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Abstract
Fair graph neural networks aim to eliminate dis-
criminatory biases in predictions. Existing ap-
proaches often rely on adversarial learning to miti-
gate dependencies between sensitive attributes and
labels but face challenges due to optimisation diffi-
culties. A key limitation lies in neglecting intrinsic
causality, which may lead to the entanglement of
sensitive and causal factors, discarding causal fac-
tors or retaining sensitive factors in the final pre-
diction, especially on unbalanced datasets. To ad-
dress this issue, we propose a Causality-inspired
Disentangled framework for Fair Graph neural net-
works (CDFG). In CDFG, node representations are
conceptualised as a combination of causal and sen-
sitive factors, enabling fair representation learning
by only utilising the causal factors. We first use a
counterfactual data generation mechanism to gen-
erate counterfactual data with similar causal factors
but completely different sensitive factors. Then, we
input real-world data and counterfactual data into
the factor disentanglement module to achieve inde-
pendence and disentanglement between the causal
factors and sensitive factors. Finally, an adap-
tive mask module extracts the causal representation
for fair and accurate graph-based predictions. Ex-
tensive experiments on three widely used datasets
demonstrate that CDFG consistently outperforms
existing methods, achieving competitive utility and
significantly improved fairness.

1 Introduction
Graph Neural Networks (GNNs) have shown significant
promise in handling structured data [Zhang et al., ; Yan et al.,
2023], making them widely applicable in many fields [Guan
et al., 2024; Zhang et al., 2025a; He et al., 2025]. Despite
their utility, recent research has highlighted a concerning is-
sue: GNNs are prone to producing biased predictions [Dai
and Wang, 2022; Wang et al., 2022; Zhang et al., 2024;
Luo et al., 2024; Zhang et al., 2025b]. Particularly, in critical
decision-making scenarios [Xu et al., 2025; Yan et al., 2025;
Luo et al., 2025; Li et al., 2025], biased GNN predictions

can result in unequal access to opportunities. For example,
if historical data contain biases against students from certain
regions, the model might incorrectly link academic success to
geographic location. This could lead to the unfair rejection of
applicants from less developed areas, even if they have out-
standing academic achievements.

Recently, various GNN-based methods [Dai and Wang,
2022; Wang et al., 2022; Dong et al., 2022; Zhang et al.,
2024; Yang et al., 2024; Luo et al., 2024; Zhang et al.,
2025b] have been developed to enhance fairness without sig-
nificantly sacrificing their performance. One common ap-
proach involves incorporating fairness constraints [Dai and
Wang, 2022; Wang et al., 2022; Yang et al., 2024] to mit-
igate biases related to sensitive attributes (e.g., race or gen-
der). For instance, FairGNN [Dai and Wang, 2022] performs
adversarial training by setting up an additional discrimina-
tor that constrains the fairness of the representation, while
FairSIN [Yang et al., 2024] balances the distribution by ag-
gregating neighbours with different sensitive attributes before
performing adversarial training. These methods, however, of-
ten focus solely on statistical dependencies between data and
labels, disregarding the underlying causal mechanisms that
cause fairness issues.

Previous studies [Cheng et al., 2024b; Meng et al., 2025]
have demonstrated that adversarial learning is difficult to opti-
mise effectively. If adversarial training is performed directly
on representations entangled with causal and sensitive fac-
tors, it can easily lead to losing some of the causal factors
or retaining some of the sensitive factors in the prediction.
Some studies [Dong et al., 2022; Li et al., 2024; Zhang et al.,
2025b] as shown in Fig. 1 (a) have attempted to use coun-
terfactual inference to modify the data, but these methods
tend to only focus on the node attributes [Dong et al., 2022;
Ma et al., 2022; Li et al., 2024; Zhang et al., 2025b], ignoring
the bias embedded in the adjacency matrix. Therefore, ex-
isting methods often suffer from overfitting of some groups,
especially on unbalanced datasets.

