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Abstract

Electroencephalogram (EEG) contains not only de-
coding task information but also personal identity
privacy information. If it is stolen or attacked, the
user’s brain-computer interaction behavior may be
maliciously manipulated. Existing EEG identity
privacy protection generally adopts generative or
adding tiny perturbation methods, which can pro-
tect the identity privacy in EEG signals to some ex-
tent. However, these methods also damage the per-
formance of decoding task. In order to solve these
problems, this paper proposes an identity removal
network (ID-RemovalNet) to achieve EEG privacy
protection while improving the classification accu-
racy of decoding task. Firstly, an identity decorrela-
tion separation module is constructed to accurately
remove the identity features to achieve privacy pro-
tection while reducing the interference with the task
decoding features. Secondly, a multi-domain multi-
level fusion feature extraction module is designed
to extract the high-quality EEG time-frequency fea-
tures. Finally, the feature enhancement module is
used to compensate for the loss of task decoding
features and excitation of dominant feature selec-
tion during identity feature removal. The experi-
mental results show that ID-RemovalNet removes
identity information to 0.43% on four EEG datasets
with two different paradigms, and significantly im-
proves the EEG task decoding accuracy by 3.28%,
and achieves the state-of-the-art performance in
cross-subject EEG experiment.

1 Introduction

Electroencephalography (EEG) as the primary input method
for Brain-Computer Interface (BCI), is convenient and cost-
effective, but it may leak personal privacy and medical infor-
mation [Gu er al., 2021]. Studies have shown that BCI has po-
tential in authentication systems [Neupane et al., 2019], but
EEG signals collected by consumer-grade BCI devices can
expose users’ private information, such as credit card details,
PIN codes, etc [Martinovic et al., 2012; Choi et al., 2018].
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Additionally, EEG signals collected by different BCI devices
may be related to each other [Kong ef al., 2018]. These find-
ings highlight the urgency of protecting user privacy in BCI
applications, especially in preventing EEG data from being
stolen or manipulated [Zhang and Wu, 2019]. Therefore, de-
veloping techniques that can extract EEG task features with-
out personal identity information is crucial for the further ap-
plication of BCIL.

Initially, methods for the overall protection of EEG sig-
nals are proposed; however, traditional anonymization cannot
fully prevent the leakage of EEG privacy data. As a result, re-
searchers have explored more complex EEG data protection
methods, primarily including data encryption and privacy-
preserving machine learning. Data encryption is a relatively
traditional protection approach, including homomorphic en-
cryption (HE) [Robinson and Varghese, 2016], secure multi-
party computation (SMC) [Agarwal and others, 2018], and
secure processors. However, encryption algorithms may dis-
rupt the task-specific features of EEG and still carry the risk
of being cracked. Privacy-preserving machine learning meth-
ods, including federated learning [Jia et al., 2024] and source-
free transfer learning [Xia er al, 2022; Wu et al., 2024,
Zhang ef al., 2022; Gu et al., 2022], store the original EEG
data locally and only transmit model parameters or use API
interfaces to execute EEG decoding tasks. However, since the
model itself may contain sensitive information, attackers can
still reconstruct privacy-related information from the original
data through reverse engineering or model theft.

Based on this, there has been a growing emphasis on the
safeguarding of identity features within EEG signals. Re-
search on brainwave identity privacy protection is relatively
limited, with two main approaches: one is the use of gener-
ative networks to synthesize EEG data [Pascual et al., 2021;
Singh et al., 2023], where the generated data resembles real
data but cannot be used to identify individual identities; the
second approach involves adding small perturbations to the
brainwave signals, which disrupt the identity-related features
in the signals, thus protecting the user’s identity information
[Meng et al., 2023; Chen et al., 2024]. However, both gen-
erative and perturbation methods also impair task classifica-
tion features, leading to a certain degree of reduction in task
classification accuracy. For example, in [Meng et al., 2023],
while the identity recognition rate of the EEG signals de-
creased by 49.51%, the task decoding rate also dropped by
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2.43%.

