13.410±0.065
MTGNN 25.413±0.201 14.707±0.070 23.794±0.073 14.898±0.066 25.364±0.291 13.310±0.137
STPGNN 25.889±0.718 14.868±0.141 23.374±0.088 14.202±0.085 25.170±0.083 13.075±0.071
MegaCRN 25.645±0.119 14.733±0.031 24.052±0.333 15.118±0.034 24.482±0.143 12.647±0.033
EASTNet 26.920±1.732 16.356±1.511 27.166±2.088 17.574±1.910 28.494±1.143 15.310±0.746
STNorm 27.328±0.437 16.382±0.191 26.026±0.119 17.090±0.113 25.744±0.277 13.724±0.134
STWave 26.346±0.174 14.975±0.086 23.270±0.108 13.480±0.089 26.918±0.455 14.060±0.341
STTN 27.166±0.408 15.490±0.115 24.984±0.248 15.924±0.200 26.402±0.247 13.790±0.117
GMAN 26.624±0.503 15.520±0.111 23.750±0.194 14.080±0.036 24.496±0.351 12.652±0.136
PDFormer 25.950±0.421 14.690±0.080 23.250±0.099 13.654±0.337 27.072±0.301 14.230±0.069
DualCast-S (ours) 26.282±0.128 (+3.3%) 15.370 ±0.086 (+0.8%) 24.526±0.116 (+1.8%) 15.550±0.119 (+2.3%) 25.474 ±0.184 (+3.5%) 13.316±0.061 (+3.4%)
DualCast-G (ours) 25.582±0.414(+3.9%) 15.094±0.099 (+2.7%) 23.564±0.133 (+0.8%) 13.938±0.114 (+1.0%) 23.978±0.105 (+2.1%) 12.420±0.057 (+1.8%)
DualCast-P (ours) 24.898±0.663 (+4.1%) 14.666±0.087 (+0.2%) 22.998±0.161 (+1.1%) 13.332±0.059 (+2.4%) 26.040±0.150 (+3.8%) 13.542±0.003 (+4.8%)
Error reduction 2.0% 0.2% 1.1% 1.1% 2.1% 1.8%

Table 1: Overall model performance. “↓” indicates lower values are better. The best baseline results are underlined, and the best DualCast
results are in boldface. “Error reduction” denotes the percentage decrease in errors of the best DualCast-based model compared to the best
baseline. The numbers in blue show error reduction achieved by a DualCast-based model over vanilla models, e.g., DualCast-P vs. PDFormer.

Implementation details. We use the released code of the
competitors, except for STTN which is implemented from
Libcity [Wang et al., 2021]. We implement DualCast with
the self-attention-based models following their source code,
using PyTorch. We use the default settings from the source
code for both the baseline models and their variants powered
by DualCast. We train the models using Adam with a learning
rate starting at 0.001, each in 100 epochs. For the models us-
ing DualCast, we use grid search on the validation sets to tune
the hyper-parameters α, β, and γ. Table 4 (Appendix C.1 [Su
et al., 2024a]) lists these hyper-parameter values. All exper-
iments are run on an NVIDIA Tesla A100 GPU with 80 GB
RAM. Following Xia et al., we use the average of root mean
squared errors (RMSE) and mean absolute errors (MAE) for
evaluation. Results are averaged over five runs.

5.2 Overall Results
Model performance across all times. Table 1 reports fore-
casting errors averaged over one hour. Powered by Du-
alCast, DualCast-G, DualCast-P, and DualCast-S consis-
tently outperform their vanilla counterparts. DualCast-P has
the best performance on freeway traffic datasets PEMS03
and PEMS08, while DualCast-G performs the best on the
urban traffic dataset Melbourne. Compared to PEMS03
and PEMS08, Melbourne represents an urban environment
with greater variability in the traffic flow series (Table 3).
GMAN’s simple, robust design explains its strong perfor-
mance in Melbourne, while PDFormer’s reliance on time se-
ries clustering excels on PEMS03 and PEMS08 but struggles
with Melbourne’s variability, hindering cluster formation and
accuracy. Fig. 5a further shows the RMSE for forecasting
15, 30, and 60 minutes forecasts, comparing DualCast-G,
DualCast-P, and DualCast-S, their vanilla counterparts and
top baselines MegaCRN and STPGNN. We see that the Du-
alCast models outperform the baseline models consistently at
different forecasting horizons, confirming their effectiveness.
We also conducted t-tests and Wilcoxon tests over our model
and the best baseline models across all datasets. We find that
all results are statistically significant (with p ≪ 10−8).
Model performance during hours prone to traffic acci-
dents. To verify DualCast’s ability to learn complex en-
vironment contexts, we examine forecasting results during

complex times (4:00 pm to 8:00 pm on workdays), which has
reported a higher chance of traffic accidents [Karacasu et al.,
2011; Ruikar, 2013]. Table 2 shows the results, where “all”
means the RMSE at the 1-hour horizon for all days and “cpx”
means that at complex times.

All models, including ours, have larger errors at complex
times in most cases (except for STWave, GMAN, DualCast-
G, and DualCast-P on Melbourne), confirming it as a chal-
lenging period. Importantly, the errors of the DualCast-based
models increase less at complex times compared to their
vanilla counterparts. For example, the error gaps between
DualCast-G and GMAN, and DualCast-P and PDFormer on
PEMS08 double from 1.6% to 3.0% and 0.7% to 1.4%, re-
spectively. Meanwhile, DualCast-P reduces the errors by up
to 9.6% in Melbourne. These results confirm that disentan-
gling intrinsic and environmental contexts improves forecast
accuracy. Exceptions on Melbourne may arise due to its high
data complexity, variance and skewness, making even a less
complex time challenging.

