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Abstract
Recent methods leverage a hypernet to handle
the performance-fairness trade-offs in federated
learning. This hypernet maps the clients’ prefer-
ences between model performance and fairness to
preference-specifc models on the trade-off curve,
known as local Pareto front. However, exist-
ing methods typically adopt a uniform preference
sampling distribution to train the hypernet across
clients, neglecting the inherent heterogeneity of
their local Pareto fronts. Meanwhile, from the per-
spective of generalization, they do not consider the
gap between local and global Pareto fronts on the
global dataset. To address these limitations, we
propose HetPFL to effectively learn both local and
global Pareto fronts. HetPFL comprises Prefer-
ence Sampling Adaptation (PSA) and Preference-
aware Hypernet Fusion (PHF). PSA adaptively de-
termines the optimal preference sampling distri-
bution for each client to accommodate heteroge-
neous local Pareto fronts. While PHF performs
preference-aware fusion of clients’ hypernets to en-
sure the performance of the global Pareto front. We
prove that HetPFL converges linearly with respect
to the number of rounds, under weaker assumptions
than existing methods. Extensive experiments on
four datasets show that HetPFL significantly out-
performs seven baselines in terms of the quality of
learned local and global Pareto fronts.

1 Introduction
Federated Learning (FL) [McMahan et al., 2017] is an emerg-
ing machine learning paradigm that designed to train neural
network models using data silos while preserving data pri-
vacy. In recent years, FL has achieved remarkable success
across various domains, including healthcare [Rieke et al.,
2020], fintech [Imteaj and Amini, 2022], and the Internet of
Things (IoT) [Nguyen et al., 2021]. As FL continues to de-
velop, the issue of group fairness has become an increasingly
significant focus. Specifically, there are two primary types of
group fairness in FL: client-based fairness [Li et al., 2019;

∗Corresponding Author.

Figure 1: The impact of different sampling distributions under two
clients. The dotted vectors represent preferences for model’s per-
formance and fairness. The pink and green points are loss vectors
of the model after evaluation on the local dataset on client (a) and
client (b), respectively. A uniform preference sampling distribution
cannot achieve the best result of learning local Pareto fronts based
on Lemma 1. Instead, sampling distribution (I) is suitable for client
(a), and sampling distribution (II) is suitable for client (b).

Lyu et al., 2020; Wang et al., 2021] and group-based fairness
[Yue et al., 2023; Deng et al., 2020]. Client-based fairness
aims to minimize the variance in model performance across
clients while preserving the overall model performance. Our
work focuses on group-based fairness, which ensures that
a model performs equitably across different demographic
subgroups (e.g., male or female) within each local dataset
[Kamishima et al., 2012; Roh et al., 2020].

Recent studies have focused on improving the group-
based fairness of FL by proposing data sampling strate-
gies and designing new optimization objectives. In terms
of data sampling strategies, FedFB [Zeng et al., 2021] ad-
justs the sampling probabilities of subgroup samples dur-
ing training, increasing the probability of underperform-
ing groups to achieve group fairness. Meanwhile, FairFed
[Ezzeldin et al., 2023] adopts a fairness-aware model ag-
gregation scheme. Regarding the design of optimization
objectives, LFT+FedAvg [Zeng et al., 2023] incorporates
group fairness as a constraint during local training. FAIR-
FATE [Salazar et al., 2023] introduces a linear combina-
tion of model performance and group fairness as its objec-
tive function. In fact, a trade-off exists between model per-
formance and model fairness, meaning that improving fair-
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ness often comes at the cost of performance. With respect
to efficiency, learning the entire performance-fairness trade-
off curve (i.e., the Pareto front) for each client offers a more
flexible scheme. Moreover, in terms of generalization, it
is crucial to consider the quality of the global Pareto front
on the global dataset. Recent studies [Lin et al., 2022;
Ye et al., 2025] have introduced hypernets to learn the lo-
cal Pareto front on the local dataset by modeling the map-
ping from a predefined preference distribution to preference-
specific models. However, these methods still exhibit limita-
tions in efficiency and generalization within the FL context:

• Efficiency: As shown in Fig. 1, the heterogeneity of
data in FL results in differences in the positions of lo-
cal Pareto fronts across clients. Each local Pareto front
has its own optimal preference sampling distribution.
However, prior approaches assume a uniform preference
sampling distribution across clients, which is inefficient
for learning local Pareto fronts.

