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Abstract

Existing multimodal models typically assume the
availability of all modalities, leading to signifi-
cant performance degradation when certain modal-
ities are missing. Recent methods have intro-
duced prompt learning to adapt pretrained models
to incomplete data, achieving remarkable perfor-
mance when the missing cases are consistent dur-
ing training and inference. However, these meth-
ods rely heavily on distribution consistency and
fail to compensate for missing modalities, limit-
ing their ability to generalize to unseen missing
cases. To address this issue, we propose Memory-
Driven Prompt Learning, a framework that adap-
tively compensates for missing modalities through
prompt learning. The compensation strategies are
achieved by two types of prompts: generative
prompts and shared prompts. Generative prompts
retrieve semantically similar samples from a prede-
fined prompt memory that stores modality-specific
semantic information, while shared prompts lever-
age available modalities to provide cross-modal
compensation. Extensive experiments demonstrate
the effectiveness of the proposed model, achieving
significant improvements across diverse missing-
modality scenarios, with average performance in-
creasing from 34.76% to 40.40% on MM-IMDb,
62.71% to 77.06% on Foodl01, and 60.40% to
62.77% on Hateful Memes. The code is available
at https://github.com/zhao-yh20/MemPrompt.

1 Introduction

The field of multimodal learning has made remarkable
progress, primarily driven by the capability of transformer to
effectively integrate diverse modalities [Akbari ef al., 2021;
Nagrani et al., 2021]. These models exploit the complemen-
tarity and associations among modalities to achieve excellent
performance in tasks such as image captioning, visual ques-
tion answering, and cross-modal retrieval [Shao et al., 2023;
Stefanini et al., 2022; Wang et al., 2016]. Despite these ad-
vancements, a critical challenge remains: the performance of
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multimodal models degrades substantially when one or more
modalities are missing. Existing multimodal models typically
assume that all modalities are available during both training
and inference [Kim et al., 2021]. In real-world applications,
incomplete data is common due to sensor failures or privacy
concerns. This reliance on complete data limits their robust-
ness and impedes their deployment in practical scenarios.

Previous researches on handling missing modalities pri-
marily focus on multi-stream multimodal architectures,
which often reconstruct missing modality features based on
available modalities [Ma et al., 2021; Wang et al., 2023;
Woo et al., 2023]. These paradigms require retraining the
model on incomplete data to enable the model to cope with
missing modalities scenarios. Recently, multimodal mod-
els based on unify transformers have demonstrated power-
ful performance. [Ma et al., 2022] first explored robust-
ness against missing modalities in unified multimodal trans-
former, and introduce multi-task training approach to im-
prove model performance. As the model scale continues to
grow, some researcher introduced the parameter efficient fine-
tuning to copy with missing modalities cases for avoiding ex-
pensive computation cost. [Lee et al., 2023] designed specific
prompts tailored to different missing-modality cases, while
[Shi et al., 2024] introduce modality-aware adapter to disease
diagnosis for handling missing scenarios.

However, there are still several limitations. First, they fail
to leveraging existing samples and available modalities to
compensate for the missing modality information. Unlike
multi-stream architectures, unified transformer model con-
catenate all modality features into a unified representation,
which makes it challenging to disentangle individual modali-
ties. This constrains the ability to reconstruct missing modal-
ity representations using existing ones. Second, current ap-
proaches focus on transferring pretrained models to miss-
ing modality scenarios, resulting in failing to handle unseen
missing scenarios during training. These methods often rely
on customized prompts tailored to specific missing scenarios
during training. As a result, they rely heavily on pre-defined
missing scenarios, making them inflexible when faced with
unseen combinations of missing modalities during inference.
For instance, the training data is only accompanied with miss-
ing text modality, the model performance deteriorates signif-
icantly when the visual modality is missing during inference.
Therefore, in incomplete data scenarios, it is crucial to fully
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utilize the available information to compensate for missing
information, thereby enhancing the multimodal model’s ro-
bustness and its ability to handle diverse missing scenarios.
To address the above limitations, we propose Memory-
Driven Prompt Learning (MemPrompt), an approach that
adaptively compensates for missing modality information to
enhance model generalization and robustness. Due to the dif-
ficulty of disentangling individual modality representations in
multimodal transformer architectures, we design a prompt-
based strategy that leverages two complementary informa-
tion sources: (1) semantically similar samples from the cur-
rent modality, and (2) shared information from the avail-
able modalities. To achieve this, we introduce two types of
prompts: generative prompts and shared prompts. Generative
prompts are dynamically retrieved from a predefined prompt
memory, which stores semantic information of all samples for
each modality, enabling the retrieval of semantically similar
samples to compensate for missing information. Addition-
ally, shared prompts establish cross-modal associations, al-
lowing existing modalities to provide relevant information for
missing modalities. Extensive experiments demonstrate that
our method achieves state-of-the-art performance, regardless
of whether the missing modalities during training and infer-
ence are consistent or not. This is attributed to the effec-
tiveness of our compensation mechanism, which dynamically
leverages both intra-modal and cross-modal information.
The main contributions can be summarized as follows:

