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Abstract
We consider the problem of fair allocation of m
indivisible items to a group of n agents with sub-
sidies (money), where agents have general addi-
tive cost/utility functions. Our work focuses on the
case of three agents. Assuming that the maximum
cost/utility of an item to an agent can be compen-
sated by one dollar, we demonstrate that a total sub-
sidy of 1/6 dollars is sufficient to ensure the ex-
istence of Maximin Share (MMS) allocations for
both goods and chores. Additionally, we establish
lower bounds of the required subsidies.

1 Introduction
Fair allocation of resources among diverse agents has been
a popular problem across various disciplines since proposed
in 1948 by Steinhaus [1948], encompassing social science,
economics, and computer science. The allocation of items,
whether goods that individuals desire or chores that they seek
to avoid, requires intricate considerations to ensure fairness.
Early studies on fair allocations, such as the renowned “Cake
Cutting” problem, considered divisible resources, emphasiz-
ing fairness notions like envy-freeness: each agent prefers her
own share of the cake over any other agents [Foley, 1966;
Lipton et al., 2004; Caragiannis et al., 2019] and proportion-
ality: each agent gets a share at least as valuable as the aver-
age of the whole cake [Steinhaus, 1948].

In this work, we consider the fair division of indivisible
items. An instance of fair division of indivisible items com-
prises a set N of agents and a set M of indivisible items.
We consider both the allocation of goods and chores. For the
allocation of goods (resp. chores), let vi(S) (resp. ci(S))
represent the value of the goods (resp. cost of the chores)
in bundle S ⊆ M for agent i. The goal is to determine an
allocation X = (X1, X2, . . . , Xn), where agent i receives
Xi, and X meets certain fairness criteria. When dealing with
indivisible items, the landscape changes significantly. Tra-
ditional notions of envy-freeness and proportionality face in-
herent challenges in this context because an exact solution
may not always exist. For example, consider a scenario
with two agents who value a single item equally. An allo-
cation that satisfies either fairness notion does not guaran-
tee existence, underscoring the complexity of allocating in-

divisible items. In response to these complexities, a more
relaxed fairness concept emerges in the form of maximin
share, initially proposed by Budish [2011], then becomes
one of the most popular fairness concepts. For each agent
i, her maximin share MMSi is defined as the best utility
she can guarantee if she divides all the items into n bun-
dles and picks the worst one. However, similar to the case of
proportionality and envy-freeness, MMS allocations are not
guaranteed to exist for both goods [Kurokawa et al., 2018;
Feige et al., 2021] and chores [Aziz et al., 2017; Feige et al.,
2021]. Consequently, many studies focus on approximating
the maximin share (MMS).

α-MMS. An allocation of chores is α-MMS (α > 1) if the
cost of each agent’s bundle is at most α times her maximin
share. Aziz et al. [2017] presented the first polynomial-time
approximation algorithm that achieves a ratio of 2 − 1/n.
Subsequently, Barman et al. [2018] improved this ratio to
4/3 and Huang and Lu [2021] improved it to 11/9. The
best-known ratio to date is 13/11 [Huang and Segal-Halevi,
2023]. Another line of literature followed the work of Aziz
et al. [2017] that approximating MMS allocations with only
ordinal preference [Aziz et al., 2024b; Feige and Huang,
2023], leading to the current best ratio of 3/2. As for lower
bounds, Feige et al. [2021] show that an approximation ra-
tio smaller than 44/43 is not achievable. An allocation of
goods is said to be α-MMS (α < 1) if every agent receives
a bundle with value at least α times their MMS. Kurokawa
et al. [2018] demonstrated the existence of 2/3-MMS allo-
cations, while the computation of such allocations (in poly-
nomial time) was established in [Amanatidis et al., 2017b;
Barman and Krishnamurthy, 2020]. This ratio was later im-
proved to 3/4 [Ghodsi et al., 2018; Garg and Taki, 2020].
More recently, the 3/4 barrier was surpassed through a se-
ries of studies [Akrami et al., 2023; Akrami and Garg, 2024],
resulting in the current best ratio of 3/4 + 3/3836.

The Case of Three Agents. Several algorithms have been
designed to produce α-MMS allocations for goods when
there are only three agents. The first result of α = 7/8 was
established in [Amanatidis et al., 2017b], and later this ratio is
improved to α = 8/9 [Gourvès and Monnot, 2019]. The ratio
was subsequently enhanced to α = 11/12 [Feige and Norkin,
2022]. Regarding upper bounds, an instance with three agents
demonstrating α ≤ 39/40 was constructed in [Feige et al.,
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2021]. For the case of chores, there is a polynomial-time al-
gorithm achieving a ratio of 19/18 [Feige and Norkin, 2022].
For lower bounds, Feige et al. [2021] presented an instance
with three agents for which no allocation can achieve an ap-
proximation ratio strictly small than 44/43.