• Generalization: Achieving both optimal local and
global Pareto fronts presents inherent conflicts. Prior ap-
proaches primarily focus on improving the local Pareto
front while neglecting the global Pareto front.

Addressing these limitations presents several challenges. In
terms of efficiency, determining the optimal preference sam-
pling distribution for each client is non-trivial, as the position
of each client’s local Pareto front (ground truth) is initially un-
known. Regarding generalization, aggregating clients’ mod-
els to construct the optimal global model is difficult, as it
requires identifying the strengths of each client’s model for
different preferences while maintaining data privacy.

In this paper, we propose HetPFL to efficiently learn both
local and global Pareto fronts. HetPFL consists of Preference
Sampling Adaptation (PSA) and Preference-aware Hypernet
Fusion (PHF). PSA dynamically adjusts the preference sam-
pling distribution by introducing data-driven HyperVolume
Contribution (HVC), which quantifies each preference’s con-
tribution to the learned Pareto front. We then jointly optimize
the preference sampling distribution based on HVC and the
client’s model as a bi-level optimization problem to enhance
local Pareto front learning efficiency. To improve the global
Pareto front, PHF considers a preference-aware hypernet ag-
gregation at the server by identifying the capability of each
client’s hypernet for various preferences.

The primary contributions of this work are as follows:
• We propose a HetPFL framework that efficiently learns

the heterogeneous local Pareto fronts across clients us-
ing PSA, while simultaneously achieving a high-quality
global Pareto front through PHF;

• We analyze the convergence rate of HetPFL within the
FL system and establish an error convergence rate of or-
der O

(
1
t

)
. This result is particularly challenging to de-

rive due to the interdependence of the different compo-
nents in the FL system;

• Extensive experiments on four datasets demonstrate
that HetPFL outperforms the best-performing baseline,
achieving approximately 1.75% and 5.5% improve-
ments in the quality of the learned local and global

Pareto fronts, respectively.

2 Problem Formulation
Let x ∈ X , y ∈ Y denote features and label, respectively.
The features in x ≜ (a, b) contain sensitive features a (e.g.,
gender, race) and non-sensitive features b. Suppose there are
K clients, and each client k ∈ [K] has a local dataset, denoted
by Dk. The classifier fθk

with learnable parameters θk of
client k outputs a prediction fθk

(x) from an input data x.
According to [Zeng et al., 2021], we define loss functions

for model performance and fairness, respectively. Usually,
model performance is characterized using cross-entropy loss

ℓCE(x, y |fθk )=−[y log(fθk (x))+(1−y) log(1−fθk (x))]. (1)

We use following loss function to quantify model fairness:

ℓF (x, y | fθk
) =

[
(a− āk)(fθk

(x)− f̄θk
(x))

]
, (2)

where āk and f̄θk
(x) represent the average values of a and

fθk
(x) over Dk, respectively. ℓF measures the correlation

between sensitive features and model predictions. When the
model prediction exhibits a stronger correlation with sensi-
tive features, the value of ℓF rises, signaling a reduced model
fairness.

The trade-off between ℓCE and ℓF is quantified using a
preference vector λ ∈ Λ = {λ ∈ R2

+ |
∑2
i=1 λi =

1}. Following [Ye et al., 2025], we introduce a hypernet
hβk

: R|λ| → R|θk| with learnable parameters βk, which
maps a preference vector λ to a preference-specific model
θk = hβk

(λ). We aim at optimizing βk to improve model
performance and fairness (i.e., reducing the losses in Eqs. (1)
and (2)), for which we can define a weighted Tchebycheff
scalar loss [Miettinen, 1999] for each preference vector λ:

min
βk

gtch(x, y, hβk
(λ) | λ)= max

j∈{CE,F}

{
ℓj(x, y | hβk

(λ)

λj

}
. (3)

Eq. (3) satisfies the following Lemma [Miettinen, 1999]:
Lemma 1 (Preference Alignment). Given a preference vec-
tor λ, a preference-specific model hβk

(λ) is weakly Pareto
optimal to the problem (3) if and only if hβk

(λ) is optimal
for problem (3).

