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Abstract

Streaming Recommendation (SRec) aims to cap-
ture evolving user preferences in the streaming sce-
narios. Recently, Graph Prompt Learning (GPL)
methods have demonstrated their effectiveness and
adaptability within SRec. However, existing graph
prompt solutions rarely consider the evolution of
multi-hop cascading relationships between users
and items, which are crucial for modeling the shifts
in user preferences. To address this problem, we
propose a novel Graph Multi-Level Aware Prompt
Learning for Streaming Recommendation, named
GPLA4SRec. Specifically, a graph encoder is first
pre-trained on extensive historical data to capture
user long-term preferences. Then, we design three
types of prompts, namely node-aware, structure-
aware, and layer-aware prompts, which are used
to guide the pre-trained encoder to better capture
user short-term preferences. This is accomplished
by accounting for both the incremental changes in
users and items, as well as the cascading evolution
in multi-hop relationships. Furthermore, we pro-
vide a theoretical analysis showing that our prompt
templates are critical to achieving superior perfor-
mance. Finally, experimental results also prove that
our model significantly outperforms the state-of-
the-art approaches in SRec.

1 Introduction

Recommender systems (RS) have become a fundamental
component of online platforms like Amazon, Netflix, and
YouTube, driving personalized user experiences and con-
tent discovery. However, traditional recommendation mod-
els, which are trained on offline static datasets, often suffer
from performance degradation when deployed in streaming
scenarios [He et al., 2020]. To overcome this limitation, the
concept of streaming recommendation has been introduced,
focusing on the dynamic updating and deployment of recom-
mendation models in response to continuous data streams [He
et al., 2023; Zhang et al., 2024; Yang et al., 2024].

Recently, Graph Neural Networks (GNNs) have stood out
as a groundbreaking approach in traditional static recommen-

* Corresponding author.

dation scenarios [He er al., 2020; Guo et al., 2023], relying
on their strong capability to capture complex collaborative
patterns between users and items. Nevertheless, due to the
necessity for continuous model updates in streaming scenar-
ios, these conventional GNN-based recommendation models
can not be directly applied to handle streaming data. There-
fore, some recent studies have concentrated on two primary
areas: dynamic graphs and graph fine-tuning. First, dynamic
graph methods, such as EvolveGCN [Pareja et al., 2020] and
ROLAND [You e al., 2022], typically utilize recurrent neu-
ral networks on the graph to capture and track ever-evolving
user preferences. However, these methods struggle to capture
rapidly changing user preferences, exhibiting over-stability
[Ostapenko et al., 2021] in incremental learning where model
overly reliant on historical knowledge and fail to adapt to
sudden and dramatic shifts. Second, graph fine-tuning ap-
proaches, such as DEGC [He er al., 2023] and G-Tuning [Sun
et al., 2024], mainly focus on more efficiently updating the
parameters of pre-trained graph models as new interaction
data arrives, enabling faster and more precise adaptation to
the evolving user preferences from new data.

However, the above graph fine-tuning methods may face
the problem of Catastrophic Forgetting [Chang et al., 2017a]
in streaming environments. Recently, a novel method known
as graph prompt learning has emerged as an effective and
adaptive technique for mitigating the issue of catastrophic
forgetting. These methods, such as GPF [Fang et al., 2023]
and GraphPrompt [Liu er al., 2023], not only aid in pre-
venting catastrophic forgetting by maintaining the integrity
of the model fundamental knowledge but also ensures ef-
fective learning and adaptation to new and diverse data pat-
terns through node prompts and structural prompts. Node
prompts mainly focus on continual evolutions in individ-
ual users and items attributes, while structural prompts pri-
marily emphasize the incremental changes of one-hop user-
item relationships. However, the design of existing graph
prompt templates [Fang er al., 2023; Yang et al., 2024,
Liu et al., 2023; Zhang et al., 2024] focusing solely on the
incremental changes of nodes and edges is suboptimal. In
fact, these changes within the graph are not merely incre-
mental variations in nodes and edges but also cascaded, pro-
foundly influencing the entire graph. This cascading nature
of these changes implies that incremental updates simulta-
neously affect multi-hop cascading relationships within the
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Graph Prompt Learning Node Structure Layer
PF/GPF-plus
GPF/GPF-plus v % %
[Fang et al., 2023]
GraphP: t
r.ap romp! v v y
[Liu et al., 2023]
GPT4Rec v v %
[Zhang et al., 2024]
GraphPro %
[Yang er al., 2024]
GPLA4SRec (ours) v v v