Fair Allocation with Money. While the aforementioned
works focused on the multiplicative approximation of MMS,
it is also natural to consider the additive approximation
which can be modeled as the subsidy setting that compen-
sates agents with subsidies to achieve fairness. We use
s = (s1, . . . , sn) to denote the subsidies. We assume
that the valuation/cost functions are normalized such that
the largest value/cost of items is 1. Regarding the allo-
cation of goods, several studies [Halpern and Shah, 2019;
Brustle et al., 2020] have demonstrated that a subsidy of
n − 1 is sufficient to ensure envy-freeness, while each agent
is subsidized at most one dollar. This also implies that the
same amount of subsidy is sufficient to achieve proportional-
ity (PROP), as every envy-free allocation is also proportional.
Subsequently, Wu et al. [2023] showed that n/4 dollars are
sufficient and necessary to achieve PROP allocations for both
goods and chores. However, the total subsidy required to
achieve maximin share (MMS) criterion for either goods or
chores has not yet been explored.

Connections between α-MMS and subsidy frameworks.
Notably, when MMSi is very large, the deviation from MMSi
for each agent i is much smaller within the framework of
subsidy compared to the framework of α-MMS and meth-
ods for α-MMS does not directly applicable to the frame-
work of MMS. For example, in [Feige and Norkin, 2022], the
authors address three-agent scenarios by dividing items into
3×3 atomic bundles using two agents’ MMS partitions, then
treating these bundles as indivisible units. While innovative,
this approach has notable limitations in our framework: the
absence of explicit upper bounds on atomic bundle valuations
may lead to unbounded subsidy requirements. Specifically,
when bundles carry extreme valuations, even slight (multi-
plicative) deviations from optimal allocations could necessi-
tate disproportionately large subsidies.

1.1 Our results
Our work aims to fill in the gaps in the maximin share al-
location with subsidy for both goods and chores. We focus
on the case of three agents. An outcome (X , s) consisting of
an allocation X and subsidies s = (s1, . . . , sn) is MMS if
ci(Xi) − si ≤ MMSi (for chores) or vi(Xi) + si ≥ MMSi
(for goods) for all i ∈ N .

Result 1. For allocating chores to three agents, a total sub-
sidy of 1/6 is sufficient to guarantee MMS. No algorithm can
guarantee MMS with a total subsidy of less than 2/49.

Result 2. For allocating goods to three agents, a total subsidy
of 1/6 is sufficient to guarantee MMS.

We first consider the allocation of chores and then show
that our technique can be naturally extended to the setting of
goods. Due to the page limit, we defer the analysis for the
allocation of goods to the full version of this paper.

Let A be the MMS partition of agent 1. We construct a
bipartite graph G = (N ∪ A, E), where E = {(i, Aj) : i ∈
N,Aj ∈ A, ci(Aj) ≤ MMSi}. The graph reflects agents’
preference towards the partition A. We show that we can ei-
ther obtain an assignment ofA such that the required subsidy
can be bounded by 1/6; or the partition A exhibits certain
structural properties. Specifically, if all assignments of A re-
quire a total subsidy larger than 1/6, we can repartition the
bundles, say, under the cost function of agent 2, and decide
an assignment of the new bundles such that the allocation is
MMS to agents 1 and 3, and agent 2 requires a subsidy at most
1/6. Although MMS is a well-known fairness notion and has
received much attention during the past decade, we remark
that the knowledge of its properties is still limited, and uti-
lizing the properties for approximating MMS is challenging.
The techniques used in our analysis reveal certain properties
of MMS that could potentially inspire future research.

Complexity of Allocation Computation. While our re-
sults are only existential, the bottleneck for computing such
allocations lies in constructing MMS partitions – an NP-
hard problem through reduction from Partition [Garey and
Johnson, 1979]. However, polynomial-time approximation
schemes (PTAS) exist for both goods [Woeginger, 1997] and
chores [Jansen et al., 2020]. Consequently, our existence re-
sults yield a PTAS: for any ϵ > 0, one can compute (1 + ϵ)-
MMS allocations with ≤ 1/6 subsidy in polynomial time.

1.2 Other Related Works
Allocation with Subsidy. Aziz [2021] introduced fair allo-
cation with monetary transfers, in which agents can ensure
fairness by money exchange. Brustle et al. [2020] showed
that a subsidy of 2(n − 1) per agent is sufficient for general
monotonic valuations. For dichotomous valuations, Barman
et al. [2022] found that a subsidy of at most 1 per agent is suf-
ficient. When treating money as divisible goods, the subsidy
setting shows the similarity to the problem of allocating the
mixture of divisible and indivisible goods, which was first
introduced by Bei et al. [2021a], who proposed the notion
of envy-freeness for mixed goods (EFM) and demonstrated
its existence for additive valuations. Meanwhile, Bhaskar
et al. [2021] established the existence of envy-free alloca-
tions for mixed resources that include doubly-monotonic in-
divisible items and a divisible chore. MMS allocations have
also been explored in the context of mixed goods [Bei et al.,
2021b]. For a comprehensive overview, see [Liu et al., 2024].