* We propose Memory-Driven Prompt Learning for mul-
timodal models to handle diverse missing modality sce-
narios. This approach employs a prompt-based strategy
to compensate for missing information.

The missing information is compensated through two
complementary prompts: generative prompts, which re-
trieve semantically similar features from a predefined
prompt memory, and shared prompts, which utilize
cross-modal associations to supplement the missing in-
formation.

L]

Extensive experiments on three benchmark datasets
demonstrate the superior performance of the proposed
method, validating its effectiveness and adaptability,
even under inconsistent missing modality scenarios.

2 Related Work

2.1 Multimodal Learning with Missing Modalities

Multimodal learning aims to fuse diverse modalities to lever-
age richer information, thereby enhancing model perfor-
mance [Kim et al., 2021; Akbari et al., 2021; Radford et al.,
2021; Bao et al., 2022]. Conventional approaches typically
assume that all modalities are available during both training
and inference. However, in real-world applications, certain
modalities may be unavailable, resulting in model perfor-
mance significantly deteriorates|[Ma er al., 2021; Ma et al.,
2022; Wang et al., 2023; Shi et al., 2024]. Consequently,
many researchers have focused on improving the robustness
of multimodal models in scenarios with missing modalities
[Zhao et al., 2024b; Reza et al., 2024; Yang et al., 2024,
Wu et al., 2024b]. Existing methods attempt to simulate the

missing modality data during training so that the model can
generalize to the missing modalities scenarios. They primar-
ily focus on reconstructing missing modality features from
available ones. For instance, [Woo er al., 2023] proposed
ActionMAE, which reconstructs features of missing modal-
ities using the remaining modalities. Similarly, [Wang et al.,
2023] introduced Shared-Specific Feature Modeling, which
improves robustness by learning both shared and modality-
specific features. However, the above approaches require to
retrain the model, which undoubtedly increases the compu-
tational overhead. Some methods generalize the model to
different missing scenarios through parameter-efficient fine-
tuning. [Reza e al., 2024] proposed parameter-efficient adap-
tation techniques to compensate for missing modalities. [Lee
et al., 2023] introduced missing-aware prompts to general-
ize pretrained models to handle missing modality scenarios,
while MoRA [Shi et al., 2024] employs distinct modality-
aware up-projections within LoRA [Hu er al., 2021] to en-
able modality-specific adaptations. However, these approach
fail to employ existing information to compensate for missing
modalities, thus resulting in performance drop under incon-
sistent missing cased during training and inference.

2.2 Prompt Learning

As the scale of transformer-based models continues to grow,
the cost of fully fine-tuning these pretrained models is becom-
ing increasingly prohibitive. Prompt learning has emerged
as an efficient paradigm that leverages task-specific prompts
to guide pretrained models, enabling them to adapt to down-
stream tasks with minimal fine-tuning while fully utilizing
the knowledge embedded within the pretrained models [Li
and Liang, 2021; Jia et al., 2022; Petrov ef al., 2024]. This
approach has been widely adopted in visual tasks [He et
al., 2023a; Han et al., 2023] and multi-modal learning [Roy
and Etemad, 2024; Park er al., 2024; Xin et al., 2024b;
Khattak et al., 2023a; Zhao et al., 2024al. Visual prompt
learning [Jia ef al., 2022; He et al., 2023b; Han et al., 2023;
Wang et al., 2024] introduces a small number of trainable
parameters at the input layer while keeping the pretrained
model frozen. In the multi-task learning domain, works
such as [Xin et al., 2024a; Xin et al., 2024b] have em-
ployed prompt learning to align text and visual modalities
during the fine-tuning process. In multi-modal learning,
studies like [Zhou et al., 2022; Khattak et al., 2023a] uti-
lize prompt learning to enhance few-shot learning perfor-
mance. Furthermore, researchers have addressed the issue
of over-fitting in prompt learning [Khattak et al., 2023b;
Roy and Etemad, 2024] and explored the integration of
parameter-efficient fine-tuning (PEFT) with expert systems
to enhance the model’s representation capabilities [Li ef al.,
2024; Wu et al., 2024a]. In this work, we employ a prompt
learning strategy to address missing modality scenarios by
compensating for the absent information.