Table 1: A general comparison of our proposed GPL4SRec with
existing graph prompt learning in terms of node, structure and layer.

graph. The neglect of such multi-hop cascading relationships
hinders the full integration of the model historical knowledge
and new data, which is crucial for more accurately capturing
shifts in user preferences. Therefore, as shown in Table 1, de-
signing a prompt template that not only captures incremental
changes in nodes and edges but also accounts for multi-hop
cascading changes across graph layers presents a unique chal-
lenge. To address the problems mentioned above, we propose
GPLA4SRec, a Graph Multi-Level Aware Prompt Learning for
Streaming Recommendation. Specifically, we first pre-train a
graph encoder on a large volume of historical data to effec-
tively capture users long-term preferences. Then, we design
three distinct types of graph prompts: node-aware, structure-
aware, and layer-aware prompts, which serve to guide the
pre-trained encoder in more effectively capturing users short-
term preferences. This is achieved by accounting for the in-
cremental changes in nodes and interactions, as well as the
cascading modifications in multi-hop relationships between
users and items. Our theoretical analysis demonstrates that
the design of these prompt templates plays a pivotal role in
achieving superior performance. Finally, experimental results
also demonstrate that our model significantly outperforms the
state-of-the-art approaches, especially in mitigating the issue
of catastrophic forgetting in SRec. In summary, the main con-
tributions of our work can be concluded as follows:

* We propose a novel graph multi-level aware prompt
learning framework for streaming recommendation that
effectively mitigates the issue of catastrophic forgetting
in streaming scenarios.

* We design three types of graph prompt templates: node-
aware, structure-aware, and layer-aware prompts, which
effectively guide the model to capture both incremental
and cascaded changes within the graph.

* We provide a theoretical analysis showing that our
prompt templates are essential for achieving superior
performance. Moreover, extensive evaluations on three
datasets demonstrate the state-of-the-art performance of
our model in streaming recommendation.

2 Related Work

There are multiple topics related to our GPL4SRec. In this
section, we first review existing researches on streaming rec-

ommendation, followed by a discussion on current dynamic
graph learning and graph prompt learning techniques.

2.1 Streaming Recommendation

Traditional RS, trained on static datasets, struggle to accu-
rately capture the evolving user preferences when applied
to streaming scenarios. Therefore, streaming recommen-
dation [Chang et al., 2017b; Wang et al., 2018] has been
introduced to address this challenge by updating and de-
ploying recommendation model in response to continuous
data streams. Early researches [Chandramouli ef al., 2011;
Lommatzsch and Albayrak, 2015] primarily focused on an-
alyzing the popularity, recency, and trends of items , fol-
lowed by the introduction of matrix decomposition, collab-
orative filtering, and other methods combined with online
clustering technology [Li er al., 2019; Li et al., 2016]. Re-
cently, GNNs have become a research hots pot in the field
of recommendations due to their powerful relationship mod-
eling capabilities [Ying er al., 2018; Chen er al., 2020;
Chen and Wong, 2020]. However, the challenge lies in adapt-
ing GNN:ss, initially trained on static datasets, to effectively
manage the continuous data stream in streaming recommen-
dation scenarios [Wang et al., 2020; Xu et al., 2020b].

2.2 Dynamic Graph Learning

Dynamic graph learning has attracted significant attention
in recent years, with researches primarily categorized into
snapshot-based and event-based methods, depending on their
temporal granularity. Snapshot-based approaches (such as
EvolveGCN, DGCN, and ROLAND [Pareja et al., 2020;
Li et al., 2020; You ef al., 2022]) construct dynamic graphs
from scratch and leverage recurrent neural networks to cap-
ture temporal changes. While effective in modeling smooth
transitions, these methods often struggle with abrupt shifts
in user preferences and are prone to noise in user and item
representations [Ostapenko er al., 2021], thereby limiting
their applicability in streaming environments. In contrast,
event-based methods [Trivedi et al., 2019; Ma et al., 2020;
Xu et al., 2020a] focus on capturing graph evolution at
finer temporal granularity, but challenges remain in balanc-
ing computational efficiency and temporal precision.