Other Related Settings. In addition to additive valuations,
MMS allocations have been explored for more general valua-
tions [Barman and Krishnamurthy, 2020; Ghodsi et al., 2018;
Li and Vetta, 2021; Uziahu and Feige, 2023]. MMS allo-
cations under allocation constraints have also been exam-
ined, including matroid constraints [Gourvès and Monnot,
2019], cardinality constraints [Biswas and Barman, 2018],
graph connectivity constraints [Bei et al., 2022; Truszczyn-
ski and Lonc, 2020], and online constraints [Zhou et al.,
2023]. Another area of interest is the development of strat-
egyproof mechanisms for fair division [Barman et al., 2019;
Amanatidis et al., 2016; Amanatidis et al., 2017a; Aziz et
al., 2024b], where the focus is on designing algorithms that
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ensure no agents have the incentive to misreport their prefer-
ences. Various MMS variants have also been studied, includ-
ing weighted MMS [Farhadi et al., 2019], AnyPrice Share
(APS) [Babaioff et al., 2021], and 1-out-of-d share [Hosseini
and Searns, 2021]. Furthermore, MMS allocations have been
investigated in best-of-both-worlds scenarios [Babaioff et al.,
2022; Akrami et al., 2024].
Matching-Based Algorithms. Several recent works adopt
an approach that involves constructing a bipartite graph based
on a given partition of the items. In this graph, one side
represents the set of agents, while the other side represents
the partitioned items. The edges of the graph are determined
by the agents’ valuations or costs associated with the parti-
tions on the opposite side. Matching in this bipartite graph
plays a crucial role in finding a fair allocation, e.g., in the
polynomial-time algorithm designed to find an EFX alloca-
tion when |M | ≤ 2|N | [Kobayashi et al., 2025], for the com-
putation of allocations satisfying both PROP1 and 1

2 -MMS
in the query model [Bu et al., 2024], and for computing all-
but-one MMS allocations for chores [Qiu et al., 2024]. They
all demonstrated that either the bipartite graph has a perfect
matching, or it is possible to perform a re-partitioning that
possesses certain desirable properties.

2 Preliminaries
We define the necessary notations and fairness for the allo-
cation of chores. We consider allocating a set of indivisi-
ble chores to n agents. We use M = {e1, . . . , em} to de-
note the set of items and N = {1, . . . , n} to denote the
set of agents, respectively. Every agent i has an additive
cost function ci : 2M → R+ ∪ {0}. An instance is de-
noted by I = (M,N, c), where c = {c1, . . . , cn} is the
set of cost functions. We assume without loss of generality
(w.l.o.g.) that each item has cost at most one to each agent,
i.e. ci({e}) ≤ 1 for any i ∈ N , e ∈M . For convenience, we
use ci(e) to denote ci({e}).
Definition 2.1 (Additive Cost Functions). A cost function ci
is said to be additive if for any S ⊆M , ci(S) =

∑
e∈S ci(e).

An allocation is a n-partition X = (X1, . . . , Xn) of the
items M , where Xi ∩ Xj = for all i ̸= j and ∪i∈NXi =
M . In allocation X , agent i ∈ N receives bundle Xi. For
convenience, given any set X ⊆M and e ∈M , we use X+e
and X − e to denote X ∪ {e} and X \ {e}, respectively.
Definition 2.2 (Maximin Share). Given any subset of items
M ′ ⊆M , an integer k, the maximin fair share of agent i ∈ N
on items M ′ among k agents is defined as

MMSi(M
′, k) = min

A∈Πk(M ′)
max
Aj∈A

ci(Aj),

where Πk(M
′) is the collection of all k-partitions of M ′. We

use MMSi to denote MMSi(M,n). An allocation X is MMS
if ci(Xi) ≤ MMSi for all i ∈ N .
Definition 2.3 (Maximin Share Partition). Given any subset
of items M ′ ⊆ M , an integer k, a partition X of M ′ is a
Maximin Share (MMS) Partition of agent i of size k if

|X | = k, and, ∀X ∈ X , ci(X) ≤ MMSi(M
′, k).

By definition, such a partition always exists.

We use si ≥ 0 to denote the subsidy we give to agent i ∈
N , s = (s1, . . . , sn) to denote the set of subsidies.
Definition 2.4. An outcome (X , s) consisting of an alloca-
tion X and subsidies s = (s1, . . . , sn) is MMS if ci(Xi) −
si ≤ MMSi for all i ∈ N .

Given any instance I = (M,N, c), we aim to find an MMS
outcome with minimal total subsidy, i.e., minimize

∑
i∈N si.

We remark that given any allocation X , computing the mini-
mum subsidy to achieve MMS can be trivially done by setting
si = max{ci(Xi) − MMSi, 0}, ∀i ∈ N . Therefore, in the
rest of this paper, we focus mainly on computing the allo-
cation X . The subsidy to each agent will be automatically
decided by the above equation.
Definition 2.5 (MMS-feasible). For any agent i ∈ N , a bun-
dle A is MMS-feasible to agent i if ci(A) ≤ MMSi.
Definition 2.6 (MMS-feasibility Graph). Given a partition
A = {A1, . . . , An}, we put an edge (i, Aj) if bundle Aj is
MMS-feasible to agent i, i.e., ci(Aj) ≤ MMSi. Let E be the
set of edges and G = (N ∪ A, E) be the resulting bipartite
graph. For a set of agents S ⊆ N , we use L(S) ⊆ A to
denote the set of neighbors of S.