3 Method

3.1 Problem Definition

For simplicity and without loss of generality, we consider a
multimodal dataset consisting of two modalities, denoted as
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Figure 1: An overview of the proposed framework. The model incorporates two types of prompts: generative prompts and shared prompts.
Generative prompts are adaptively retrieved from a modality-specific prompt memory, while shared prompts are mapped to each modality via
a mapping function. The prompts are directly added to the corresponding modality features, while the pretrained backbone remains frozen,

with only the prompts and task-specific layers updated.

M = 2, with modalities m and ms. The dataset is defined as
D = {D¢, D™ D™}, where D¢ = {x",z;"?,y;} repre-
sents the subset with complete pairs, and D™ = {z7"!,y;}
and D™ = {z]?,y;} denote incomplete modalities (i.e.,
only my or msy is available). To align with the input re-
quirements of the multimodal model, we use dummy in-
puts to simulate missing modalities (e.g., empty charac-
ters/pixels for text/image). Specifically, the subsets D"
and D™ are transformed into D™ = {z}"',77"*,y;} and

D™ = {&,",x"*, yr} , respectively, to ensure consistent
input structure for the model. 2! and 2™ denote dummy
inputs for the missing modalities. The resulting training
dataset, comprising both complete data and transformed in-
complete data, is defined as D = { D¢, D™t D™2}.

3.2 The Overall Framework

Given the pretrained multimodal model F', which comprises a
patch embedding layer and stacked transformer blocks, each
block consists of a multi-head self-attention (MHSA) and
an MLP layer. For multimodal input, each modality is en-
coded separately and combined with position embeddings,
modality-type embeddings, and class embeddings to produce
f9, € REmixDPand f0 € REm2*P where L,, represents
the embedding length and D denotes the embedding dimen-
sion. The encoded representations are then concatenated to

form the model input: h® = [f° L 7912]. Each transformer
block is defined as Eq.(1):
= fa(hY)  ie0,0) ()

where f; represents the parameters of the i-th block, and [
denotes the total number of transformer blocks.

To address missing modality scenarios, we propose
Memory-Driven Prompt Learning (MemPrompt), which
compensates for missing modality information by query-
ing semantically similar samples within the current modality

and leveraging cross-modal associations. The whole frame-
work is shown in Fig.1. Specifically, these two compensa-
tion strategies are implemented using generative prompts and
shared prompts, respectively. The construction process of
these prompts is detailed in Sec. 3.3. Here, we define the
generative prompts as Py ,, and the shared prompts as P ,,,
where m = {mj, ma}. Unlike previous approaches that di-
rectly concatenate prompts with input representations, our
method constructs separate prompts for each modality and
prepends them to their respective modality features. After
adding the prompts, the input to each transformer block is
represented as:

h* = D% my > Pgomys Fons s Pomas Pymas Frnnl - ()
where f. and f; _ denote the features of each modality in
the i-th transformer block. The newly constructed h? is then
processed by Eq.(1) to produce the final outputs.

During training, the pretrained backbone remains frozen,
and only the added prompts and task-specific layers are fine-
tuned. Let 6 represent the additional prompts-related param-
eters and 60, represent the task-specific parameters of the clas-
sification layer. The final loss function is defined as:

L = Ltask(xinlaxi '9;075) (3)

mo?
where x!, and x, denote inputs that may contain miss-
ing modalities, and L., represents the task-specific training

loss, typically the cross-entropy loss.