2.3 Graph Prompt Learning

Graph prompt learning has emerged as a powerful technique
due to its adaptability and effectiveness in graph tasks. Re-
cently, several significant advancements in this area have been
proposed. GraphPrompt [Liu et al., 2023] introduces a uni-
versal prompt template with a learnable readout function, en-
abling the unification of multiple downstream tasks. GPF
[Fang et al., 2023] proposes a universal prompt-based tun-
ing method for pre-trained GNNs, aligning pre-training and
downstream tasks through feature-space adjustments, without
the need for task-specific prompt designs. GPT4Rec [Zhang
et al., 2024] first introduces graph prompt learning for stream-
ing recommendation through designing special prompt tem-
plates. GraphPro [Yang et al., 2024] incorporates time-aware
and structural prompts for dynamic recommendations, ex-
tending the capabilities of pre-trained models to accommo-
date evolving data. Although these methods have achieved
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acceptable results, the suboptimal design of existing graph
prompt templates remains a critical challenge. Our research
complements the shortcomings of existing prompt templates
and designs three types of prompts taking into account both
the incremental and cascading changes within graph, which
can better guide the seamless integration of historical knowl-
edge and new data for mitigating the problem of catastrophic
forgetting in streaming recommendation.

3 Preliminaries

In this section, we first formalize the task definition for
streaming recommendation. Then we briefly introduce the
definition of graph incremental learning for streaming recom-
mendation used in this paper.
Definition 1. Streaming Recommendation. Real-world RS
must process a continuous stream of user-item interaction
data, denoted as D. This continuous data stream is parti-
tioned into sequential snapshots [D1,...,D;_1,Dy,...,Dr] with
an equal time span. At each time snapshot t, the model needs
to optimize its performance on D; by combining previous
knowledge from historical snapshots [D1,...,D;—1]. The rec-
ommendation performance is subsequently evaluated across
the entire timeline.
Definition 2. Graph Incremental Learning. Given the data
stream defined above, the graph snapshots G are represented
as [G1,...,G¢—1,G4,...,GT] on the data snapshots D, where
Gy = Gi—1 + AG:. Gy = (A4, X}) is an attributed graph
at time t, where A; and X, are the adjacency matrix and node
features of G;. AG; = (AA;, AX}) represents the changes
of graph structures and node information at time t. There-
fore, the goal of graph incremental learning (GIL) is learn
AG¢(Dy) sequentially while transferring previous knowledge
to new graph segments effectively. Mathematically, GIL aims
to learn the optimal graph structure S; and paramters W; at
each segment t, formulated as:

(S;,W3) = argminl; ( S¢, W, AGy) (1)

(8¢, W)

where (S¢, W) € (S,W). The S and W are corresponding
search spaces, respectively. The function L;(S;, Wi, AGy)
denotes the loss for the snapshot t, evaluated on AG}.

4 Methodology

The GPL4SRec framework shown as Figure 1 consists of two
main stages: graph pre-training learning and graph prompt
learning. During graph pre-training, we pre-train a graph
encoder on massive historical interaction data, enabling it
to effectively capture user long-term preferences. During
graph prompt learning stage, we primarily focus on design-
ing node-aware, structure-aware and layer-aware prompts to
capture multi-level changes within the graph, further adapting
user evolving short-term preferences. Finally, theoretically
analyze the critical role of prompt template optimization in
achieving improved performance.

4.1 Graph Pre-training

To better capture the evolving nature of user preferences, we
decompose them into long-term preferences (LTP) and short-
term preferences (STP). LTP generally remains stable over

time, influencing multiple snapshots and is often shaped by
factors such as gender, occupation, family and education. In
contrast, STP exhibits rapid fluctuations and is more relevant
within specific time windows, typically driven by contextual
factors such as user emotions. In our framework, the model
is designed to learn and integrate both LTP and STP within
its parameters, adapting to the dynamic shifts in user prefer-
ences over time. Therefore, to effectively capture and encode
LTP, we pre-train a graph encoder using extensive historical
interaction data, ensuring that LTP is accurately reflected in
the user embeddings. The learning objective is based on con-
trastive learning, optimizing the LTP representation:

_ Eae’Pu s(hu,ha)
Le == & I (s @

where s(-, -) represents a similarity function such as inner
product in our experiment, P, and N, are respectively the
set of positive instances and negative instances for u. Within
our proposed framework, we incorporate the Bayesian Per-
sonalized Ranking (BPR) [Rendle ef al., 2012] algorithm in
conjunction with other graph self-supervised learning strate-
gies [Wu et al., 2021; Huang et al., 2021].