3 MMS Allocations with Subsidy for Chores
In this section, we show that when there are only three agents,
a total subsidy of 1/6 is sufficient to guarantee the existence
of MMS allocations. Our main result of this section is pre-
sented in Theorem 3.1.
Theorem 3.1. Given any instance I = (N,M, c) with three
agents, there exists an allocation X and subsidies s such that
(X , s) is MMS, and the total subsidy is at most 1

6 .
We remark that before our result, the existence of MMS

allocations with subsidy at most 2/3 has been established
for three agents [Wu and Zhou, 2024] (implied by propor-
tional allocations with subsidy). Moreover, for proportional
allocations, the subsidy bound of 2/3 is optimal. Our result
presents the first non-trivial upper bound of the required sub-
sidy for MMS allocations, showing that guaranteeing MMS is
strictly easier than proportionality for three agents. We also
investigate the lower bound of the required subsidy. Feige
et al. [2021] presented a negative instance for the existence
of MMS allocation for three agents, which implies that 1/27
subsidy is necessary to guarantee MMS allocations for three
agents. In this section, we present a better lower bound of
2/49 for the case of three agents.
Theorem 3.2. There exists an instance I with three agents
and nine items such that the required subsidy for any MMS
outcome is at least 2/49.

We first focus on the proof of Theorem 3.1. The correct-
ness of Theorem 3.2 will be addressed in Section 3.4.

3.1 Properties of the MMS Partition of Agent 1
Let A = {A1, A2, A3} be the MMS partition of agent 1. We
show that either we can have an assignment ofA that requires
subsidy at most 1/6, or the partition A has certain structural
properties. We construct the MMS-feasibility graph with re-
spect to A. We remark that if there exists a perfect matching
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in the MMS-feasibility graph, then we can find a correspond-
ing allocation that is MMS (without subsidy). Hence it re-
mains to consider that there is no perfect matching. Based on
Hall’s Theorem, we have the following observation:

Observation 1. For any MMS-feasibility graph G, there is
no perfect matching for G if and only if there exists a subset
S ⊆ N , such that |S| > |L(S)|.

By Observation 1, it suffices to consider the case where
there exists a subset S ⊆ N such that |S| > |L(S)|. Other-
wise, we can find a perfect matching which implies an MMS
allocation. Note that A is the MMS partition of agent 1,
we have |L({1})| = 3. Since A is a partition of M , we
have |L({i})| ≥ 1 for every agent i ∈ N . Otherwise, we
have a contradiction since

∑3
j=1 ci(Aj) > 3 · MMSi =

3 · maxj ci(Aj) ≥
∑3

j=1 ci(Aj). Therefore, |S| > |L(S)|
happens only if |S| = 2 and 1 /∈ S. In other words, it suf-
fices to consider the case when |L({2, 3})| = 1. We assume
w.l.o.g. that L({2, 3}) = {A1} as shown in Figure 1a. Next,
we investigate further properties of partition A.

N A

1

2

3

A1

A2

A3

(a) G has no perfect matching only if |L({2, 3})| = 1.

N A

1

2

3

A1

A2

A3

For all i ̸= 1

ci(A2) > MMSi +
1
6

ci(A3) > MMSi +
1
6

(b) Illustration for the case when all assignments of the
bundles require a total subsidy > 1/6. Every dashed
edge represents that the corresponding assignment re-
quires subsidy > 1/6.

Figure 1: Illustration of the Critical Case for Focus.

We first consider the case where there exists a bundle A ∈
A \ {A1} with ci(A) ≤ MMSi + 1/6 for some i ∈ {2, 3}.
Note that L({5 − i}) = {A1}, we can assign bundle A1 to
agent 5 − i, bundle A to agent i, and the remaining bundle
to agent 1. Since all bundles are MMS-feasible to agent 1
and bundle A1 is MMS-feasible to agent 5 − i, agent i is the
only one that needs to be subsidized, while the subsidy can
be bounded by 1/6. Hence it remains to consider the case
that both A2, A3 costs are larger than MMSi + 1/6 to agent

i ∈ {2, 3}, i.e., for all i ∈ {2, 3} we have

ci(A1) < MMSi − 1/3,

ci(A2) > MMSi + 1/6,

ci(A3) > MMSi + 1/6,

where the first inequality follows from the fact that ci(M) ≤
3 ·MMSi. See Figure 1b for an illustration.