Inspired by Reichenbach’s Common Cause Principle [Re-
ichenbach, 1991] and Independent Causal Mechanisms Prin-
ciple [Parascandolo et al., 2018], we assume that graph
data consist of independent causal and sensitive factors.
From a fairness perspective, we introduce a causal graph for
GNNs [Pearl, 2009], as shown in Fig. 1 (b). In this causal
graph, causal factors C and sensitive factors S are inter-
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Figure 1: (a) Prior studies have tended to only consider the effect
of sensitive factors on attributes and constrain the representation
through adversarial learning. (b) The causal graph of GNN from
a fairness perspective is presented in this paper. Both the adjacency
matrix and node attributes of the graph data are affected by causal
factors C and sensitive factors S.

twined, influencing both node attributes X and adjacency ma-
trix A. To achieve fair node representations, it is crucial to
ensure that (1) causal factors C are separated from sensitive
factors S, achieving disentanglement, and (2) causal factors
C are sufficient for accurately predicting the label Y . How-
ever, in graph data, causal and sensitive factors are not di-
rectly observed and can interact in intricate ways. Addition-
ally, GNNs introduce fairness issues in three main ways: (1)
the original features of the nodes are correlated with sensi-
tive attributes, leading to the unintentional inclusion of sen-
sitive information in the learned representations; (2) social
networks exhibit homophily [McPherson et al., 2001], where
similar nodes tend to connect, creating structural biases that
are challenging to eliminate; (3) the message passing mech-
anism [Xu et al., 2019] of GNN can make the sensitive in-
formation of a node leak to the neighbouring nodes, making
the causal and sensitive factors from the adjacency matrix and
node attributes further entangled.

To address these challenges, we propose a Causality-
inspired Disentangled framework for Fair Graph neural net-
works (CDFG), which is designed to extract causal factors.
Specifically, for the input graph data, we first utilise the coun-
terfactual data generation module to generate counterfactual
data with completely different sensitive factors S. Compared
with the real-world data, the counterfactual data has similar
causal factors C but different sensitive factors S. Subse-
quently, we constrain each dimension to be independent of
each other through the factor disentanglement module and
draw the distance between the counterfactual representation
and the real-world representation to ensure that a portion of
the dimensions of the real-world representation represents the
causal factors C. Finally, the causal representation represent-
ing the causal factors C was identified through the adaptive
mask module and used for prediction, achieving the best per-
formance in both fairness metrics and the F1 metric. Our
contributions are summarised as follows:

• We analyse the inherent causal mechanisms of graph
representation learning from a fairness perspective and
propose a new counterfactual generation mechanism.

• We propose a causality-inspired disentangled framework
for fair GNNs, achieving causal representations and en-

abling fair graph representation learning.

• Comprehensive experiments on three widely used
datasets demonstrate the effectiveness and fairness of
our approach.

2 Realted Works
Graph Neural Networks (GNNs) have demonstrated a strong
ability to learn representations of graph-structured data and
have been used for a variety of tasks, such as node classifi-
cation [Chen et al., 2024b; Chen et al., 2024a], graph clas-
sification [Wu et al., 2024]. Their remarkable success in
these different tasks has pushed GNNs to the forefront of
research and applications [Fu et al., 2023; Fu et al., 2024;
Guan et al., 2024; Liu et al., 2024; Liu et al., 2022], extend-
ing their utility to critical decision-making systems. There-
fore, the fairness of GNNs has received close attention.