To address these issues, this paper proposes a brainwave
privacy protection method called ID-RemovalNet. The core
of this method lies in constructing a brainwave signal decom-
position framework. Unlike general brainwave protection
methods, the proposed method decomposes the brainwave
signal into task-related features, identity privacy features, and
noise components, with a focus on protecting identity privacy
features. On the one hand, the proposed method uses the
multi-Domain multi-Level fusion feature extraction (MDML)
module to extract high-quality and comprehensive feature in-
formation from brainwave signals. On the other hand, the
proposed method designs the identity decorrelation separa-
tion (IDS) module. Existing generative and subtle perturba-
tion methods not only protect identity privacy but also inter-
fere with task classification features. Our method directly re-
moves the identity privacy features that are decorrelated from
the task, ensuring no impact on subsequent task. Finally, to
balance both brainwave privacy protection and decoding en-
hancement, the proposed method introduces a task feature en-
hancement module. By using the attention-based adversarial
feature selection (AAFS) module to stimulate the selection
of dominant features, the proposed method enhances decod-
ing accuracy and cross-domain generalization ability. Ad-
ditionally, a loss-guided identity-level task feature re-fusion
(LITFR) module is designed to further compensate for the
loss of task features after the removal of identity information,
ensuring the accuracy of task decoding. The major contribu-
tions of our paper are outlined as follows:

e The proposed ID-RemovalNet designs the Identity
Decorrelation Separation (IDS) module to remove the
identity information to protect the EEG identity privacy,
and the Feature Enhancement (AAFS&LITFR) module,
LITFR effectively compensates for the partial loss of
the EEG task features during the removal process, and
AAFS stimulates the selection of the dominant features
of the EEG task to realize the EEG task decoding en-
hancement and generalization.

The proposed ID-RemovalNet designs a multi-domain
multilevel fusion feature extraction (MDML) module,
which extracts rich EEG features by designing the fu-
sion of global and local features in the time-frequency
domain to realize the enhancement of EEG task decod-
ing task.

ID-RemovalNet reduces identity information to 0.43%
across four EEG datasets with two different paradigms,
significantly improving brainwave task decoding accu-
racy by 3.28%, and achieves state-of-the-art recognition
performance in cross-subject EEG experiments.

2 Our Proposed ID-RemoveNet Method

As shown in Figure 1, the designed method ID-removalNet
works sequentially through three key modules: (1) EEG Data
Align effectively reduces subject differences between ses-
sions and improves EEG decoding accuracy; (2) Identity De-
correlation Separation (IDS) Module extracts high-quality
task-relevant features and identity features using multi-

domain multi-level Fusion Feature Extraction (MDML) Mod-
ule, and through the decorrelation items (Dec) and feature
subtraction (Sub), separates and removes the EEG identity
information, and clean task features are obtained; (3) Feature
Enhancement Module utilizes the loss-guided identity-level
task feature fusion (LITFR) module to compensate for the
loss of task features, and the attention-based adversarial fea-
ture selection (AAFS) module to capture cross-session stable
task features.

2.1 EEG Data Align

Given an EEG dataset D = {z;,y;,u;}Y,, where is the
sample of the z; € X C R*t is the i-th EEG trial,c de-
notes the sample channel, ¢ denotes the sample time, y; €
Y = {1,...,K} is the label corresponding to the task,
u; € U ={1,...,U} is the user label of the i-th trial, and N
is the number of EEG trials.

Inspired by [He and Wu, 2020], we found that alignment
can effectively reduce subject differences across sessions,
where EA methods are efficient, completely unsupervised,
and show excellent performance in multiple BCI paradigms.
As shown in Figurel 1 (A), where for NV EEG trials in a given
domain, the EA first calculates the Euclidean arithmetic mean
R of all N spatial covariance matrices:

N
- 1
=— ) X,(X,)" 1
R= n; (Xn) (1)
Then, it performs the alignment by:
X, =R '’x,, n=1,....N )

Thus, EEG data distributions from different domains be-
come more consistent.