4.2 Graph Prompt Learning

After grasping LTP through graph pre-training representation
learning, we mainly focus on capturing STP via graph prompt
learning. Specifically, we design node-aware, structure-aware
and layer-aware prompt to capture the comprehensive essence
of graph patterns in streaming recommendation.

Node Aware Prompt Template Design

Node-aware prompts focus on the attributes or properties of
individual nodes within the graph, such as user and item char-
acteristics in recommendation models. By emphasizing the
node level, GPL4SRec effectively captures the nuances of
node-specific data, providing a deeper understanding of user
behaviors and item features. This level of analysis is crucial
for tasks that require personalized recommendations or de-
tailed attribute evaluation.

Specifically, the node aware prompts consist of a set
of learnable parameters, denoted as NP = [np1,...,npplE
R"™*f, where n is the number of node prompts and f is
the feature dimension. These node prompts serve as tar-
geted cues, guiding the model in interpreting and integrating
new information related to users or items. We first employ
an attentional mechanism based on softmax function to help
automatically determine how these prompts transform each
node’s representation. We then introduce an additional learn-
able prompt weight \; to further refine the node prompting
mechanism and help prevent the model from overfitting to
noise and irrelevant information in the new data. The \; can
be learned by using a simple multi-layer perceptron (MLP)
based on the node feature as follow:

n exp(nptz;)
Ty =2 + A ™ /
TEEANOD ST (T
Ai = O'(fmlp(xia w)) “4)

where the w represents the learnable parameters which are
shared across all nodes and o denotes the sigmoid function to

npj (3
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Figure 1: Overview of the GPL4SRec based on ”graph pre-training, prompt-tuning” framework. During the prompt-tuning phase, a) Firstly,
we design the node-aware prompts to depict the node-level changes. b) Secondly, we propose the structure-aware prompts for adapting to
changes in one-hop relationships. c) Finally, we present the layer-aware prompts to capture the changes in multi-hop cascading relationships.

enforce \; € [0, 1], denoting the confidence of node z; to be
prompted. Therefore, the prompted node is X = [Z;], which
represents the search space of node. These prompts undergo
an attention mechanism that selectively adjusts the weights of
data most pertinent to the current node.

Structure Aware Prompt Template Design

In addition to node aware prompts, structure aware prompts
are devised to interact with the more extensive connectivity
and relationship patterns within the graph. These prompts
play a vital role in comprehending and adjusting to alterations
in the overall graph topology, like the appearance of novel
interaction patterns or the development of existing ones.

The structure aware prompt is designed as follows: a set of
learnable parameters, denoted as SP = [spy, ..., sps]€ R**/
for the nodes that adaptively aggregate the structure infor-
mation via prompting adjacency matrix A = [a;;]. To be
specific, given a node x;, the node &; prompted by structure
aware prompts can be computed:

T, =x; + ZjGN(r,;) ;5% 5

_ s exp(sp] eq;)
Qi agj + U(ijl Zi:l exp(sp;eij
where e;; = fuup(zil|a;||ti;) denotes the feature of edge
(¢, j) which is obtained by a MLP based on node z;, z; and
interaction time ¢;;. The prompted structure A = [a;;] repre-
sents the search space of structure. Therefore, these prompts
can guide models to capture dynamic structural changes for
adapting to the evolving nature of the data.

)Spj) O] (%%] (6)

Layer Aware Prompt Template Design

The importance of node and structural information on the
graph is widely recognized. Nevertheless, current research
has also revealed that the relationships among layers are ex-
tremely critical, as different layers focus on distinct infor-
mation. For example, in recommendation models, different

layers respectively pay attention to the relationships between
user-user, user-item and item-item. Therefore, designing a
layer-aware prompt that can better capture the cascading re-
lationships among layers poses a great challenge.