Most of the fairness studies in GNN are based on sta-
tistical fairness [Kang et al., 2020; Dong et al., 2022;
Zhang et al., 2025b; Li et al., 2024; Ma et al., 2022],
where group fairness [Berk et al., 2021] is one of the most
popular concepts, which aims to provide equal opportuni-
ties for each group. Most of the past work is based on
adversarial learning to remove the effects brought by sen-
sitive factors [Dai and Wang, 2022; Wang et al., 2022;
Dong et al., 2022; Zhang et al., 2025b; Li et al., 2024;
Ma et al., 2022], but this may not be effective in removing
sensitive factors due to the instability of adversarial learn-
ing [Cheng et al., 2024b] or inadvertently lead to the removal
of some causal factors [Cheng et al., 2024a]. To address this
limitation, some researchers have proposed a series of meth-
ods from the counterfactual perspective [Dong et al., 2022;
Zhang et al., 2025b; Li et al., 2024; Ma et al., 2022], however,
these methods do not take into account the inherent structural
bias [Dong et al., 2022] that exists in the original adjacency
matrix. As a result, it cannot effectively address the overall
sensitivity factors in graph data. Both node attributes and ad-
jacency matrices are used as inputs to the GNN, and both are
affected by the causal factor C and the sensitivity factor S.
Therefore, in this paper, we propose a counterfactual method
that considers both node attributes and adjacency matrices,
effectively disentangles C and S, and achieves predictions
with both fairness and utility.

3 Preliminaries
In the node classification task pipeline, the node representa-
tions are obtained through a GNN g, and then use a classifier
f to make the final predictions. In the context of fair graph
representation learning, we aim to disentangle the causal fac-
tors C from the sensitive factors S that influence the distribu-
tion P (X,A, Y ).

Theorem 1 (Reichenbach’s Common Cause Principle [Re-
ichenbach, 1991]). If two random variables X and Y are
statistically dependent (X ̸⊥ Y ), then there exists a third
variable Z that causally influences both. (As a special case,
Z may coincide with either X or Y .) Furthermore, this vari-
able Z screens X and Y from each other in the sense that
given Z, they become independent, X ⊥ Y | Z.
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Figure 2: The overview of CDFG. After inputting the data, the whole framework is divided into four modules: (1) counterfactual data
generation, (2) graph embedding, (3) factor disentanglement, and (4) adaptive mask. The final prediction and constraints are performed
through the classifier and discriminator. The path of using counterfactual data is represented by dashed lines in the figure, and that of real-
world data is represented by solid lines.

Based on Fig. 1, we can deduce that if we consider X and
Y , as well as A and Y , are dependent. According to The-
orem 1, there must be a variable C that causally influences
both of them and makes (X,A) and Y conditionally inde-
pendent given C, i.e., (X,A) ⊥ Y | C. If we can en-
sure that C can effectively predict Y and is not affected by
sensitive factors, then we can achieve fair node classification
through P (Y | C). Fair GNNs need to eliminate the influence
brought by sensitive information. Therefore, we refer to the
variable related to sensitive information as sensitive factors S
and hope that S and C are independent and non-redundant.

Theorem 2 (Independent Causal Mechanisms Princi-
ple [Parascandolo et al., 2018]). In a directed acyclic graph
G, p(x) can be written as:

p(x) = p(x1, . . . , xd) =
d∏

j=1

p(xj |PAG
j ) (1)

where PAG
j denotes the parents of variable xj in the graph G.

From the Theorem 2, we can learn that each conditional
p(xj |PAG

j ) is considered a physical mechanism generating xj

from its parents and is referred to as a causal conditional [Lv
et al., 2022]. The ICM principle states that the causal gen-
erative process of a system’s variables is composed of au-
tonomous modules that do not inform or influence each other.
Thus, causal factors C and sensitive factors S are independent
of each other, which provides sufficient conditions for us to
identify causal factors. To identify the causal factors C, we
propose CDFG. This allows us to achieve fair graph repre-
sentation learning, where the classifier f makes predictions
based solely on the causal factors C.

4 The Proposed CDFG Method
In this section, we propose a new framework for fair GNNs.

4.1 Counterfactual Data Generation
To effectively disentangle the causal factor C from the mix-
ture with the sensitive factor S, it is crucial to identify which
components of the representation are associated with the
causal factors. Counterfactual data, which intervene on the
sensitive factor S of real-world data (i.e. the original data
from the dataset), can aid in separating the causal factors C
from S. The detailed method for achieving this disentangle-
ment will be discussed in Section 3.2 and 3.3.