Lemma 1 guarantees that when hβk
(λ) is optimal for prob-

lem (3), the loss vector (ℓCE , ℓF ) of hβk
(λ) on dataset Dk

aligns exactly with the direction of the preference vector and
lies on the Pareto front, as shown by the points in Fig. 1.

We consider optimizing Eq. (3) over the preference distri-
bution Λk of each client k, and define the following goal for
the local Pareto front learning of client k.

min
βk

Eλ∼Λk
E(x,y)∈Dk

gtch(x, y, hβk
(λ) | λ), (4)

where Λk is unknown in advance and depends on the po-
sition of the Pareto front of client k. Preference vector λ
is sampled from Λk. Once Eq. (4) is completed, the hy-
pernet can receive all possible preference vectors as inputs,
generating a corresponding set of preference-specific models
{θk = hβk

(λ) | λ ∼ Λm}. This model set is then evaluated
on the local datasetDk, and the evaluation results collectively
form the entire local Pareto front.
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Figure 2: HetPFL framework.

Similarly, the goal for the global Pareto front is to generate
an aggregated hypernet βg = 1

K

∑K
k=1 βk, which minimizes

the gtch(·) over the global dataset:

min
βg

1

K

K∑
k=1

Eλ∼ΛE(x,y)∈Dk
gtch(x, y, hβg (λ) | λ), (5)

where Λ can be an arbitrary distribution or defined as a com-
bination of Λ1, ...,ΛK .

Our goal is to optimize Eq. (4) for all clients while simul-
taneously optimizing Eq. (5). The primary challenge in Eq.
(4) arises from the distinctiveness of each client’s local Pareto
front. This implies the necessity of approximating preference
distribution Λk for each client k to effectively learn the lo-
cal Pareto fronts. For Eq. (5), the optimization objectives
for local and global Pareto fronts are inherently conflicting,
preventing simultaneous optimality for both.

3 Methodology
This section presents our HetPFL framework. We provide
an overview and introduce the two main components, PSA
and PHF, of HetPFL in Sections 3.1–3.3. Sections 3.4–3.5
describe the optimization procedure of HetPFL and analyze
its convergence properties.

3.1 Overview
Fig. 2 shows our proposed HetPFL. The foundational com-
ponents of HetPFL include communicated model ψ, hyper-
net hβk

, preference sampling distribution p(αk), and Fusion-
Net Wφ. HetPFL can be divided into two phases. Phase (I)
focuses on efficiently learning the local Pareto fronts for all
clients, while Phase (II) aims to learn the global Pareto front.

Phase (I)
In this phase, we aim to optimize the hypernet, sampling dis-
tribution, and the communicated model. The communicated
model ψ transforms the features into d-dimensional latent
features and is periodically aggregated at the server, as in
FL. The hypernet hβk

is kept locally at the client in Phase

(I). Its role is to map an arbitrary preference vector λ into
a preference-specific model hβk

(λ), and then hβk
(λ) trans-

forms the d-dimensional latent features to label. For each
client k, we denote fθk|λ = (ψ, hβk

(λ)).
Previous works simply set preference sampling distribu-

tion p(αk) to be uniform across all clients. In contrast, we
consider jointly optimizing the hypernet hβk

and p(αk):

min
βk,αk

Eλ∼p(αk)E(x,y)∈Dk
gtch(x, y, fθk|λ), (6)

where αk are the parameters of p(αk). HetPFL improves
the efficiency of learning local Pareto fronts by identifying
a suitable p(αk) for each client over the preference space.
Meanwhile, the communicated model optimized to improve
the model performance of all clients:

min
ψ

1

K

K∑
k=1

E(x,y)∈Dk

[
ℓCE(x, y, fθk|λ̃)

]
, (7)

where fθk|λ̃ = (ψ, hβk
(λ̃)) and λ̃ is a predefined preference

vector. The details of update steps for Eqs. (6) and (7) are
provided in Section 3.4.