In the following, we take the perspective of agent 2 and
show that there exists j ∈ {2, 3} and another partition of
items in A1 ∪ Aj into two bundles, such that at least one
bundle has cost at most MMS2 + 1/6 (under c2).
Lemma 3.3. When c2(A2) > MMS2 + 1/6 and c2(A3) >
MMS2 + 1/6, there exists j ∈ {2, 3} such that

MMS2(A1 ∪Aj , 2) ≤ MMS2 + 1/6.

Before presenting the proof the lemma, we show that
Lemma 3.3 implies Theorem 3.1.
Proof of Theorem 3.1. We assume w.l.o.g. that MMS2(A1∪
A2, 2) ≤ MMS2 + 1/6. Let {B1, B2} be the partition that
defines MMS2(A1 ∪A2, 2), e.g., we have

max{c2(B1), c2(B2)} ≤ MMS2 + 1/6. (1)

Then we can assign A3 to agent 1, let agent 3 pick her
preferred bundle between B1, B2, and assign the remaining
bundle to agent 2. Since

c3(B1 ∪B2) = c3(A1 ∪A2) = c3(M)− c3(A3)

≤ 2 ·MMS3 − 1/6,

there exists a bundle that is MMS-feasible to agent 3. Since
A3 is MMS-feasible to agent 1, agent 2 is the only agent that
needs to be subsidized. Following Equation (1), the subsidy
required by agent 2 is bounded by 1/6.

Hence, it remains to prove Lemma 3.3, which will be pre-
sented in the next two subsections. Suppose MMS2(A1 ∪
Aj , 2) > MMS2 + 1/6 for both j ∈ {2, 3}, we show that
there are several structural properties of A (see Lemma 3.8
for details), for which we conclude that there is no partition
guaranteeing MMS2, as a contradiction. During the analysis,
we will implement the classic load-balancing procedure as
an analysis tool to guarantee some partition with nice proper-
ties. Hence, we first introduce the load-balancing procedure
and some necessary claims.

3.2 Load-Balancing and Its Properties
Given a set of items M ′, a number n′, and a cost function
c, the algorithm processes items in decreasing order of costs
under c and assigns each item to the bundle with the minimum
cost (see Algorithm 1 for the details). Next, we introduce
some definitions and useful properties. As before, we take the
perspective of agent 2 and will omit phrases such as “from the
perspective of agent 2” when the context is clear.
Definition 3.4 (Large Item). We call an item e ∈ M large if
c2(e) > 1/2. Let L = {e ∈ M : c2(e) > 1/2} be the set of
large items.
Definition 3.5 (Top and Bottom Sets). Given any subset S ⊆
M , we define Top(S, t) as the set containing the t items in
S with the largest cost (under c2), Bottom(S, t) as the set
containing the t items in S with the lowest cost (under c2).
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Algorithm 1: Load-Balancing(M ′, n′, c)
Require: Item set M ′, number n′, and cost function c

with c(e1) ≥ c(e2) ≥ · · · ≥ c(em′).
1: for all k from 1 to n′ do
2: Pk ← ∅;
3: end for
4: Let N ′ = {1, 2, . . . , n′};
5: for j = 1, 2, . . . ,m′ do
6: k∗ ← argmink∈N ′{c(Pk)};
7: Update Pk∗ ← Pk∗ + ej ;
8: end for
9: return A partition P = {P1, . . . , Pn′}.

Lemma 3.6 is a standard property of the load-balancing.
Lemma 3.6. Given a partitionP returned by load-balancing,
for any P, P ′ ∈ P , any e ∈ P , we have ci(P − e) ≤ ci(P

′).

Proof. Note that the algorithm allocates items with decreas-
ing cost. To prove the lemma, it remains to consider the last
item e that is allocated to bundle P . Before allocating this
item e, bundle P must be the bundle with the minimum value,
which proves the lemma.

When all items are large and the number of items is even,
the following lemma characterizes the structural properties of
the load-balancing output.
Lemma 3.7. Suppose M ′ contains only large items, |M ′| is
even and n′ = 2, the output P = (P1, P2) of load-balancing
satisfies |P1| = |P2| and |c2(P1)− c2(P2)| < 1/2.

Proof. We prove the claim by induction on |M |. The claim
is trivially true when |M | = 0. Suppose the claim holds for
|M | ≤ 2t, and we now prove it for |M | = 2t+ 2.

> 1
2

e1

...

P ′
1

...

P ′
2

< 1
2

(a) Both bundles have t items.
The cost difference is ≤ 1/2.

e1

...

P ′
1

...

P ′
2

(b) After assigning e1 to P ′
1,

we have c2(P
′
1) > c2(P

′
2).

Figure 2: Illustration of allocating e1, e2.

Let P ′
1 and P ′

2 be the two bundles right after the moment
when load-balancing has allocated 2t items. By induction hy-
pothesis, we have |P ′

1| = |P ′
2| and |c2(P ′

1)− c2(P
′
2)| < 1/2.

If c2(P ′
1) = c2(P

′
2), the load-balancing procedure will assign

the remaining two item to P ′
1, P

′
2 respectively and result in

|c2(P1)−c2(P2)| < 1/2. Consider otherwise and we assume
w.l.o.g. that c2(P ′

1) < c2(P
′
2).