To rectify this issue, we have developed a method for gen-
erating counterfactual data that modifies both the adjacency
matrix and the sensitive attributes simultaneously. We first
generate random sensitive attributes for each node to create
counterfactuals at the attribute level. Specifically, the modi-
fied feature matrix X′ can be represented as:

x′
i,j =

{
ri, if j = the sensitive attribute id
xi,j , otherwise

(2)

Here, i denotes the sample index, j denotes the attribute
index, and ri is a binary value randomly sampled from the
uniform distribution U(0, 1).

The adjacency matrix for counterfactual data is constructed
based on the attributes of nodes. First, we calculate the
node feature similarity using cosine similarity in the encoding
stage. The feature similarity between two nodes is defined as:

Mi,j =
x′
i · x′

j

|x′
i||x′

j |
, (3)

where x′
i and x′

j are the feature vectors of nodes i and j,
respectively.
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Next, we calculate the adjacency matrix that reflects node
feature relationships using a K-Nearest neighbours (KNN) al-
gorithm [Zhang et al., 2017]. We sort the nodes according to
their similarity and select the K nodes with the highest simi-
larity as the K nearest neighbours of vi to construct the KNN
graph:

KNN(vi) = {vi|vi ∈ argmax(Mi,j)[0 : α]}, (4)

A′
i,j =

{
1, if vj ∈ KNN(vi) and Mi,j > τ,

0, otherwise,
(5)

where α denotes the number of neighbours of each node.
We can obtain representations of real-world data and coun-

terfactual data through GNNs:

H = GNN(X,A),H′ = GNN(X′,A′). (6)

Due to space constraints, we have included a detailed de-
scription of GNN in the Appendix A .

4.2 Factor Disentanglement
Counterfactual data essentially involve a complete modifica-
tion of the sensitive factor S, resulting in two sets of data
that possess similar causal factors but entirely distinct sen-
sitive factors. To achieve the disentanglement of causal and
sensitive factors, it is crucial to ensure that a portion of the
representation can represent the causal factors. To accom-
plish this, we should ensure that (1) the dimensions of the
node representations are mutually independent, and (2) the
causal factors remain unchanged despite interventions on the
sensitive factors.

For the representations H of the real-world data and H′ of
the counterfactual data, we first establish the cross-correlation
matrix between the two representations:

R =
1

n
H′TH, (7)

where n denotes the number of nodes.
To maintain independence among the dimensions of the

representations, we expect the off-diagonal elements of C to
be close to 0:

Loff−diag =
1

d(d− 1)

d∑
i=1

∑
j ̸=i

R2
ij , (8)

where d is the dimension of the representation.
To effectively disentangle the causal factors from the mix-

ture of non-causal factors, we want the positions of the di-
mensions influenced by the causal factors to remain un-
changed despite interventions on the sensitive factors. Con-
sidering that the causal factors in both representations should
be similar, we constrain the similarity between each dimen-
sion of the two representations:

Ldiag =
1

d

d∑
i=1

(Rii − 1)2. (9)

https://github.com/shawn-dm/CDFG/blob/main/Appendix.pdf

By minimizing Ldis, we can ensure that the representations
are disentangled:

Ldis = γ ∗ Ldiag + δ ∗ Loff−diag. (10)

4.3 Adaptive Mask Module
With the Factor Disentanglement module, we obtain repre-
sentations that may have some dimensions that carry more
causal factors but include fewer sensitive factors. Therefore,
we design a learnable mask to identify which channels are
mainly associated with causal factors. We use the Gumbel-
Softmax trick [Jang et al., 2017] to optimise masks for fair
representation learning by finding these dimensions that ap-
proximate causal factors:

m = Gumbel-Softmax(ŵ(hi), κd), (11)

where ŵ denotes the contribution to learn each dimension,
and the dimensions corresponding to the maximum κ ∈ (0, 1)
ratio is considered as the causal dimensions, while the rest of
the dimensions are considered as the sensitive dimensions.