Phase (II)
Unlike previous works that overlook the global Pareto front,
Phase (II) focuses on addressing this gap. After the final
round, clients first transmit their hypernets and latent features,
Qk = ψ(x) | (x, y) ∈ Dk, to the server. The server then
uses FusionNet, Wφ, with parameters φ to learn effective
aggregation strategies for these hypernets, tailoring the aggre-
gation process to different preference vectors. Notably, trans-
mitting only the latent features of the dataset is a common
practice to mitigate privacy concerns [Thapa et al., 2022].

Given this framework, two key questions remain to be ad-
dressed. First, how can p(αk) be determined in Phase (I) to
enable efficient learning of local Pareto fronts? Second, how
to optimize FusionNet in Phase (II)? These questions will be
explored in the following two subsections.
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3.2 Preference Sampling Adaptation
In Phase (I), we propose Preference Sampling Adaptation
(PSA) to determine p(αk). Determining p(αk) involves op-
timizing the quality of the sampled preference vectors during
training. This process is non-trivial and unfolds in two steps:
first, evaluating the quality of the sampled preference vectors
without a true Pareto front (ground truth); and second, inte-
grating the optimization of p(αk) into the hypernet’s training.

For the first step, we introduce a data-driven Hypervolume
Contribution (HVC) indicator to assess the quality of sampled
preference vectors. Despite the absence of a true local Pareto
front, it allows for quantifying each preference vector’s con-
tribution based on the training losses.
Definition 1 (HVC). Given a reference point r. Let
S(λ, r) =

{
q ∈ R2 | ℓ(x, y | fθk|λ) ≤ q and q ≤ r

}
, and

the hypervolume of a set of N preference vectors Λαk
=

{λ1, ...,λN | λi ∼ p(αk)} is

Hr (Λαk ) = L

 ⋃
λ∈Λαk

S(λ, r)

 ,

where L(·) denotes the Lebesgue measure and q represents
any point in the gray area in the left figure of Fig. 3. The HVC
of fθ|λi for the set Λαk

is the difference between Hr(Λαk
)

andHr(Λαk
\ λi), as follows:

HCr(λi | Λαk
) = Hr(Λαk

)−Hr(Λαk
\ λi).

Fig. 3 shows that the HVC of fθk|λi is the difference be-
tween the HV of the full set of five models and that of the set
excluding fθk|λi . The larger HCr(λi | Λαk

), the greater the
contribution of λi, indicating a higher quality of λi.

We then move on to the second step. Based on HVC, we
propose the following bi-level optimization objective to al-
ternately optimize the hypernet and the preference sampling
distribution of client k:

min
αk

Eλ∼p(αk)E(x,y)∈Dk
[−HCr (λ | Λαk )], (8)

s.t. βk = argmin
βk

Eλ∼p(αk)E(x,y)∈Dk
[gtch(x, y, fθk|λ)], (9)

where fθk|λ =
(
ψk, hβk

(λ)
)
. The bi-level optimization first

optimizes the hypernet as in Eq. (9). Then, the sampling
distribution is further refined based on the solution of Eq. (9).
As shown in Fig. 2, it makes the sampling distribution at the
next iteration more beneficial to local Pareto front learning.

3.3 Preference-aware Hypernet Fusion
In Phase (II), we propose a preference-aware hypernet fusion
(PHF) method. The intuition behind PHF is that each client’s
hypernet excels at specific preference vectors. Thus, for any
given preference vector, PHF learns the preference-aware ag-
gregation weight so that hypernets specializing in that vector
are given higher weight, thereby improving the quality of the
global Pareto front. As shown in Fig. 2, we introduce a Fu-
sionNet Wφ : R|λ| → RK>0 with parameters φ that learns
a mapping from any preference vector λ to a fusion weight
ω = Wφ(λ) ∈ RK . Based on the fusion weight, the hyper-
nets from all clients are linearly combined to form a global

Figure 3: An illustration of the HV and HVC of the loss vectors ℓ(i)

produced by evaluating a model set {fθk|λi}5i=1 corresponding to
five input preference vectors.

hypernet βg = Wφ(λ) · [β1, ...,βK ], where operation · is the
vector inner product. This process is optimized through

min
φ

Eλ∼Λ

[
1

K

K∑
k=1

gtch(Qk,Yk, fθg
k|λ)

]
, (10)

where fθg
k|λ = (ψ, hβg (λ)), and Yk represents labels on

dataset Dk. Recalling Lemma 1, the global hypernet fθg
k|λ

aggregated by FusionNet is optimized towards the direction
where the Pareto front intersects with λ. Once Eq. (10)
is solved, the mapping from preference vectors to fusion
weights during inference is highly efficient.