2.2 Identity Decorrelation Separation (IDS)
Module

EEG signals, as a unique biological feature, contain a wealth
of personal information. During cognitive tasks, the extracted
task features often contain a large amount of identity informa-
tion, which not only leads to privacy leakage but also affects
the accuracy of task decoding due to the presence of subject
variability. As shown in Figurel 1 (B), we propose an iden-
tity de-correlation separation module to realize the removal of
task-irrelevant identity information, thus obtaining task fea-
tures containing only a small amount of identity information
for EEG decoding and privacy protection. The method fo-
cuses on achieving the removal of identity information by de-
composing the EEG feature F' into three key components, as
shown in Equation 3:

F= Ftask + Fid + Fnoise (3)

where Fj,s. denotes task-related features, F;; denotes
identity characteristics of the subject, and F},;s. denotes
noise features in EEG. After MDML extraction of features
only a small number of noise features are retained and Eq. 3
is further simplified to:

F = Fiask + Fia “4)
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Figure 1: ID-RemovalNet Overview: (A) EEG Data Alignment; (B) Identity Decorrelation Separation (IDS) module, which extracts features
through the Multi-Domain Multi-Level Fusion (MDML) module. This module consists of two time-domain and frequency-domain multi-
branch parallel networks, focusing on the fusion of global and local features from different domains. It then uses a gradient reversal layer
and distance constraints to separate task features and identity features, and identity features are removed by feature subtraction; (C) Feature

Enhancement and Classifier, where LITFR supplements task features with identity-level task features guided by loss.

attention weights for adversarial training.

Multi-domain Multi-level Fusion Feature Extraction
(MDML) To obtain F},s1, F;q, we use a unified backbone
network to extract identity features and task features.The
designed multi-domain multi-level fusion feature extraction
module is shown in Figurel 1: (1) A branch-time scale CNN
for converting EEG signals into time-domain discriminative
SST representations; (2) A branch-frequency scale learnable
continuous wavelet for converting signals into frequency-
domain discriminative SST representations; (3) Multi-level
fusion of local and global time-frequency features.

Based on [Jia et al., 2021], dynamic adjustment of attention
is used to analyze signals at different time scales. "Block T”
designs five parallel temporal convolutional layers to extract
time features at different scales. After undergoing Squeeze
and Excitation (SE) [Hu er al., 2018] operations, the out-
put local discriminative SST F! and global discriminative
SST F? represent different levels of temporal dependencies.
”Block F”, based on the research from [Liu et al., 2023],
adopts five parallel learnable continuous wavelet transforma-
tions [Li and al., 2022] to extract features corresponding to
specific frequency bands, also outputting local discriminative
SST F} and global discriminative SST FJ? through SE.

Finally, unlike fusion methods that only focus on different
domain features, the fusion strategy we use combines both
temporal and frequency domain features, integrating both lo-
cal and global features, effectively capturing multi-level and
multi-domain feature information. As shown in equation 5:

F = concat((F' & F}), (F* & F})) 5)

Decorrelation Items (Dec) Due to the complexity of the

AAFS generates

EEG features, there is a coupled correlation between the task
features extracted by MDML and the identity features, so we
introduce a decorrelation regularisation term to compute the
correlation rho between the two, and by minimising this co-
efficient. As expressed in Eq. 6, linear dimensionality re-
duction is performed on task features and identity features to
obtain vectors hyqs and g , where [hask, hig) € R1*1

rho = (f(htask) X f(hid))2 (6)

g(htask) X g(hui)

where f(hiqsi) and f(h;q) denote doing mean processing
on the vectors to make them centred. g(hyqsx) and g(hgsk)
denote calculating the vector variance.

And the introduction of Gradient Reversal Layer (GRL)
[Ganin and Lempitsky, 2015] for domain adversarial training
further enhances feature separation. As shown in Equation
7, the GRL reverses the direction of the gradient, prompt-
ing the network to optimise the features during the training
process so that the task-related features are as distinct as pos-
sible from the identity-related features. Where the output of
the task classifier is f(x) and the loss of the task classifier is
Lg.

. OLg4 OLg4
Gradient Reversal Layer: 0F () 0F (Fia) (7
Feature Subtraction (Sub) At this point,the task features ob-
tained are highly decorrelated with the identity features. Fi-
nally, by subtracting the features as shown in Eq. 8, the task
features containing only minimal identity information can be
obtained.