3.3 Prompts Design

In unified transformer models, disentangling individual
modalities from the unified representation is challenging. To
address this, we employ a prompt-based strategy to com-
pensate for missing information. Specifically, the compen-
sation is derived from two sources: (1) semantically simi-
lar samples within the current modality and (2) complemen-
tary information from the available modalities. To achieve
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these goals, we decompose the vanilla prompts into gener-
ative prompts and shared prompts. The generative prompts
are adaptively constructed from a predefined prompt mem-
ory based on the current input. This prompt memory stores
prior information about specific modalities, enabling it to
provide approximate feature representations to compensate
for missing modalities. In contrast, shared prompts primar-
ily establish cross-modal relationships. When one modality
is missing, the shared prompts allow the available modality
to provide complementary information. Unlike previous ap-
proaches, our method does not rely on predefined missing-
modality scenarios, enabling it to effectively handle a wider
range of missing-modality conditions. Details of the genera-
tive prompts and shared prompts are discussed below.

Generative Prompts

Unlike custom-designed prompts tailored to specific missing-
modality cases, generative prompts are adaptively con-
structed based on the current input, providing a flexible
mechanism to enhance the robustness of multimodal mod-
els. Specifically, let the input features at the i-th transformer
block be h' = [fZ, , f.], where f! and f.  represent the
features of each modality. For each modality, the generative
prompts are constructed as:

p;m = PromptMem(fi ) m € {my, ma} ()]

m

where PromptMem is the prompt memory that contains a set
of prompts and their associated weights, storing prior feature
information for each modality to effectively handle missing-
modality scenarios. During training, the feature information
of each modality is stored in the memory. When a sample
encounters a missing modality, similar features are retrieved
from the memory, and generative prompts are adaptively built
to compensate for the missing information.

The prompt memory is defined as PromptMem =
{(pk,qr), k € [1,K]}, where pr, € RE*P represents the
prompt embeddings, ¢, € RPdenotes the associated coeffi-
cients, K is the memory size, L is the prompt length, and D is
the feature dimension. To evaluate the similarity between the
current input and the prompts in the memory, we first com-
pute the cosine similarity between f,, and ¢, followed by
softmax normalization:

wy, = softmax(cos(frm, qx)) Q)

where wy, represents the similarity between the current input
and each prompt in the memory. The /N most similar prompts
are then selected, and a weighted summation is performed to
generate the final generative prompt:

N
Pgm = »_ Wk - Pk (6)
=1

Shared Prompts

In multimodal models, inter-modal semantic associations ex-
ist between different modalities and can be leveraged to com-
pensate for missing modality information. Specifically, when
one modality is absent, the available modalities can utilize
these associations to partially compensate for the missing in-
formation. To achieve this, we establish cross-modal con-
nections by shared prompts, thereby enhancing the model’s
robustness under missing-modality scenarios.

Shared prompts, denoted as pé, are first constructed and
then mapped to the respective modalities. This design allows
the shared prompts to capture common features across modal-
ities while the mapping functions learn modality-specific in-
formation. The mapping process is defined as:

Pom = Gm(py)  m € {m1,ma} (7
where G, is a bottleneck network consisting of an MLP and
activation functions, significantly reducing the trainable pa-
rameters.

The constructed generative prompts pg ., and shared

prompts ps ,,, are integrated to Eq.(2). The updated h® are
send to Eq.(1) to derive the output for each transformer block.

4 Experiments

4.1 Datasets

We evaluated our proposed method on three widely used
datasets: MM-IMDb [Arevalo et al., 2017], UPMC Food101
[Wang et al., 20151, and Hateful Memes [Kiela et al., 2020].

MM-IMDb. The MM-IMDb dataset is a benchmark for
multimodal movie genre classification, consisting of 25,959
movies. Each sample includes textual and visual information,
such as movie posters and plot summaries, making it a chal-
lenging dataset for integrating diverse modalities.

UPMC Food101. The UPMC Food101 provides a multi-
modal benchmark for food image classification, featuring im-
ages and rich textual metadata across 101 food categories.
The metadata includes ingredient lists and cooking methods,
offering critical contextual information to enhance model per-
formance in understanding complex visual and textual cues.

Hateful Memes. The Hateful Memes dataset, developed
by Facebook Al is designed to evaluate multimodal hate
speech detection. This datasets is designed to promote multi-
modal models perform well while restrain the unimodal mod-
els performance by adding challenging samples (“benign con-
founders”).