To address this challenge, we design the layer aware
prompts as follows: a set of learnable parameters, denoted as
LP =[lpy, ..., Ip;]€ R for the nodes via prompting each
graph layer embedding z¥. Given a node ;, the node 7;
prompted by layer aware prompts can be computed:

K
T=di+), Bl ™
l
BF = ijl afilp; (8)
exp (IpT &k
b = p (Ip; &) ©

Y exp (p]Eh)
where K denotes the total layers of GNNs and x¥ repre-
sents the k" layer representation of z;. L = [B¥] repre-
sents the search space of layers. These prompts will motivate
the model to learn the multi-hop relationship between the dif-
ferent layers of node z; and better extract the relevant node
information in the deeper layers of the GNN .

4.3 Theoretical Analysis

In this section, we conduct theoretical analysis to guarantee
the correctness of the proposed graph prompt learning algo-
rithm within the context of streaming recommendation.

THEOREM 1: GPL4SRec’s performance is determined by
our design of prompt templates, and it satisfies at least the
ability of fine-tuning globally using full data.

PROQOF: Given a pre-trained graph encoder f and a stream-
ing task including graph and dataset over time D =
{(G17 }/1)) 3 (Gt7 }/;f)? (Gt+17 Y2+1)7 A (GT7 YT)}’ we up-
date the pre-trained model f;;; to maximize the likelihood
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of predicting the correct labels Y;; at the time ¢ + 1:
argr;lafot+l(Kg+1|Gt+1) (10)
t41

where we use f; to initialize model parameters f;1. The
optimization has the upper bound as [Zhang et al., 2023]:

arg r;lax Py (Yi41|AG)) + arg mfax P, (Y|Gy) (11)
t+1 t

where AG, denotes the graph gap and the optimization pro-
cess after using our prompt template is:

argmax P, (Vi1lgo(AG) +argmax Py, (YilGy) (12
t

where g4(AG,) is the our proposed graph prompt templates
including node, structure and layer levels. Hence, the final
object function for the prompt is:

argmax Py, (Yiy1|prompt(AAy, AXy, ALy))+
AcA, XeX,Lel

arg max Py, (Y1|Gy) (13)

where (A, X,LL) is the candidate search spaces of prompted
(A, X,L) = prompt(AAy, AXy, ALy). (AA;, AXy, ALy)
is the incremental and cascading changes in ;. Equation
13 shows that fixing f; and then prompting the graph gap
AG} is equivalent to directly optimizing Equation 11, which
is the upper bound of Equation 10. Therefore, Equation 13
can show that our proposed graph prompt learning method
satisfies at least Equation 10 fining-tuning with full data and
its performance is determined by our prompt templates. [

S Experiments

In this section, we conduct experiments with the aim of an-
swering the following questions: Q1: How do our proposed
GPL4SRec perform compared with other baselines? Q2:
What is the influence of key components of GPL4SRec?
Q3: How is the robustness of GPL4SRec? Q4: Whether
is GPL4SRec sensitive to the hyper-parameters? Q5: How
efficient is the training of GPL4SRec in streaming scenarios?

5.1 Experimental Settings

Datasets. We use three public datasets that cover diverse real-
world scenarios in streaming recommendation. The Taobao
dataset records the implicit feedback from taobao.com, which
is a Chinese e-commerce platform, during a period of 10
days. The Koubei dataset, which is provided for the [ICAI’ 16
contest, documents 9 weeks’ worth of user interactions with
local stores on Koubei within Alipay. The Amazon dataset
is composed of a collection of product reviews from Ama-
zon that spans 13 weeks. Detailed information about these
datasets can be found in Table 2.

Evaluation Protocols. In our evaluation, we simulate real-
world dynamics using graph snapshots taken at different in-
tervals (weekly/daily). We use a two-step sliding window to
learn from current data and predict future changes. Following
the Pre-train and Fine-tune paradigm, we pre-train on most of
the dataset, fine-tune, and evaluate on later snapshots (see Ta-
ble 2). For consistency, the same method is applied to all
baselines. Dynamic GNNss start fine-tuning with pre-training

Statistics Amazon Koubei Taobao
# No. of users 131K 119K 117K
# No. of items 107K 101K 86K
# No. of interactions 876K 3986K 8795K
Temporal Segmentation

# Pre-training Span 4 weeks 4 weeks 5 days
# Tuning-Predicting Span 9 weeks 5 weeks 5 days
# Snapshot Granularity weekly weekly daily

Table 2: Statistics and temporal segmentation of experiment dataset.