3.4 Algorithm: HetPFL
In this subsection, we present HetPFL algorithm to optimiz-
ing four components including communicated model ψ, hy-
pernet hβk

, preference sampling distribution p(αk), and Fu-
sionNet Wφ. At the beginning of Phase (I), each client down-
loads the global communicated model θ0k from the server.

In round t, the communicated model on client k is updated
through τc steps of gradient descent with a learning rate of ηt:

ψt ← ψt − ηtE(x,y)∈Dk
∇ψ

[
ℓCE(x, y | fθk|λ̃)

]
. (11)

To balance model performance and fairness, we set λ̃ to
( 12 ,

1
2 ) in Eq. (11). Then, we proceed to optimize the hyper-

net and the preference sampling distribution (in Eqs. (9) and
(8)). Note that lower-level problem (Eq. (9)) is a stochastic
optimization problem, which is challenging to solve directly
due to the expectation over preference distribution involving
infinite possible values. To address this, we approximate the
expectation term using Monte Carlo sampling and then solve
the Eq. (9) with τp steps of gradient descent

βt
k ← βt

k −
ηt
N

E(x,y)∈Dk

N∑
v=1

∇βk
gtch(x, y, fθk|λv |λv), (12)

where ηt denotes the learning rate, λv is a sampled preference
vector and N is the number of sampled preference vectors.

Solving the upper-level problem in Eq. (8) relies
on computing the HVC gradient, given by gαk

=
∇αk

Eλ∈Λαk
E(x,y)∈Dk

[−HCr(λ | Λαk
)]. However, since

this gradient is sometimes non-differentiable, we employ
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Natural Evolution Strategies (NES) [Salimans et al., 2017],
which yield gradient estimation ĝαk

for gαk
:

ĝαk
≈ Eλ∈Λαk

[−HCr(λ |Λαk
)∇αk log p(λ |αk)] , (13)

where Λαk
is the set of N preference vectors collected in

Eq. (12). This gradient computation method only requires the
preference sampling distribution p(αk) to be differentiable,
without the need for HVC function to be differentiable. Based
on Eq. (13), to optimize Eq. (8), αk is updated using the
gradient ĝα by performing τp steps of gradient descent:

αtk ← αtk − κtĝαk
, (14)

where κt is the learning rate. After round t is completed, all
clients transmit their communicated models ψk, k ∈ [K], to
the server. The server updates the communicated model by
performing an averaging aggregation

ψt+1
k =

1

K

K∑
k=1

ψtk. (15)

Subsequently, each client initializes the communicated model
as the aggregated model for round t+ 1.

Upon completing a total of T rounds, we proceed to Phase
(II), where the optimization of φt is updated by

φt ← φt− ηt
1

N

1

K

N∑
v=1

K∑
k=1

∇φgtch(Qk,Y, fθg
k|λ | λ), (16)

where ηt is the learning rate.

3.5 Theoretical Analysis
In this subsection, we theoretically analyze the convergence
of HetPFL algorithm. Our proof process is structured in two
main steps. Firstly, we establish an upper bound of the com-
municated model at any given round t. Next, we provide the
upper bound of the hypernet at any given round t.

To simplify the notation, we represent the expres-
sions of Eqs. (8) and (9) as ghvc(αk,βk) =
Eλ∼p(αk)E(x,y)∈Dk

[−HCr(λ | Λαk
)] and gtch(αk,βk) =

Eλ∼p(αk)E(x,y)∈Dk
[gtch(x, y, fθk|λ | λ)], respectively.

Based on [Hong et al., 2023], we make the following as-
sumptions.

Assumption 1. ∇βgtch(αk,βk), ∇2
αβgtch(αk,βk),

∇2
ββgtch(αk,βk), ∇αghvc(αk,βk), and ∇βghvc(αk,βk)

are Lipschitz continuous in βk with respective Lipschitz
constants Lt1, Lt2, Lt3, Lh1 and Lh2.