Eask :F_Fid7

[F, Fask, Fia] C ™" ®)
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2.3 Feature Enhancement and Classifiers

Loss-guided Identity-level Task Feature Re-fusion
(LITFR) Since task features and identity features are
not perfectly linearly related, simple removal of identity
information may result in the loss of task decoding features.
As shown in Figurel 1 (C), the loss-guided identity-level
task feature re-fusion module calculates the loss of identity
features to the task and dynamically adjusts the feature fusion
weights to balance the removal of identity information with
the integrity of task decoding, as shown in Equation 9:

M
Fio = Fuge + Y _ wi fua:) €))
=1

where f;q(z) is the identity-level task feature and F} g
is the fused task characteristic, w denotes the feature fusion
weight. As shown in Equation 10, 7 is the temperature coef-
ficient that controls the weight smoothing degree.

1
Lo (%)
+exp | —*

Attention-based Adversarial Feature Selection (AAFS)
During the training of a neural network, the model usually
activates the main features associated with the labels. How-
ever, these features may not work when faced with unseen
test data, leading to performance degradation. To address this
problem, inspired by the self-challenge mechanism [Huang
et al., 2020], the design of an attentional confrontation-based
feature selection module reinforces the impact of key fea-
tures, forcing the model to better mine the features that are
most useful for decoding in the task, and at the same time en-
hances the robustness of the model, thus improving its abil-
ity to generalise over unseen data. The attention weights are
calculated as shown in Equation 11, where «; represents the
output weight.

w =

(10)

exp(log a; — log(—loge;))/7)

A= —x
> j=1exp(loga; —log(—loge;))/T)

, &€ U(Ovl)
(11)

where N represents the feature dimension, Gumbel noise
is used to introduce randomness, and the temperature of
Gumbel-Softmax controls the smoothness of Softmax. We
further optimise the model by calculating the dominant fea-
ture Frrp and the disadvantageous feature Fry.

Frp=A® Fisk (12)

Fri=(1—-A)® Figsk (13)

where the weights A are learnable parameters that feed
Frp and Fry into the the primary classifier C' and the sec-
ondary classifier C; for training, respectively.

As shown in Eq. 14-Eq. 18, under the supervision of cross
entropy loss, we train the main feature generator and classifier
to predict the correct labels, here £ i cross entropy loss, y is
the task label and s is the user label. The loss terms are as
follows:

écls - KCE(HC(QL‘) @) A, y) (14)

Lacts = Lop(Hp(T), s) (15)

Lacts = bop(He, (7)o (1 — A),y) (16)
bres = bop(He, (), ) (17
lorr = lop(GRL(Hc(2),y)) (18)

Ultimately, we formulate the learning of the model as the
following optimisation problem,Here A is the trade-off coef-
ficient:

min =MVles + Xolarr + A3l
He Hg Hp,C1,Ca,D % OQE ™ aldels

u )\47’]10 - >\5£acls + )\6£tcls (19)

Datasets Subjects Points Channels Trails Sessions

MI4C 9 1000 22 576 2
MI2C 9 1000 3 240 2
P300 8 128 32 3300 4
ERN 16 166 56 300 5

Table 1: Details of the four datasets used in the experiment

3 Experiments
3.1 Datasets

The following four public databases are used in this experi-
ment. See Table 1:

(1)Four-class motor imagery dataset (MI4) [Tanger-
mann et al., 2012]: Derived from BCI Competition IV
dataset 2a. data were sampled at 250 Hz for 22 EEG chan-
nels. Data were extracted within 0-4 seconds after each im-
agery cue and bandpass filtered at 8-32 Hz.

(2)P300 evoked potentials (P300) [Hoffmann et al.,
2008]: Data were recorded on 32 channels at a frequency of
2048 Hz. subsequently downsampled to 128 Hz. the duration
of each EEG signal epoch was 0-1 seconds.

(3)Two-class motor imagery dataset (MI2C) [Abelson
et al., 1985]: Derived from the BCI Competition IV dataset
2b.The first two sessions without visual feedback were used
in this paper, sampled at 250 Hz and containing 3 EEG chan-
nels. Data within 0-4 seconds were extracted after each im-
agery cue and band-pass filtered at 1-40 Hz.