weights. Results are averaged on future snapshots, and stan-
dard metrics like Recall@k and NDCG@k (k = 10 and 20)
are applied, in line with prior work [Yang et al., 2024].
Baseline Methods. We include the recent dynamic graph
learning methods, graph prompt learning approaches, and tra-
ditional graph fine-tuning as our baselines:

* Dynamic Graph Neural Networks. These graph neu-
ral networks are tailored to dynamic scenarios, updat-
ing embedding with time sensitivity to reflect graph
changes. We benchmark our approach against notable
models: EvolveGCN-O and EvolveGCN-H [Pareja et
al., 2020] and ROLAND [You et al., 2022].

¢ Graph Prompt Learning Methods. This line focuses
on leveraging prompts to get task-specific knowledge re-
lated to downstream tasks, thereby becoming a unified
approach for downstream tasks. We compare our ap-
proach with notable models: GPF/GPF-Plus [Fang et
al., 2023], GraphPrompt [Liu et al., 2023], GPT4Rec
[Zhang et al., 2024], and GraphPro [Yang et al., 2024].

Implementation Details. We run all methods in PyTorch
[Paszke et al., 2017] with Adam [Diederik, 2014] optimizer
on an NVIDIA GeForce 4070Ti GPU. In our experiment, the
batch size b and the demension of embeddings d are set 2048
and 64. The layers k& of GNNs are set 3. We train all models
300 epochs at every snapshot. We apply grid search to find
the optimal hyper-parameters for each model. The ranges of
hyper-parameters are [16, 32, 64, 128] for the size NV of node-
aware prompts N P, the size S of structure-aware prompts
S P and the size of layer-aware prompts LP. GPL4SRec is
trained with a learning rate of 0.001.

5.2 Overall Perference (Q1)

In this section, we report the experimental results of different
methods in the Table 3, where R and N are abbreviations for
Recall and NDCG, respectively. It can be clearly observed
that our proposed GPL4SRec surpasses both graph prompt
learning methods and dynamic graph learning methods, high-
lighting the effectiveness of our graph pre-training strategy
and graph prompt learning methods.

First, this superior performance of GPL4SRec can be at-
tributed to two key factors: 1) Our graph pre-training repre-
sentation learning that adeptly captures and encodes constant
LTP of users during pre-training stage, 2) Our graph multi-
level aware prompt templates design, which includes three
types of prompts: node-aware, structure-aware, and layer-
aware prompts. These well-designed prompts ensure seam-
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| | (@ (b) (c) (d) (e) (® (@ (h) ] | (1)) (k)
Dataset | Metric | " otune  EvolveGCN-O  EvolveGCN-H ROLAND  GraphPrompt  GPF GPF-Plus GPT4Rec GraphPro | GPL4SRec Improv.
| R@10 | 00114 0.0115 0.0098 0.0097 00094 00120 00115 00125 00129 | 0.0138  698%
| R@20 | 00172 0.0157 0.0138 0.0150 00154 00174 00172 00185 00191 | 00202  5.76%
Amazon | N@10 | 0.0069 0.0070 0.0057 0.0055 00056 00072 00069 00070 00076 | 00083  9.21%
| N@20 | 0.0087 0.0084 0.0066 0.0069 0.0075 00088 00087 00089 00094 | 0.009  532%
| R@10 | 00216 0.0206 0.0201 0.0195 00212 00214 00214 00230 00231 | 0.0239  3.46%
| R@20 | 00344 0.0334 0.0315 0.0301 00342 00348 00345 00358 00362 | 0.0368  1.66%
Koubei | N@10 | 0.0199 0.0190 0.0187 0.0188 00196 00199 00198 00214 00216 | 00221  231%
| N@20 | 0.0249 0.0242 0.0231 0.0223 00249 00251 00250 00261 00265 | 0.0269  151%
| R@10 | 00131 0.0138 0.0132 0.0135 00123 00130 00129 00138 00142 | 00150  5.63%
| R@20 | 0.0223 0.0236 0.0224 0.0226 00199 00223 00222 00245 00251 | 0.0262  438%
Taobao | N@10 | 0.0199 0.0211 0.0203 0.0210 00188 00200 0019 00212 00216 | 00225  417%
| N@20 | 00218 0.0232 0.0221 0.0226 00195 00220 00216 00238 00245 | 0.0259  5.71%

Table 3: The average performance with LightGCN as our base model. The numbers in bold indicate statistically significant improvement

(p < 0.01) by the pairwise t-test comparisons over the other baselines.

less knowledge transfer from the pre-trained model across
temporal snapshots. Such adaptive learning helps model to
better capture incremental and cascaded changes such as STP
of users in the graph, which is very important to understand
user behavior in streaming recommendation.