Let e1 and e2 be the remaining two items with c2(e1) ≥
c2(e2). Following the load-balancing procedure, item e1 will

be assigned to P ′
1 because c2(P

′
1) < c2(P

′
2). Recall that

c2(P
′
1) > c2(P

′
2) − 1/2. Since e1 is a large item, we have

c2(P
′
1 + e1) > c2(P

′
2)− 1/2 + c2(e1) > c2(P

′
2).

Therefore, e2 will be assigned to P ′
2 and the resulting bun-

dles are P1 = P ′
1 + e1 and P2 = P ′

2 + e2. See Fig-
ure 2 for an illustration. Thus, we have |P1| = |P2|. Let
d = c2(P1) − c2(P2) == c2(P

′
1) − c2(P

′
2) + c2(e1) −

c2(e2). We have d < 1/2 since c2(e1) − c2(e2) < 1/2
and c2(P

′
1) − c2(P

′
2) is non-positive. Similarly, d > −1/2

since c2(P
′
1) − c2(P

′
2) < −1/2 and c2(e1) − c2(e2) is non-

negative.

3.3 Proof of Lemma 3.3
We have described the necessary properties of the load-
balancing subroutine, with which we are ready to prove
Lemma 3.3. Assume for contradiction that the statement in
Lemma 3.3 does not hold, i.e., for both j ∈ {2, 3} we have
MMS2(A1 ∪ Aj) > MMS2 + 1/6. The following lemma
characterizes the structural properties of such instances.

Lemma 3.8. If for all j ∈ {2, 3}, MMS2(A1 ∪ Aj) >
MMS2 + 1/6, then for all j ∈ {2, 3}, we have

1. |(A1∪Aj)∩L| is odd, i.e., ∃k such that |(A1∪Aj)∩L| =
2k + 1.

2. c2(Bottom((A1 ∪Aj) ∩ L, k + 1)) > MMS2 + 1/6;

3. |A1 ∩ L|+ 1 = |Aj ∩ L| = k + 1.

Proof. Fix any j ∈ {2, 3} and let P = {P1, P2} be the parti-
tion output by Load-Balancing((A1 ∪Aj), 2, c2). We assume
w.l.o.g. that c2(P1) ≤ c2(P2), we show that the cost differ-
ence of two bundles is bounded.

Claim 3.9. Given any partition {B1, B2} of A1 ∪ Aj with
c2(B2) ≥ c2(B1), we must have c2(B2)− c2(B1) > 1/2.

Proof. Assume otherwise that c2(B2)− c2(B1) ≤ 1/2. Note
that {B1, B2} is a partition of A1 ∪Aj , we have

c2(B1) + c2(B2) = c2(A1 ∪Aj)

= c2(M)− c2(A5−j) < 2 ·MMS2 − 1/6.

Combining the two equations, we obtain

c2(B2) < MMS2 + 1/6.

Note that we must have MMS2(A1 ∪ Aj) ≤ c2(B2). This
implies that MMS2(A1∪Aj) < MMS2+1/6, which contra-
dicts our assumption.

SinceP = {P1, P2} is a partition of A1∪Aj , by Claim 3.9,
we have c2(P2) − c2(P1) > 1/2. Following Lemma 3.6, for
all e ∈ P2 we have c2(e) ≥ c2(P2)− c2(P1) > 1/2. In other
words, all items in P2 are large.

We first show that |(A1∪Aj)∩L| is odd (Property (1)). For
the sake of contradiction, we assume that it is even. Note that
the load-balancing procedure will distribute large items first.
Following Lemma 3.7, we have c2(P2 ∩ L)− c2(P1 ∩ L) <
1/2. Since all items in P2 are large, we have P2 ∩ L = P2

while P1 ∩ L ⊆ P1. Hence we have

c2(P2)− c2(P1) ≤ c2(P2 ∩ L)− c2(P1 ∩ L) < 1/2,
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which is a contradiction. Hence |(A1∪Aj)∩L| is odd and we
define k =

|(A1∪Aj)∩L|−1
2 , which means that |(A1 ∪ Aj) ∩

L| = 2k + 1. Let

Q1 = Bottom((A1 ∪Aj) ∩ L, k + 1)

Q2 = (A1 ∪Aj) \Q1,

which defines a new partition {Q1, Q2} of A1∪Aj . We claim
that c2(Q1) ≥ c2(Q2), following which we have

c2(Bottom((A1 ∪Ai) ∩ L, k + 1))

= c2(Q1) ≥ MMS2(A1 ∪Aj , 2) > MMS2 + 1/6,

which proved Property (2).

Claim 3.10. c2(Q1) ≥ c2(Q2).