(4)Feedback Error-Related Negativity (ERN) [Leeb et
al., 2008]: Sourced from a competition at the 2015 TEEE
Neuroengineering Conference, this paper uses a training set
from 16 users. Data was recorded on 56 channels at 200 Hz,
post downsampling to 128 Hz. epochs of EEG signals from
0-1.3 seconds were extracted.

3.2 Baseline Methods

We use the following three CNN models as baseline feature
extractors and retain the last fully-connected layer of each
model as a task classifier, while using two fully-connected
layers as identifiers:

(1) EEGNet [Lawhern et al., 2018]: A compact CNN ar-
chitecture designed for EEG classification tasks with deeply
separable convolution.
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Datasets Models Uncorrelated EEG(%) Decorrelated EEG(%) Reducation(%)
BCA UIA BCA UIA BCA UIA

EEGNet 61.90 91.50 68.40 0.04 6.50 -91.48

MIAC ShallowCNN  61.95 90.17 69.74 0.04 7.79 -90.13

DeepCNN 58.12 81.32 65.12 0.12 7.00 -81.20

MDML 69.48 92.37 72.45 0.25 297 9212

EEGNet 59.00 64.52 61.19 0.37 2.19 -64.15

MI2C ShallowCNN  58.69 48.43 59.58 2.08 0.89 -46.35

DeepCNN 56.90 37.08 59.72 0.73 2.82  -36.35

MDML 61.30 74.17 65.57 0.55 427  -73.62

EEGNet 64.29 59.90 67.21 0.50 2.92  -59.40

ERN ShallowCNN  66.03 77.82 67.57 0.54 1.54 -76.54

DeepCNN 67.51 65.14 68.64 0.38 1.13  -64.76

MDML 67.75 80.28 71.38 0.24 3.63 -80.04

EEGNet 67.89 91.70 69.47 0.55 1.58 -91.15

P300 ShallowCNN  65.14 97.21 67.64 0.20 2.50 -97.01

DeepCNN 66.60 96.08 69.42 0.20 2.82 -95.88

MDML 68.89 91.09 70.85 0.06 1.96 -91.06

Average 63.84 77.42 67.12 0.43 3.28 77.05

Table 2: Task Recognition Accuracy and Identity Recognition Accuracy of Raw EEG Signals and Identity-related Features

(2) ShallowCNN [Schirrmeister et al., 20171:A shallow
version of DeepCNN with only one convolutional block and
with a larger kernel and different pooling.

(3) DeepCNN [Schirrmeister et al., 2017]: contains four
convolutional blocks, the first one is designed for EEG inputs
and the remaining three are standard convolutional blocks.

3.3 Hyperparameterization

In our experiments, we used a batch size of 128, an initial
learning rate of 0.01 and adjusted the learning rate to 0.001
after 50 rounds, model training was performed a total of 100
times and the best model was selected for testing. We eval-
uate the performance of the task classifier using Balanced
Classification Accuracy (BCA) and the performance of the
identity classifier using Identity Accuracy (UIA). For each
database, a leave-one-session cross-validation is performed,
and the mean value of the three experiments is reported.For
each loss function of joint multi-task learning, we test the
hyperparameters in the range of 0.01-1, and use a stepwise
tuning approach, i.e., adjusting each hyperparameter from
smallest to largest while keeping the other hyperparameters
unchanged until the optimal value is found. After each hy-
perparameter is determined to be optimal, the value is fixed
to ensure that each hyperparameter is optimized. In addition,
based on experience, we designed generic parameter settings
for each database: 1.00, 0.05, 1.00, 0.05, 0.01, 1.00.

4 Results

4.1 Identity Protection and Task Decoding

To evaluate the performance of the proposed model in EEG
identity privacy protection and task decoding, we conducted
experiments using four models on four datasets. The specific
data are shown in Table 2. The data display the EEG decoding
rate and user recognition rate under the original data, as well

as the EEG decoding rate and user recognition rate of task
features after identity-related features have been removed.