Second, there are more findings in these comparative ex-
periments. The different performance of baseline methods
shows the complexity of streaming recommendations. Graph
prompt learning methods broadly outperform dynamic graphs
and fine-tuning methods, indicating the advantage of graph
prompt learning in streaming recommendation, especially in
mitigating catastrophic forgetting.

Finally, different graph prompt learning methods show cer-
tain performance differences, and our proposed GPL4SRec
exhibits better performance than other prompt learning meth-
ods. We argue that the key point of differences is the design of
graph prompt templates. Specifically, GPL4SRec is carefully
designed with three types of prompts, which help to com-
prehensively capture the incremental and cascading changes
within the graph and more effectively integrate the historical
knowledge and new data, thus generating new and complete
knowledge for streaming recommendation.

5.3 Ablation Study (Q2)

In this section, we focus on GPL4SRec and test the efficacy
of its various designs in regard to the node-aware, structure-
aware, and layer-aware prompts. The results are shown in
Table 4. We have the following observations:

* w/o NP. We studied the effect of node-aware prompts in
adaptation to node changes. Comparing prompted and un-
prompted models, the former responded better to user and
item changes, showing node-aware prompts aid context
adaptation for improved personalization.

* w/o SP. We measured the impact of structure prompts on
adapting to graph incremental changes. Our results demon-
strated that these prompts accurately represent structural
patterns, highlighting their significance in capturing one-
hop graph relationships between users and items.

Variants w/o NP w/o SP w/o LP GPL4SRec
R@20 0.0198 0.0195 0.0172 0.0202
Amazon
N@20 0.0096 0.0093 0.0085 0.0099
Koubei R@20 0.0362 0.0353 0.0352 0.0368
N@20 0.0265 0.0258 0.0256 0.0269
R@20 0.0259 0.0255 0.0250 0.0262
Taobao
N@20 0.0250 0.0249 0.0245 0.0259

Table 4: The ablation study of GPL4SRec on three different datasets.

* w/o LP. We focused on exploring the effect of layer-aware
prompts. Our ablation studies have demonstrated that such
prompts are capable of capturing cascading relationships
from diverse perspectives within the graph, thus enabling a
more thorough comprehension of graph data.

5.4 Robustness Analysis (Q3)

Within the framework of GPL4SRec, graph pre-training is of
critical significance for capturing user LTP and for enhanc-
ing the adaptability of the proposed graph prompt learning
method. To conduct a comprehensive assessment of its ro-
bustness and adaptability, a systematic exploration of a vari-
ety of pre-training strategies was implemented, with MixGCF
[Huang et al., 2021] and SGL [Wu et al., 2021] incorpo-
rated. This exploration encompassed two core objectives: on
the one hand, to verify the performance of GPL4SRec un-
der diverse experimental settings; on the other hand, to guar-
antee the consistency of objectives between pre-training and
prompt tuning, which is of utmost importance for bolstering
the overall effectiveness of the model. As shown in the ex-
perimental data presented in Table 5 and Table 6, GPL4SRec
exhibits remarkable robustness across a wide range of pre-
training strategies. It not only attains substantial enhance-
ments in predictive accuracy but also demonstrates outstand-
ing adaptability in complex graph scenarios. Notably, the in-
tegration of MixGCF and SGL contributes to strengthening
the generalization capabilities of model while simultaneously
maintaining its stability, thereby further highlighting the re-
markable superiority of GPL4SRec in efficiently handling
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Model Amazon Koubei
R@20 N@20 R@20 N@20
Finetune 0.0184 0.0094 0.0378 0.0278
EvolveGCN-O 0.0171 0.0085 0.0375 0.0276
EvolveGCN-H 0.0129 0.0061 0.0354 0.0262
ROLAND 0.0152 0.0072 0.0349 0.0260
GraphPrompt 0.0180 0.0089 0.0377 0.0276
GPF 0.0182 0.0092 0.0380 0.0278
GPF-Plus 0.0184 0.0094 0.0376 0.0276
GPT4Rec 0.0209 0.0106 0.0380 0.0279
GraphPro 0.0216 0.0109 0.0393 0.0291
GPL4Rec (Ours) 0.0226 0.0112 0.0398 0.0296

Table 5: The average performance with MixGCF as our base model.
The numbers in bold indicate statistical improvement (p < 0.01) by
the pairwise t-test comparisons over the other baselines.