Assumption 2. ∇2
αβgtch(αk,βk),∇2

ββgtch(αk,βk),
∇βghvc(αk,βk) is Lipschitz continuous in αk with respec-
tive Lipschitz constants Lt4, Lt5 and Lh3.

Assumption 3. gtch(αk,βk) is µ1-strongly convex in βk,
and gtch(βk,α

∗
k) is µ2-strongly convex in βk, where α∗

k is
optimal sampling distribution for client k.

Assumption 4. The expectation of stochastic gradients is
always bounded. That is, ||∇2

αβgtch(αk,βk)|| ≤ G1,
||∇αghvc(αk,βk)|| ≤ G2, and ||∇βgtch(αk,βk)|| ≤ G3.

Let ∆t
βk

≜ E
[
||βtk − β

∗
k|αt−1

k
||2

]
denote the error be-

tween the hypernet at round t and the optimal hypernet
β∗
k|αt−1

k
given the sampling distribution p(αt−1

k ) in round

t−1. Let ∆t
ψk

≜ E
[
||ψtk −ψ

∗
k||2

]
denote the error between

the communicated model at round t and the optimal commu-
nicated model ψ∗

k. The communicated model has following
upper bound.
Lemma 2 (Convergence of the Communicated Model
[Collins et al., 2021]). If the communicated model ψ is op-
timized by FedAvg [McMahan et al., 2017] and given a con-
stant ζ > 0, then ψ converges to the optimal communicated
model ψ∗ at a linear rate:

∆t
ψk
≤ (1− ηζ)t/2 ∆0

ψk
, (17)

with a probability at least 1− te−100min(|x|2 log(|K|),d).
Lemma 2 shows that the error convergence rate is O( 1t ).

Under weaker assumptions compared to [Ye et al., 2025] (i.e.,
without requiring the initial convergence error of the hypernet
to be a constant multiple of the communicated model), we
establish the following upper bound for hypernet.
Theorem 1 (Convergence of the Hypernet). Under Assump-
tions 1-4 and Lemma 2, the upper bound of hypernet is

∆t+1
βk
≤ (

3

4
)τpt∆0

βk
+ z1(1− ηtζ)

t/4
√

∆0
ψk

+ z2(1− ηtζ)
t/2∆0

ψk
+

σ2
1µ1 + c21L

2
q1 +G2

3µ1

µ3
1

+ 2ηtLt1(1− ηtζ)
t/4

√
∆0
ψk

∆0
βk

,

(18)

where z1, z2 are constants, and ∆t
α0

= E
[
||α0

k −α∗
k||2

]
.

Theorem 1 guarantees an optimization error of order

O(( 34 )
τpt+(1−ηtζ)

t/4+(1−ηtζ)
t/2+

σ2
1µ1+c

2
1L

2
q1+G

2
3µ1

µ3
1

).

When t → +∞, ∆t+1
βk

converges to
σ2
1µ1+c

2
1L

2
q1+G

2
3µ1

µ3
1

. Due

to (1 − ηtζ)
t/4 being the dominant term in the error conver-

gence rate, the overall error convergence rate is O( 1t ).

4 Experiments
4.1 Experimental Settings
Datasets. Four widely-used datasets are employed to eval-
uate the performance of HetPFL, including a SYNTHETIC
[Zeng et al., 2021], COMPAS [Barenstein, 2019], BANK
[Moro et al., 2014], and ADULT [Dua et al., 2017].
Baselines. We compare HetPFL with seven state-of-the-
art methods, including two for addressing local fairness
(LFT+Ensemble and LFT+Fedavg [Zeng et al., 2023]), three
for global fairness (Agnosticfair [Du et al., 2021], FairFed
[Ezzeldin et al., 2023] and FedFB [Zeng et al., 2021]), one
for both local and global fairness ([Makhija et al., 2024]),
and one for learning performance-fairness local Pareto fronts
(PraFFL [Ye et al., 2025]). PraFFL is the most closely related
work to ours in learning Pareto fronts.
Metrics. Based on [Ezzeldin et al., 2023], we use the model’s
error rate to quantify its performance and the DP disparity
[Feldman et al., 2015] to measure its fairness, where a smaller
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Method
SYNTHETIC COMPAS BANK ADULT