By applying the learned mask m and its complement 1−m
to the representations, we can extract the causal and sensitive
representations, respectively. In this section, we utilize two
multilayer perceptrons (MLPs) to function as a classifier f
and a discriminator r. Specifically, we aim for the causal rep-
resentation to accurately predict the label Y , and the sensitive
representation to accurately identify the sensitive attribute S:

LC = Evi∼V [ℓ(f(hi ⊙m), yi)] , (12)

LD = Evi∼V [ℓ(r(hi ⊙ (1−m)), si)] , (13)

where yi denotes the label of vi, si denotes the sensitive at-
tribute of vi and ℓ denotes the cross entropy.

The proposed adaptive mask module can accurately detect
causal dimensions, but to ensure that these causal dimensions
are not influenced by sensitive factors, we have introduced
additional fairness constraints on the causal dimensions:

LF = −Evi∼V [ℓ(r(hi ⊙m), si)] . (14)

Finally, we can get the overall training objective:

Lf = Ldis + LC + LD + β ∗ Lf . (15)

5 Experiments
Our experiments are designed to answer the following re-
search questions (RQs): RQ1: How effective is our proposed
method compared to the state-of-the-art fair graph represen-
tation learning method? RQ2: How does each module of our
proposed method contribute to the final performance? RQ3:
How do different methods of counterfactual data generation
affect final performance? RQ4: How do the hyperparameters
in the method affect the performance?
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5.1 Experimental Settings
Datasets. We conducted experiments on three widely used
real-world datasets, namely German [Dua and Graff, 2017],
Bail [Jordan and Freiburger, 2015], and Credit [Yeh and Lien,
2009]. The statistical details of the datasets are presented in
Table 1 and Table 2.

Dataset Credit German Bail
#of nodes 30,000 1,000 18,876
#of node attributes 13 27 18
#of edges 1,436,858 22,242 321,308
Sensitive attribute Age Gender Race
Average node degree 95.79 44.48 34.04

Table 1: A summary of the datasets.

Credit German Bail
s=0 s=1 s=0 s=1 s=0 s=1

y=0 5906 730 191 109 5457 6315
y=1 21409 1955 499 201 3860 3244

Table 2: Different groups in the datasets.

Baselines. In the experiments, we compared the pro-
posed EAGNN method with nine state-of-the-art methods.
These methods can be categorized into two groups: Vanilla
GNNs and Fair GNNs. These methods represent a range
of approaches to graph representation learning, from tradi-
tional GNN architectures to more recent methods that in-
corporate fairness constraints. The Vanilla GNNs include:
GCN [Kipf and Welling, 2017], GIN [Xu et al., 2019] , and
SAGE [Hamilton et al., 2017]. The Fair GNNs include:
FairGNN [Dai and Wang, 2022] uses adversarial training
to achieve fairness on graphs; EDITS [Dong et al., 2022]
improves fairness through preprocessing; NIFTY [Agar-
wal et al., 2021] simply flips the sensitive attributes to
obtain counterfactual data and trains under fairness con-
straints; FVGNN [Wang et al., 2022] effectively addresses the
changes in feature correlations during propagation through a
feature masking strategy, thereby eliminating discriminative
bias; FairMILE [He et al., 2023] is a multi-level fair graph
representation learning framework. FairSIN [Yang et al.,
2024] achieves distributional balance by emphasising neigh-
bours with different sensitive attributes for each node.

Evaluation metrics and implementation details. In
this paper, we assess the efficacy of our proposed method,
EAGNN, using the F1 score (F1) and accuracy (ACC) as eval-
uation metrics. The higher the value of these metrics, the
more accurate the model’s decisions. Accuracy is a measure
of the proportion of correctly predicted samples relative to
the total number of samples. F1 score offers a balanced mea-
sure between precision and recall, which is essential in do-
mains such as medical diagnosis and fraud detection, where
both false negatives and false positives are highly undesirable.
For fairness evaluation, we focus on group fairness [Berk
et al., 2021] and use two quantitative metrics to evaluate it:
∆SP [Dwork et al., 2012] and ∆EO [Hardt et al., 2016]. We

place the specific descriptions of the two fairness metrics in
Appendix B. Consistent with prior studies [Agarwal et al.,
2021; Wang et al., 2022], the datasets are partitioned into
three distinct phases: training, validation, and testing. All
Fair GNNs utilize SAGE as the encoder, which is described
in Appendix A. The Adam optimization algorithm is applied
uniformly across all models. We set the hidden layer size uni-
formly to 16 and κ to 0.5. Hyperparameters were optimized
using a grid search approach, with a comprehensive hyperpa-
rameter analysis provided in Section 5.3.