4.2 TImplementation Details

For fair comparison, we adopted the same data processing
methods as in prior work on the three benchmarks [Lee et al.,
2023]. The maximum text input lengths were set according
to the specific datasets: 1024 for MM-IMDb, 512 for UPMC
Food-101, and 128 for Hateful Memes. We employed the
multimodal transformer ViLT [Kim et al., 2021] as the back-
bone model. The pretrained VILT model was frozen, and
only the learnable prompts and classification layer were fine-
tuned on the target datasets. The lengths of the generative
and shared prompts were set to 16 for MM-IMDb and UPMC
Food101, and 4 for Hateful Memes. This is due to the short
text input length (128 tokens) of Hateful Memes necessitated
shorter prompt lengths to facilitate model optimization. The
prompt memory was configured with N as 5 and memory
size as 16. Generative and shared prompts were added only
to the first 6 transformer blocks. All experiments used the
AdamW optimizer, with an initial learning rate of 5 x 10~3
for MM-IMDb and UPMC Food-101, and 1 x 10~3 for Hate-
ful Memes. The weight decay rate was set to 2 x 1072, All
experiments were conducted on NVIDIA 4090Ti GPUs.
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. Training Inference . MAP MAP

Dataset Missing Rate Image Text | Image  Text ViLT (Attention)  (Input) Ours
100%  30% | 35.09 35.82 36.03 3847

100%  30% 30% 100% | 28.21 28.76 21.02 35.06

65% 65% | 31.77 33.33 30.72  37.60

100%  30% | 29.64 25.30 22.08 34.86

1(\;11\/_[1_\}[1:[(:]?5 70% 30% 100% | 30% 100% | 37.65 44.46 44.64 48.59
65% 65% | 34.71 36.38 35.00 42.14

100%  30% | 34.23 35.77 37.55 39.09

65% 65% 30% 100% | 35.19 42.08 4435 45.37

65% 65% | 36.10 39.51 4148 4247

100%  30% | 67.25 73.54 7425 7515

100%  30% 30% 100% | 46.13 27.82 27.82  80.81

65% 65% | 51.90 51.38 51.17 17811

Food101 100%  30% | 42.38 39.98 29.68 60.63
(Accuracy) 70% 30% 100% | 30% 100% | 76.43 85.68 86.30 86.52
65% 65% | 58.90 62.68 5793 74.07

100% 30% | 64.47 71.31 7224  72.39

65% 65% 30% 100% | 73.04 85.28 8591 86.12

65% 65% | 70.13 78.39 79.11  79.76

100%  30% | 60.95 61.66 59.13  60.26

100%  30% 30% 100% | 59.36 59.44 57.55 59.64

65% 65% | 61.37 58.50 58.08 62.55

Hateful Memes 100% 30% | 56.07 59.04 59.32  59.82
(AUROC) 70% 30% 100% | 30% 100% | 63.11 64.57 65.27 65.63
65% 65% | 59.42 58.33 58.82  65.12

100% 30% | 59.48 61.06 61.03 61.91

65% 65% 30% 100% | 62.91 61.75 64.05 64.26

65% 65% | 61.80 58.10 60.35 65.74

Table 1: Quantitative results on the MM-IMDB, UPMC Food-101, and Hateful Memes benchmarks. The missing rate 1% is set to 70% during
both train and inference. Given the fix missing case during training, we evaluate all models under various missing cases during inference.

The best performance is in bold.

Missing modalities setting. During training, we followed
the missing scenarios configurations outlined in [Lee ef al.,
2023]. Three missing-modality scenarios were examined:
missing text, missing image, and missing both. For the miss-
ing text and missing image cases, a total missing ratio of 1%
was applied, while for the missing both scenario, each modal-
ity was missing at a ratio of 7% individually. The missing
data were simulated by replacing the corresponding modal-
ity with dummy inputs (e.g., empty characters for text and
blank pixels for images). To evaluate the generalization of
the model, we trained it with specific missing modality con-
figurations and tested it across all three scenarios.

4.3 Results and Analysis

Various missing modality scenarios are configured during
both training and inference, including inconsistent missing
cases between these stages. This setup provides a compre-
hensive evaluation of the model’s robustness and generaliza-
tion. Given a specific missing modality scenario during train-
ing, we assessed the model performance under different miss-
ing scenarios during inference. We compared our proposed
method with two existing approaches, VIiLT [Ma et al., 2022]
and MAP [Lee et al., 2023], across three benchmarks: MM-

IMDb, Food101, and Hateful Memes. The experimental re-
sults are summarized in Tab.1. Attention and input refer to
different prompt placement strategies within MAP.