Local HV Global HV Local HV Global HV Local HV Global HV Local HV Global HV

LFT+Ensemble 0.425 0.479 0.514 0.555 0.890 0.881 0.760 0.764
LFT+Fedavg 0.700 0.468 0.505 0.514 0.891 0.138 0.765 0.501
Agnosticfair 0.492 0.537 0.499 0.550 0.887 0.880 0.780 0.783
FairFed 0.339 0.367 0.418 0.434 0.889 0.878 0.267 0.270
FedFB 0.567 0.608 0.505 0.517 0.893 0.883 0.759 0.763
EquiFL 0.642 0.604 0.564 0.526 0.892 0.882 0.761 0.764
PraFFL 0.800 0.716 0.599 0.613 0.901 0.895 0.766 0.750
HetPFL (Ours) 0.830 0.827 0.623 0.626 0.904 0.898 0.783 0.846

Table 1: Averaged performance comparison of different methods across four datasets over three runs. The best results are highlighted in bold,
while the second-best results are underlined.

Figure 4: Comparison of global Pareto front obtained by our HetPFL algorithm and baselines on four datasets. A Pareto front closer to the
bottom-left corner indicates better performance.

DP disparity indicates a fairer model. Additionally, the hy-
pervolume (HV) [Zitzler and Thiele, 1999] is employed to
evaluate the quality of the learned Pareto front. We mainly
report local HV on local datasets and global HV on global
datasets.
Hyperparameters. Since PraFFL and HetPFL have the
ability to generate any number of models during inference,
we set them to generate 1,000 preference-specific models
each for evaluation. Our implementation is available at
https://github.com/rG223/HetPFL.

4.2 Experimental Results
Main Results. We draw two key conclusions based on Ta-
ble 1: (I) Methods capable of learning the Pareto front, such
as PraFFL and HetPFL, outperform those that do not in most
cases, in terms of both local HV and global HV. Fig. 4 shows
that PraFFL and HetPFL are capable of generating more mod-
els that caters to large-scale preferences; (II) PraFFL focuses
primarily on learning local Pareto fronts, it neglects the het-
erogeneity of Pareto fronts across clients and fails to ensure
the quality of the global Pareto front, leading suboptimal on
most datasets. In comparison, HetPFL outperforms PraFFL
in terms of local HV and global HV across four datasets,
achieving varying degrees of improvement. Fig. 4 indicates
that HetPFL outperforms PraFFL on SYNTHETIC, BANK,
and ADULT datasets. However, on the COMPAS, the Pareto

front splits into two segments with a 3% disconnection in
terms of DP disparity and error rate. HetPFL’s unimodal sam-
pling distribution prioritizes the tail regions’ benefits while
overlooking the middle sections compared to PraFFL.
Convergence Results. Fig. 5 shows the convergence com-
parison of PraFFL and HetPFL on the client local validation
set in each round. HetPFL shows consistently faster conver-
gence compared to the PraFFL, validating the effectiveness
of our proposed preference sampling adaptation method.
The Impact of Data Heterogeneity. Table 2 demonstrates
that HetPFL consistently achieves the best performance in
both local HV and global HV across all levels of data het-
erogeneity compared to seven baselines. Notably, the follow-
ing observations emerge: (I) Comprehensiveness: First five
baselines in Table 2 fail to learn the entire Pareto front and
struggle with high data heterogeneity. Their performance de-
teriorates as heterogeneity increases. HetPFL not only learns
the entire Pareto front but also handles high heterogeneity
effectively; (II) Scalability: When compared with personal-
ized FL methods such as EquiFL and PraFFL, our proposed
HetPFL excels in handling high data heterogeneity in both
local and global datasets. EquiFL and PraFFL are better at
handling high heterogeneity on local datasets, but they fail to
address heterogeneity effectively on the global dataset.
The Impact of the Number of Clients. We analyze Ta-
ble 3 from following two aspects: (I) Comprehensiveness:
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Figure 5: Convergence of HetPFL compared with PraFFL.