A higher UIA value in raw EEG indicates that the raw data
contains a higher degree of identity information, meaning that
it is relatively easy to identify the source of a segment of EEG
features

Experiments have proved that ID-RemovalNet performs
well in identity protection, and the UIA value of Decorre-
lated EEG decreases by up to 92.12% for MI4C, 73.62% for
MI2C, 80.04% for ERN, and 97.01% for P300.

Experiments have demonstrated that ID-RemovalNet en-
hances the decoding of EEG tasks, and the BCA value of
Decorrelated EEG increased up to 7.79% for MI4C, 4.27%
for MI2C, 3.63% for ERN and 2.82% for P300;

4.2 Ablation Experiment

We performed an ablation experiment by adding each compo-
nent of the method step-by-step, and the results of the ablation
experiment are listed in Table 3.

The baseline data are the results without any added manip-
ulation, raw EEG decoded by the task as well as user recog-
nition.

We added the alignment treatment and BCA values were
substantially increased and UIA values showed a decrease in
the motor imagery MI4C and MI2C databases. This suggests
that alignment is more favorable for task decoding of EEG
data.

We added the IDS component, where “Dec” represents
the feature decorrelation component and ”"Sub” represents
the feature subtraction component. The data from the four
databases combined shows that after adding "Dec”, the task-
related information and identity-related information in the
EEG signals were separated, resulting in a significant de-
crease in user identification performance, dropping to 5%-
20%. But the BCA impact was minimal. After adding ”Sub”,
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Models MI4C(%) MI2C(%)
EEGNet ShallowCNN  DeepCNN MDML EEGNet ShallowCNN  DeepCNN MDML
BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA
Baseline 5322 92.67 51.81 91.05 47.42 78.61 5492 9437 58.06 7639 55.69 67.82 55.11 56.02 58.18 81.84
+Align 6191 9150 61.95 90.17 58.12 81.32 69.48 9237 59.00 64.52 58.68 4843 56.90 37.08 61.30 74.17
+Dec. 62.11 12.87 61.24 1472 56.78 8.89 6838 15.14 57.61 9.74 57.62 17.02 56.79 11.45 60.14 12.76
+Sub. 62.11 042 6124 0.14 5678 0.02 6838 0.01 5761 0.14 57.62 037 5679 1.68 60.14 0.52
+AAFS. 67.84 0.05 6898 0.05 64.64 035 7139 0.16 5991 0.19 5944 093 5847 0.14 6426 045
All w/LITFR. 68.40 0.04 69.74 0.04 6512 0.12 7245 025 61.19 0.37 5958 208 59.72 0.23 6557 0.55
Models P300(%) ERN(%)
EEGNet ShallowCNN  DeepCNN MDML EEGNet ShallowCNN  DeepCNN MDML
BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA BCA UIA
Baseline 50.86 41.72 60.46 84.93 6237 68.83 6532 9334 6392 66.76 64.07 6823 63.57 64.09 64.41 59.47
+Align 67.89 91.70 65.14 97.21 66.60 96.08 68.69 91.09 64.29 59.90 66.03 77.82 67.51 65.14 67.75 80.28
+Dec. 65.64 10.79 66.75 1434 6731 16.44 68.40 13.49 6483 6.86 67.11 7.65 67.68 670 69.10 6.08
+Sub. 65.64 0.18 66.75 0.13 6730 0.13 6840 0.06 6483 1.05 67.11 024 6769 025 68.74 0.57
+AAFS. 68.59 0.03 6745 0.06 6786 0.02 69.44 0.03 6632 040 6751 032 6861 037 7064 0.13
All w/LITFR. 69.47 055 67.64 020 6942 020 7085 0.06 67.21 0.50 6757 054 68.64 0.38 7138 0.24

Table 3: In the ablation study on MI4C, MI2C, ERN, and P300, the table presents task and user recognition accuracies for the three basic
models and MDML. The third and fourth rows show results with IDS, while the fifth and sixth rows show results with feature enhancement

(AAFS&LITFR).
Models MI4C(%) ERN(%) MI2C(%) P300(%) ™D FED LC GC
BCA UIA BCA UIA BCA UIA BCA UIA
MDML 7245 025 7138 024 6557 055 7085 006 V v v v
MDML w/o Time-domain 7197 0.12 7074 0.57 6444 023 70.01 0.19 v
MDML w/o Frequency-domain ~ 71.01 0.10 6836 156 6420 029 7026 0.08 V
MDML w/o Local concat 67.84 095 7031 059 6481 077 7028 0.18 V v v
MDML w/o global concat 7094 035 69.88 0.63 6503 296 6896 020 V v v