The compared results reveal two key points: First, when
the missing modality scenario during training and inference
are consistent, our model demonstrates noticeable improve-
ments over the previous SOTA methods. For instance, on the
MM-IMDb dataset, our model outperforms previous method
under different missing conditions, achieving improvements
such as 36.03 to 38.47 in the text-missing case, 44.64 to 48.59
in the image-missing case, and 41.48 to 42.47 in the both-
missing case. Second, when the missing modality scenarios
during training and inference are inconsistent, our model sig-
nificantly outperforms the baseline methods. For instance, on
the Food-101 dataset, when the model is trained under the text
missing scenario but tested under the image missing scenario,
our model achieves a remarkable performance improvement
from 27.82 to 80.81. Conversely, when trained with miss-
ing images and tested with missing text, the performance in-
creases from 39.98 to 60.63. These results demonstrate that
our model effectively compensates for missing modality in-
formation, enabling it to handle unseen missing modality sce-
narios during inference.
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Figure 2: Quantitative results across various missing rates on the MM-IMDDbD dataset. We set the missing cases as missing text, missing image,
and missing both respectively during training, with a fixed missing ratio of 70%. During inference, the model is evaluated under different

missing cases across varying missing rates.

Missing type | Baseline w/ps, W/ p, Full
Missing Text 70% 31.69 3286 35.13 37.04
Missing Image 70% 3400 39.73 40.81 41.86
Missing Both 70% 35.17 40.74 4125 4231

Table 2: Ablation studies. We evaluate the effectiveness of each
module on MM-IMDb datasets. p, indicates shared prompts, while
pg represents generative prompts. we configured missing text, miss-
ing image, and missing both scenarios with 70% missing ratio dur-
ing training. The results represent the average performance across
all missing scenarios.

4.4 Ablation Studies

Evaluation under different missing rates. This section
evaluates the model’s robustness under varying missing rates.
The missing rate is fixed during training, while the model is
assessed under various missing rates during inference. Ex-
periments were conducted on the MM-IMDb dataset. Dur-
ing training, missing cases were configured as follows: 70%
missing text, 70% missing images, and 70% missing both.
For inference, the missing rates ranged from 0% to 100%.
The results are presented in Fig. 2. The results indicate that
our method consistently outperforms previous models across
all scenarios. When the missing cases during training and
inference are consistent, our method achieves slightly better
performance. Notably, when the missing cases during train-
ing and inference are inconsistent, previous models exhibit a
significant performance drop, while our model remains stable
across varying missing settings.

Furthermore, as the missing ratio increases, the perfor-
mance of our model degrades more gradually, demonstrating
its ability to effectively compensate for missing information.
These findings emphasize the adaptability of our method un-
der varying missing ratios, highlighting its superior capabil-
ity to maintain performance across unseen missing configu-
rations compared to previous methods.

Effect of each module. Our method incorporates two key
components: generative prompts and shared prompts. To
evaluate the contribution of each module, we conduct ablation

studies on the MM-IMDb dataset, assessing the model perfor-
mance under three different missing cases. Using the ViLT
pretrained model as the baseline, we separately add genera-
tive prompts and shared prompts to examine their individual
impact. Results show that adding either generative prompts
or shared prompts alone significantly improves the model’s
robustness in handling missing modality scenarios. Further-
more, the last column in Tab. 2, representing the full model
with both prompts, demonstrates that combining generative
and shared prompts provides a synergistic effect, achieving
the highest performance across all settings. This confirms
that the two modules complement each other, with generative
prompts dynamically retrieving semantically similar features
and shared prompts establishing cross-modal associations to
compensate for missing modalities more comprehensively.

Comparison with complete training data. In real-world
scenarios, complete data pairs are sometimes available for
training. To further evaluate our model, we trained it on com-
plete data and evaluated its performance under various miss-
ing rates during inference. For evaluation, we averaged the
results across the missing-text, missing-image, and missing-
both cases to derive the final metric. The results, shown in
Fig. 3(a), indicate that all models perform well when the test
data is also complete. However, as the missing rate increases,
the performance of previous methods declines significantly,
while our model demonstrates greater stability and robust-
ness.