Proof. Assume otherwise that c2(Q1) < c2(Q2). Note that
Q1 contains the smallest k + 1 large items and |Q1| = |B2|.
Recall that c2(B2) > c2(B1), there must exist e1 ∈ B1, e2 ∈
B2 such that c2(e2) > c2(e1). By swapping items e1 and
e2, i.e., B′

1 = B1 − e1 + e2, B′
2 = B2 + e1 − e2, we have

c2(B
′
1) > c2(B1) and c2(B

′
2) < c2(B2). Note that we can

always implement such an item swap to decrease c2(B2) and
increase c2(B1) until c2(B2) ≤ c2(B1). Let e1 ∈ B1, e2 ∈
B2 be the last item pair swapped, after which B1 becomes
B′

1, and B2 becomes B′
2. Note that c2(B1) < c2(B2), and

c2(B
′
1) ≥ c2(B

′
2). By Claim 3.9, we have c2(B2)−c2(B1) >

1/2. Since both e1, e2 are large, we have c2(B′
1)− c2(B1) <

1/2 and c2(B2)− c2(B
′
2) < 1/2. Then we have

c2(B
′
1)− c2(B

′
2) ≤ c2(B1) +

1

2
− (c2(B2)−

1

2
)

= c2(B1)− c2(B2) + 1 <
1

2
.

By Claim 3.9, there is a contradiction.

Lastly, we move to the correctness of Property (3). Recall
that |(A1 ∪Aj)∩L| = 2k+1. Hence it suffices to show that
|A1 ∩ L| = k. We first show that |A1 ∩ L| ≤ k. Suppose
otherwise, we have

c2(A1) ≥ c2(A1 ∩ L)
≥ c2(Bottom((A1 ∪Aj) ∩ L, k + 1))

> MMS2 + 1/6,

which is a contradiction. |A1∩L| ≤ k implies that |Aj∩L| ≥
k + 1. We further show that |Aj ∩ L| ≤ k + 1 that matches
the lower bound. For the sake of contradiction, assume that
|Aj ∩ L| > k + 1. We have

c2(Aj) ≥ c2(Aj ∩ L)
> c2(Bottom((A1 ∪Aj) ∩ L), k + 1) + 1/2

> MMS2 + 2/3,

Let Q1, Q2 be the corresponding partition of MMS2(A1 ∪
A5−j , 2) with c2(Q1) ≥ c2(Q2). We have

c2(Q1) ≥ MMS2(A1 ∪A5−j , 2) > MMS2 + 1/6,

which implies c2(Q2) > MMS2 + 1/6− 1. Hence

c2(M) = c2(Q1) + c2(Q2) + c2(Aj) > 3 ·MMS2,

which is a contradiction. In conclusion we have |A1∩L| = k
and |Aj ∩ L| = k + 1.

...
k items

A1 ∩ L

...
(k + 1) items

A2 ∩ L

(a) |A1 ∩ L| = k, |A2 ∩ L| = k + 1.

...
k items

A′

...
(k + 1) items

A′′

(b) A′=Top(A1 ∪A2, k), A
′′ = Bottom((A1 ∪A2) ∩

L, k + 1).

Figure 3: Consider A1 ∩ L and A2 ∩ L as two bundles. Consider
another partition of (A1 ∪A2) ∩ L: A′ = Top(A1 ∪A2, k), A′′ =
Bottom((A1 ∪ A2) ∩ L, k + 1). For all e1 ∈ A′, e2 ∈ A′′, e2 is
smaller than e1. In addition, for any 1 ≤ i ≤ k, the i-th costly item
in A′ has a cost larger than the i-th costly item in A1.

Finally, we prove Lemma 3.3.
Proof of Lemma 3.3. We prove the lemma by contradiction.
Suppose for all j ∈ {2, 3} we have

MMS2(A1 ∪Aj , 2) > MMS2 + 1/6.

Let k = |A1 ∩ L|. By Lemma 3.8, we have

|A2 ∩ L| = |A3 ∩ L| = k + 1,

which implies |L| = 3k + 2. Now consider the partition
(P1, P2, P3) that defines MMS2, e.g., we have c2(Pj) ≤
MMS2 for all j ∈ {1, 2, 3}. Assume w.l.o.g. that |P1 ∩ L| ≤
k. We have

c2(P2 ∪ P3) ≥ c2(Bottom(L, 2k + 2))

= c2(Bottom((A1 ∪A2) ∩ L, k + 1))

+ c2(Bottom(Top(A1 ∪A2, k) ∪ (A3 ∩ L), k + 1))

≥ c2(Bottom((A1 ∪A2) ∩ L, k + 1))

+ c2(Bottom((A1 ∪A3) ∩ L, k + 1))

> 2 ·MMS2 + 1/3.