Method
Local HV Global HV

Heterogeneity Param. Heterogeneity Param.
0.1 5 1000 0.1 5 1000

LFT+Ensemble 0.311 0.481 0.463 0.487 0.487 0.475
LFT+Fedavg 0.593 0.692 0.701 0.468 0.468 0.468
Agnosticfair 0.417 0.535 0.526 0.537 0.537 0.537
FairFed 0.392 0.349 0.410 0.429 0.400 0.403
FedFB 0.518 0.602 0.597 0.616 0.615 0.607
EquiFL 0.734 0.626 0.615 0.584 0.644 0.643
PraFFL 0.802 0.781 0.789 0.707 0.744 0.768
HetPFL 0.808 0.806 0.810 0.820 0.791 0.817

Table 2: Performance comparison across different heterogeneity lev-
els on the SYNTHETIC dataset. The smaller the heterogeneity pa-
rameter, the greater the data heterogeneity.

The first six methods in Table 3, which lack the capability
to learn the Pareto front, exhibit limited performance in both
small and large-scale client scenarios, with both local HV and
global HV consistently below 0.7. In contrast, HetPFL not
only learns the Pareto front but also achieves the best perfor-
mance across all scenarios, with both local HV and global
HV exceeding 0.78; (II) Scalability: Compared to PraFFL,
HetPFL demonstrates clear advantages in large-scale client
scenarios. Notably, PraFFL tends to collapse in learning
the global Pareto front under large-scale settings, whereas
HetPFL consistently achieves the best results in both local
HV and global HV, regarding different client scales.
Ablation Study. Table 4 reveals two key observations: (I)
PSA enhances the learning ability of the local Pareto front.
On the SYNTHETIC dataset, the local HV improves from
0.80 to 0.83 with PSA. Similar improvements in local HV can
be observed across the other three datasets. (II) PHF enhances
the performance of the global Pareto front. Without PSA,
PHF achieves an approximately 8% improvement in global

Method
Local HV Global HV

Number of Clients Number of Clients
10 100 300 10 100 300

LFT+Ensemble 0.475 0.464 0.535 0.463 0.536 0.470
LFT+Fedavg 0.664 0.472 0.605 0.460 0.589 0.469
Agnosticfair 0.548 0.557 0.547 0.551 0.635 0.553
FairFed 0.414 0.326 0.413 0.372 0.381 0.353
FedFB 0.610 0.599 0.562 0.613 0.667 0.581
EquiFL 0.564 0.602 0.620 0.613 0.573 0.607
PraFFL 0.803 0.716 0.789 0.807 0.578 0.621
HetPFL 0.808 0.785 0.848 0.808 0.814 0.813

Table 3: Performance comparison of different methods across the
number of clients on SYNTHETIC dataset.

Dataset PSA PHF Local HV Global HV

SYNTHETIC

× × 0.800 0.719
× ✓ 0.800 0.793
✓ × 0.830 0.825
✓ ✓ 0.830 0.827

COMPAS

× × 0.599 0.613
× ✓ 0.599 0.639
✓ × 0.623 0.624
✓ ✓ 0.623 0.626

BANK

× × 0.901 0.895
× ✓ 0.901 0.896
✓ × 0.904 0.886
✓ ✓ 0.904 0.898

ADULT

× × 0.766 0.750
× ✓ 0.766 0.846
✓ × 0.783 0.813
✓ ✓ 0.783 0.846

Table 4: Ablation experiments on preference sampling adaptation
(PSA) and preference-aware hypernet fusion (PHF).

HV on the SYNTHETIC dataset (from 0.719 to 0.793). With
PSA, the improvement is smaller (i.e., 0.2%) due to the high
global HV had been achieved by PSA (i.e., 0.825). Similar
patterns can be observed on the other three datasets.

5 Conclusion
In this paper, we proposed HetPFL, a comprehensive method
for learning both local and global Pareto fronts in fair feder-
ated learning. First, HetPFL includes a Preference Sampling
Adaptation (PSA) approach, which adaptively learns the pref-
erence sampling distribution for each client. Second, HetPFL
incorporates a Preference-aware Hypernet Fusion (PHF) ap-
proach, which guides the generation of the global hypernet
by learning the mapping from preferences to fusion weights
at the server. We theoretically prove that HetPFL achieves
an error convergence rate of order O( 1t ). Experimental re-
sults demonstrate that HetPFL achieves superior performance
in learning both local and global Pareto fronts compared to
seven state-of-the-art methods across four datasets.
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