Results of different missing rates during training. We
evaluated the model by training with different missing rates
(10%, 30%, 70%, 90%) and testing under varying missing
rates during inference, with results shown in Fig. 3(b). In this
part, the missing-both case was used for training, and the re-
sults represent the average performance across the missing-
image, missing-text, and missing-both cases. Our model
demonstrates strong generalization ability, maintaining con-
sistent performance across different missing rates. This sug-
gests that the proposed method effectively compensates for
missing information, allowing the model to adapt to diverse
scenarios. Notably, under high missing rates during train-
ing, the model achieves better performance when tested under
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Figure 3: More ablation studies. The results are averaged over different missing scenarios (missing text, missing image, and missing both).
(a) Model trained on complete data and tested under various missing scenarios across different missing rates. (b) Model trained with different
missing rates (10%, 30%,50%,70%) under missing both case, with results averaged over all missing scenarios. (c) Effect of prompt layers:
Generative prompts are fixed in first 6 layers while varying the shared prompt layers from 1 to 6, and vice versa.

Memory Size | 8 12 16 20 24
Missing Text | 35.99 36.68 37.04 3541 3543
Missing Image | 41.47 40.75 41.86 4127 41.57
Missing Both | 41.67 41.51 4231 41.08 41.52

Table 3: Impact of prompt memory size.

similarly high missing rates. This result aligns with previous
findings [Lee er al., 2023] and highlights the robustness of
our approach in handling incomplete data distributions.

Number of prompt layers. In the proposed method, we
designed generative prompts and shared prompts and inte-
grated them into the pretrained model. This section examines
the impact of the number of prompt layers on model perfor-
mance. Specifically, generative prompts are fixed in 6 layers,
while the number of shared prompt layers is varied from 1 to
6. Conversely, shared prompts are fixed in 6 layers, and the
number of generative prompt layers is varied. The results in-
dicate that although performance fluctuates slightly at certain
points, the overall trend shows improvement as the number of
layers increases.

Analysis of memory size. The prompt memory is designed
for each modality to store its feature information through a
series of prompts. Generative prompts are adaptively con-
structed by retrieving relevant information from the prompt
memory to compensate for missing modalities. In this sec-
tion, we analyze the impact of memory size K on model per-
formance using the MM-IMDb dataset. As shown in Tab. 3,
model performance initially improves as memory size in-
creases, reaching its peak at K = 16. This suggests that
a larger memory provides more diverse prompts and effec-
tively captures modality-specific features. However, further
increasing the memory size slightly reduces performance,
likely due to increased complexity. These results highlight
the importance of selecting an appropriate memory size to
balance adaptability and efficiency.

Effect of prompt location. In our proposed method,
prompts for each modality are directly added to their asso-

Prompt Location | Pre-Append Distributed

Missing Text 33.98 37.04
Missing Image 40.74 41.86
Missing Both 41.51 42.31

Table 4: Results of different prompt location.

ciated modality features, as shown in Eq. (2). To analyze the
impact of prompt location, we conducted an ablation study
comparing two strategies: Pre-Appended Prompting and Dis-
tributed Prompting. The Distributed Prompting strategy, as
defined in Eq. (2), places generative and shared prompts di-
rectly before their respective modality features. In contrast,
the Pre-Appended Prompting strategy combines the genera-
tive and shared prompts of all modalities and appends them
at the beginning of the input sequence. The results, shown in
Tab. 4, demonstrate that Distributed Prompting consistently
outperforms Pre-Appended Prompting. This suggests that
aligning prompts closely with their associated features leads
to better model performance.

5 Conclusion

In this paper, we proposed Memory-Driven Prompt Learn-
ing, a novel framework designed to tackle the challenges
posed by missing modalities in multimodal learning. Our ap-
proach introduces a compensation mechanism that integrates
two complementary strategies: retrieving semantically rele-
vant information from the missing modality itself and lever-
aging cross-modal associations derived from the available
modalities. These strategies are realized through two types
of prompts—generative prompts, which dynamically retrieve
information from a prompt memory to compensate for miss-
ing modality features, and shared prompts, which infer and
supplement common semantic information from the available
modalities. Extensive experiments on multiple benchmarks
demonstrate that our method significantly enhances model ro-
bustness and achieves state-of-the-art performance under di-
verse missing modality scenarios.
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