The equality holds due to the following argument: Let
A′ = Top(A1∪A2, k). It is evident that any item in Top(A′∪
A3, k) is larger than any item in Bottom((A′∪A3)∩L, k+1)
since there are 2k+1 large items in A′∪A3. To establish the
equality, we need to show that any item in Top(A′ ∪A3, k) is
larger than any item in Bottom((A1 ∪A2) ∩ L, k + 1). This
holds true because every item in Top(A1 ∪ A2, k) is larger
than any item in Bottom((A1 ∪ A2) ∩ L, k + 1), and for
1 ≤ i ≤ k, the i-th item in Top(A′ ∪A3, k) is larger than the
i-th item in A′ = Top(A1 ∪A2, k).
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The second inequality holds because both Top(A1∪A2, k)
and A1 has k large items, and for 1 ≤ i ≤ k, i-th largest
item in Top(A1 ∪ A2, k) is larger than the i-th largest item
in A1 (See Figure 3 for an illustration). The last inequality
follows from Lemma 3.8. Hence we have a contradiction as
c2(P2 ∪ P3) ≤ 2 ·MMS2.

3.4 Lower Bound

In this section, we focus on the correctness of Theorem 3.2.
We remark that Feige et al. [2021] presented a negative in-
stance for the existence of MMS allocations, in which there
are three agents and nine items and items can be presented in
a three-by-three matrix (see the following illustration).(

e1 e2 e3
e4 e5 e6
e7 e8 e9

)

While all agents have a maximin share of 43, they showed
that for all allocations, at least one agent receives a bundle of
cost at least 44. Specifically, in their negative example, the
maximum item cost is 26. By normalizing the cost functions,
the same instance provides a lower bound of 1/26 subsidy
with respect to our setting. In the following, we present an
example specifically for the subsidy setting, improving the
lower bound from 1/26 to 2/49. Our construction follows
the same framework as Feige et al. [2021].

They characterized two possible structures for the poten-
tial hardness examples. For both structures, agents can be
named as R (stands for row), C (stands for column), and U ,
where the MMS partition of agent R (resp., C) is into the
three rows (resp. columns). As for agent U , the first possi-
ble MMS partition is {e2, e4}, {e3, e5, e7}, {e1, e6, e8, e9},
while the second possible partition is {e2, e4}, {e1, e5, e9},
{e3, e6, e7, e8}. Since each structure induces linear con-
straints on the valuation functions of the agents, by adding
additional constraints that limit each allocation to being not
MMS, they set up a linear program that produces negative
examples. When setting the objective to be the maximum ap-
proximation ratio, the LP admits a solution with a ratio of
44/43. We follow the same framework that implements an
LP to produce negative examples. A subtle difference is that
we need some instances that admit the maximum required
subsidy. To achieve the objective, we fix the subsidy to 1 and
minimize the maximum item cost. We provide the complete
code of our LP in Supplementary Material. Our LP generates
an instance for which any allocation requires a total subsidy
of at least 2/49. For ease of presentation, in the following, we
present the scaled instance in which the (minimum) required
subsidy is exactly 1.

Consider the following instance with 3 agents and 9 items.
The agents are referred to as R, C, and U , where the MMS
of each agent is 46. The cost function of agent R is presented
in the following matrix:(

8 21 17
23 14 9
16 12 18

)
.

The cost function of agent C is as the following matrix:(
8 21 18
23 14 10
15 11 18

)
.

The cost function of agent U is as the following matrix.
The MMS partition is {e2, e4}, {e3, e5, e7}, {e1, e6, e8, e9},
in which each bundle has a cost of exactly 46: 8 + 1

6 21.5 17 + 1
3

24.5 14 + 1
3 8 + 1

6
14 + 1

3 11 + 1
3 18 + 1

3

 .

We claim that in any allocation, at least one agent receives
a bundle cost of at least 47. We verify this by enumerating all
allocations in the experiment. We provide the complete code
for verification in Supplementary Material. Note that in the
above instance, the maximum item cost is 24.5, while for all
positive allocations, there is at least one agent who receives a
bundle cost of 47 and needs to be subsidized 1. After normal-
ization, the required subsidy is at least 2

49 ≈ 0.0408.

4 Conclusion and Open Questions
In this paper, we investigate the total subsidy required to
achieve MMS (for both the allocation of goods and chores).
We show that a total subsidy of 1/6 suffices to satisfy MMS
allocations when there are only three agents. Our work is the
first to apply the framework of subsidy to the fairness notion
of MMS, demonstrating that using the properties of MMS, a
small subsidy is enough.

Our work leaves many interesting questions open. There
is still a gap between the upper and lower bounds for both
cases of goods and chores. We remark that during our analy-
sis, we only make use of the properties of the MMS partitions
for agents 1 and 2. It would be interesting to close this gap,
possibly by leveraging the MMS properties of agent 3. Ad-
ditionally, it is worth exploring whether our framework can
be generalized to more than three agents. Note that Wu et
al. [2023] showed that a total subsidy of n/4 is necessary to
achieve proportionality. It would be more than interesting to
evaluate if an upper bound strictly smaller than n/4 can be
achieved for general n, which separates the notion of MMS
and proportionality in the subsidy setting. Another interest-
ing direction is to investigate the weighted setting, i.e., APS
allocations with subsidy. It is worth mentioning that both
weighted envy-freeness [Aziz et al., 2024a; Dai et al., 2024;
Elmalem et al., 2024] and weighted proportionality [Wu and
Zhou, 2024] have been studied in the subsidy setting.
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