Table 4: In the ablation studies on MI4C, MI2C, ERN, and P300, the task and user recognition accuracies achieved by MDMLNet are shown.
”TD” refers to the time-domain branch, "FD” to the frequency-domain branch, "GC” to global fusion, and "LC” to local fusion.

the BCA remained almost unchanged, but the UIA once again
dropped significantly to below 2.5%.

We continue to add feature enhancement components, in-
cluding attention-based adversarial feature selection (AAFS)
and Loss-guided Identity-level Task Feature Re-fusion
(LITFR). The data from the four databases combined shows
that after adding only the AAFS component, the UIA value
experiences a slight fluctuation while maintaining a low
value, but the BCA value sees a significant increase. Mean-
while, after adding the LITFR component, there is a slight
increase across different databases.

4.3 Ablation Experiment of MDML

To verify the effectiveness of our proposed MDML in ex-
tracting high-quality EEG task features and identity features,
we conducted an ablation experiment by adding each branch
(TD&FD) and fusion method (FC&GC) in the method step
by step, and the results of the ablation experiment are listed
in Table 4.

As shown in Table 4, the multi-scale frequency domain
convolution outperforms the multi-scale time domain convo-
lution, except for P300, where globally fused features are bet-

ter for recognition on motion imagery MI4C, MI2C, but lo-
cal features perform better on event-related potentials ERN,
P300.

The experiments show that MDML with complete struc-
ture exhibits optimal results for BCA on all four databases,
its optimal BCA 1is about 0.77% higher on average than the
rest of the results, and it exhibits the lowest UIA values on
the ERN and P300 databases.

In addition we can get clean features for the task with any
network model either in the training phase or in the testing
phase. This makes our method highly applicable and can
achieve the desired purpose with any database and feature ex-
tractor.

5 Discussion

5.1 Cross-subject Comparison Experiments

Cross-subject comparison experiments in EEG are a signif-
icant challenge in Brain-Computer Interface (BCI) research.
However, due to physiological differences between individu-
als, there is considerable variability in EEG data across sub-
jects, which introduces many challenges for cross-subject
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Approach Subject(%) Avg

1 2 3 4 5 6 7 8 9
EEGNet [Lawhern ef al., 2018] 79.9 57.6 89.9 63.9 58.3 60.1 81.6 72.2 64.6 69.8
ShallowCNN [Schirrmeister et al., 2017] 78.8 48.6 87.5 63.9 64.9 62.5 81.9 79.2 74.7 71.3
DeepCNN [Schirrmeister ez al., 2017] 67.0 55.6 76.4 61.8 61.8 61.5 82.6 64.6 59.0 65.6
EEGNet* [Lawhern et al., 2018] 823 63.5 93.1 70.5 722 67.4 88.5 83.7 72.2 77.0
ShallowCNN* [Schirrmeister et al., 2017] 81.9 62.2 90.3 70.8 72.6 66.3 84.4 82.6 76.7 76.4
DeepCNN* [Schirrmeister et al., 2017] 79.2 56.3 84.7 67.4 66.8 60.8 84.4 75.7 70.5 71.8
DRDA [Zhao et al., 2021] 83.2 55.1 87.4 75.3 62.3 57.2 86.2 83.6 82.0 74.8
TCNet-Fusion [Musallam et al., 2021] 72.1 53.0 84.2 65.1 64.8 57.0 78.0 83.0 72.9 70.0
ATCNet [Altaheri et al., 2023] 74.0 54.7 87.9 62.1 63.4 55.7 77.3 86.9 75.3 71.0
TMSANet [Zhao and Zhu, 2025] 823 49.7 74.0 64.2 444 63.2 72.2 76.7 72.2 66.5
BDAN-SPD [WEei et al., 2024] 89.0 57.2 92.7 74.6 55.8 58.6 93.1 88.9 87.5 77.5
ID-RemovalNet 90.3 63.9 96.2 83.7 72.6 73.6 87.5 92.7 80.2 82.3