5.3 Ablation Study
We implement six model variants: w/o-ct disables the CT at-
tention from DualCast; w/o-f, w/o-dbi, and w/o-env remove
the filter loss, the DBI loss, and the environment loss, respec-
tively; w/o-glo and w/o-loc remove the global attention and
local attention (including the CT attention), respectively.

As Fig. 5b shows, all DualCast modules enhance model
performance. The DBI loss is more important on PEMS03, as
PEMS03’s freeway data exhibits clearer patterns across times
and days, which DualCast can effectively learn with DBI loss
guidance. More results are in Appendix C [Su et al., 2024a].

5.4 Parameter and Case study
Parameter study. We study the impact of α, β, and γ in
our loss function (Eq. 10). Results confirm that DualCast is
robust without the need for heavy tuning. More details are in
Appendix C [Su et al., 2024a].
Case study. We conduct two case studies below.

Responding to traffic accidents. Cross-referencing Mel-
bourne car crash reports [Victoria Road Crash Data, 2023]
with the dataset revealed one accident during the data pe-
riod. Fig. 5(c) compares 15-minute-ahead forecasts from
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PEMS03 PEMS08 MelbourneModel all cpx all cpx all cpx

GWNet 30.152 37.276 29.162 31.986 27.766 29.186
MTGNN 27.984 34.842 26.253 28.616 27.264 27.994
STPGNN 29.405 35.346 26.095 27.320 27.018 27.510
MegaCRN 28.472 35.692 27.110 27.442 26.360 26.654
EASTNet 30.434 37.786 31.066 32.674 31.240 33.220
ST-Norm 30.895 38.956 29.366 31.948 27.752 29.304
STWave 29.210 37.312 25.600 27.130 29.562 29.324
STTN 30.386 40.990 28.182 31.400 29.108 30.554
GMAN 28.760 36.078 25.632 26.886 26.066 25.045
PDFormer 28.542 35.416 25.468 27.022 30.048 30.060
DualCast-S (ours) 29.494 (+2.9%) 39.138 (+4.5%) 27.522 (+2.3%) 30.454 (+3.0%) 27.256 (+6.4%) 28.946 (+5.3%)
DualCast-G (ours) 27.766 (+3.5%) 34.450 (+4.5%) 25.464 (+0.7%) 26.506 (+1.4%) 25.468 (+2.3%) 24.398 (+2.6%)
DualCast-P (ours) 27.542 (+3.5%) 33.950 (+4.7%) 25.048 (+1.6%) 26.224 (+3.0%) 28.134 (+6.4%) 27.168 (+9.6%)
Error reduction 1.6% 2.6% 1.7% 2.5% 2.3% 2.6%

Table 2: Model performance (RMSE at the 1-hour horizon) for “all” times (any time of day) and “cpx” times (4:00 pm to 8:00 pm with
complex contexts). Best baseline results are underlined, and DualCast’s best results are in boldface. blue numbers show error reduction by
DualCast-based models compared to their vanilla counterparts.
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Figure 5: Results on PEMS03 (PEMS08 and Melbourne results in Appendix C.2 to C.4 of our technical report). (a) shows forecasting error
vs. time horizon, with dashed lines for baseline models and solid lines for DualCast-based models. The green, red, and orange lines represent
DualCast-S, DualCast-G and DualCast-P, respectively, with their counterparts. (b) lists Ablation study results on PEMS03. (c) presents a
case study for a car crash at sensor #138 in Melbourne with the occurrence time marked in red.

Figure 6: A case study of responding to sudden changes (highlighted
in rectangles) in traffic at sensor #97 on PEMS03 on Nov. 21.

DualCast-G (best on this dataset), its vanilla counterpart
GMAN, and the top-2 baselines (STPGNN, MegaCRN) at
the sensor nearest the accident. Around 8:00, DualCast-G
quickly captures the traffic change caused by the crash, pro-
ducing forecasts closest to the ground truth.

Responding to sudden changes in traffic. On the PEMS
datasets, ground-truth traffic events are unavailable. In-
stead, we found two representative sensors (#72, see Ap-
pendix C.4 [Su et al., 2024a] and #97) on PEMS03 with
sudden changes on November 21st, 2018. Fig. 6 shows

the ground-truth traffic flow and 1-hour-ahead forecasts by
MegaCRN, STPGNN, PDFormer, and DualCast-P at Sensor
#97. DualCast-P closely aligns with the ground truth, espe-
cially during sudden changes, again highlighting the strength
of DualCast. More results are in Appendix C [Su et al.,
2024a], including PEMS08 and Melbourne results, an analy-
sis of model scalability, effectiveness and potential for GNN-
based models, and visualisations for disentangling results.

6 Conclusion
We proposed a framework named DualCast that enhances the
robustness of self-attention-based traffic forecasting models,
including the SOTA, in handling scenarios with complex en-
vironment contexts. DualCast takes a dual-branch structure to
disentangle the impact of complex environment contexts, as
guided by three loss functions. We further proposed a cross-
time attention module to capture high-order spatial-temporal
relationships. We performed experiments on real-world free-
way and urban traffic datasets, where models powered by Du-
alCast outperform their original versions by up to 9.6%. The
best DualCast-based model outperforms the SOTA model by
up to 2.6%, in terms of forecasting errors.
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