Model Amazon Koubei
R@20 N@20 R@20 N@20
Finetune 0.0190 0.0097 0.0358 0.0265
EvolveGCN-O 0.0173 0.0090 0.0365 0.0268
EvolveGCN-H 0.0137 0.0066 0.0358 0.0263
ROLAND 0.0161 0.0078 0.0340 0.0251
GraphPrompt 0.0161 0.0079 0.0355 0.0261
GPF 0.0187 0.0096 0.0363 0.0266
GPF-Plus 0.0191 0.0097 0.0356 0.0264
GPT4Rec 0.0210 0.0107 0.0358 0.0266
GraphPro 0.0221 0.0114 0.0371 0.0277
GPL4Rec (Ours) 0.0231 0.0119 0.0378 0.0280

Table 6: The average performance with SGL as our base model. The
numbers in bold indicate statistical improvement (p < 0.01) by the
pairwise t-test comparisons over the other baselines.

complex streaming recommendation tasks based on GNNs.

5.5 Hyper-parameter Sensitivity (Q4)

We conducted a detailed hyper-parameter study on the model
with a particular focus on the prompt size. Specifically, we
explored the impact of varying the node-aware , structure-
aware, and layer-aware prompt sizes on the Amazon dataset.
As shown in Figure 2, in the initial stage, adding the prompt
size was found to enhance the performance of model. More
prompts could represent complex user-item interactions in a
more comprehensive manner, facilitating the model capture
of user preferences and item characteristics. However, when
the prompt size surpassed a specific threshold, further incre-
ments led to diminishing returns. The additional size not only
scarcely augmented the explanatory capacity of model but
also exerted negligible influence on performance improve-
ment and even caused unnecessary computational overhead.
This underlines the significance of precisely ascertaining the
optimal prompt size to strike a balance between performance
and computational efficiency. It further implies that there ex-
ists an optimal range for the prompt size, and exceeding this
range would prove detrimental. Future research could focus
on delineating this range and its mechanisms.

0.0202 0.0099
—e— Node —e— Node
0.0200 Structure 0.0098 Structure
=) =)
Q —+— Layer N 0.0097 —— Layer
@0‘0198 4 %) 4
?3 0.0196 3 0.0096
51 a
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16 32 64 128 16 32 64 128
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Figure 2: The influence of graph prompt number on Amazon dataset.
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Figure 3: The average training time per epoch on different models.

5.6 Efficiency (Q5)

As shown in Figure 3, we presented the average training time
of different models on three datasets per epoch. GPL4SRec
rivals fine-tuning and prompt-learning methods in terms of
efficiency and surpasses several advanced models in perfor-
mance. The high efficiency stems from using lightweight
graph prompts, which integrate new data seamlessly with
low cost, cutting training time and enhancing overall effi-
ciency. Moreover, compared with existing dynamic graph
methods, GPL4SRec skips complex graph structure adjust-
ments, averting extra computational costs from frequent re-
construction. Thus, it keeps an efficient training rhythm with
large-scale data, strengthening its edge in efficiency. This
makes GPL4SRec a highly promising option for scenarios
where rapid model training and deployment are crucial.

6 Conclusion

This study proposes GPL4SRec, a graph multi-level aware
prompt learning framework for streaming recommendation
task. First, GPL4SRec utilized a graph encoder pre-training
on extensive historical data to capture the LTP of users.
Then, by introducing node-aware, structure-aware, and layer-
aware prompts, GPL4SRec could focus on the incremental
and multi-hop cascading changes between users and items
for accurately capturing the STP of users, thereby mitigating
the issue of catastrophic forgetting. Further, our theoretical
analysis verified the importance of our prompt template de-
sign for GPL4SRec’s superiority. Finally, our experiments
on three public datasets and three base models confirmed its
effectiveness, outperforming existing approaches.
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