Table 5: BCI 2a Cross-Subject Experimental Comparison, where the representation of the model with * uses ID-RemovalNet

Approach Average
ERN P300 BCI2b
EEGNet [Lawhern et al., 2018] 68.0 73.8 60.1
ShallowCNN [Schirrmeister et al., 2017]  71.1 714 59.2
DeepCNN [Schirrmeister e al., 2017] 720 735 627
EEGNet* [Lawhern et al., 2018] 706 743 677
ShallowCNN* [Schirrmeister et al., 2017]  72.8 73.1  63.7
DeepCNN* [Schirrmeister ef al., 2017]  73.5 769 64.6
EEG-TCNet [Ingolfsson et al., 2020] 689 769 658
TCNet-Fusion [Musallam et al., 2021] 68.1 77.1 65.8
ATCNet [Altaheri et al., 2023] 69.0 767 66.0
JMNet [Kim et al., 2024] 73.1 783 64.1
TMSANet [Zhao and Zhu, 2025] 703 76.1 658
ID-RemovalNet 76.5 799 70.8

Table 6: ERN,P300,BCI 2b Cross-Subject Experimental Com-
parison, where the representation of the model with * uses ID-
RemovalNet

decoding. ID-RemovalNet has been shown to effectively
separate identity features, protecting privacy while reducing
interference with task-related features. We reproduced the
code from existing papers and conducted cross-subject exper-
iments on the BCI 2a, BCI 2b, ERN, and P300 databases. To
ensure experimental fairness, the ’cross-subject comparison
experiment” was conducted by applying the model trained on
data from one session to the remaining sessions, using test
data features for cross-subject experiments. DRDA [Zhao et
al., 2021] and BDAN-SPD [Wei et al., 2024] used the data
from the original papers.

Baseline Model with ID-RemovalNet Table 5 shows that we
selected the base models EEGNet, ShallowCNN, and Deep-
CNN for the experiments, where each subject becomes the
target domain once, and the experiments show that the cross-
subject performance of EEGNet, ShallowCNN, and Deep-
CNN with ID-RemovalNet outperforms the original data,
specifically, for BCI2a , EEGNet improved from 69.8% to
77.0%, ShallowCNN from 71.3% to 76.4%, and DeepCNN

from 65.6% to 71.8%; per-subject improvement was also
achieved, and in addition, Table 6 further demonstrates the
applicability of ID-RemovalNet on the ERN, P300, and BCI
2b databases, the results of all baseline models using ID-
RemovalNet still outperform the original data.

ID-RemovalNet and Others In addition, the proposed ID-
RemovalNet achieves a high accuracy of 82.3%, 76.5%,
79.9% and 70.8% on BCI2a, ERN, P300, and BCI2b, re-
spectively, a result that outperforms all the other experimen-
tal results we reproduced, which demonstrates that our model
extracts the task features that effectively removes the inter-
ference of the identity information and the feature enhance-
ment module superiority, and also demonstrates that MDML
extracts discriminative features that further enhance the clas-
sification performance.

6 Conclusion

In this paper, we propose a new privacy-preserving frame-
work for EEG signals, ID-RemovalNet, which aims to ad-
dress the challenge of existing privacy-preserving methods
to maintain decoding performance while protecting the pri-
vacy of EEG data. The framework efficiently extracts high-
quality EEG features through a multidomain multilevel fu-
sion feature extraction module and strips identity features us-
ing an identity de-correlation separation module, which pro-
tects individual privacy and reduces the interference of iden-
tity information on task features. In addition, ID-RemovalNet
further optimises the task feature selection through feature
enhancement to compensate for feature loss and effectively
enhance the decoding accuracy. Experiments show that ID-
RemovalNet removes identity information to 0.43% on four
EEG datasets in two different paradigms, while significantly
improving the EEG task decoding accuracy by 3.28% and
reaching the optimum in cross-subject experiments. Mean-
while, in future research, we will focus on the remaining pri-
vacy information in EEG and use multi-feature removal net-
works to further protect EEG.
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