5.2 Performance Comparison
As shown in Table 3, we present the comparative experimen-
tal results of CDFG with the current state-of-the-art meth-
ods. The results demonstrate that CDFG outperforms sev-
eral state-of-the-art methods in terms of both utility and fair-
ness, highlighting its potential for practical deployment in
sensitive domains. We will analyse the comparison exper-
iment from both the fairness results and the utility results.
Fairness Results. The causality-inspired disentanglement
method achieves the best fairness results on all three datasets.
The fairness metrics ∆SP and ∆EO are significantly reduced,
indicating that the model’s decisions are more equitable. This
is crucial in applications where fairness is a critical con-
cern, such as credit assessment and judicial decision-making.
This demonstrates that we have effectively disentangled the
causal and sensitive factors. CDFG learns causal represen-
tations that approximate the causal factors, avoiding the in-
fluence of sensitive factors, and thereby ensuring the fairness
of the causal representations. Utility Results. The causality-
inspired disentanglement method achieves satisfactory util-
ity results on all three datasets. Compared to carefully de-
signed fair GNN models, our approach obtains competitive
and even superior performance. Particularly in the F1 score,
we achieve the best results. Accuracy, while a straightforward
measure of the proportion of correctly predicted samples, can
be misleading in imbalanced datasets. It may be skewed
by the frequent occurrence of certain labels and sensitive at-
tribute subsets, leading to misleading conclusions. Therefore,
the F1 score is a more reliable metric in such scenarios. It
provides a balanced measure between precision and recall,
which is crucial in fields such as medical diagnosis and fraud
detection where false negatives and false positives are equally
undesirable. Some of the methods have high ACC but low F1
on unbalanced datasets, probably due to overfitting some of
the groups and not essentially learning a fair representation .

5.3 Ablation Study
To address RQ2 and validate the effectiveness of our pro-
posed method, we constructed three variants of CDFG: (1)
removing the counterfactual data generation module, only
constraining the independence of each dimension and using
the adaptive mask to find causal factors (w/o CF); (2) remov-
ing the factor disentanglement module, treating counterfac-
tual data as part of the training data (w/o FD); (3) removing
the adaptive masking module, directly constraining and pre-
dicting the node representations (w/o AM). The experimental
results are shown in Table 4. From the experimental results,
we can draw the following conclusions: (1) All three variants
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Dataset Metric GCN GIN SAGE FairGNN NIFTY FVGNN EDITS FairMILE FairSIN CDFG

Credit

ACC (↑) 73.62±0.06 75.30±2.86 74.20±0.60 75.44±3.28 73.80±4.75 76.06±4.37 83.73±0.73 80.18±0.27 78.14±0.39 77.74±0.27

F1 (↑) 81.88±0.06 84.56±2.17 82.45±0.52 81.35±1.83 81.21±0.59 84.43±4.23 76.93±0.89 87.16±0.17 87.27±0.48 87.32±0.25

∆SP (↓) 12.93±0.26 5.14±0.96 16.35±2.36 10.46±5.69 8.09±2.77 6.06±3.63 7.28±0.49 1.21±0.39 1.29±0.54 0.44±0.53

∆EO(↓) 10.65±0.18 3.79±0.64 14.12±2.64 9.47±6.10 7.41±1.54 3.90±3.54 5.09±0.78 0.84±0.14 0.61±0.80 0.44±0.53

German

ACC (↑) 72.45±0.75 70.32±1.55 71.63±1.35 70.83±1.66 66.24±4.12 69.60±1.13 65.60±6.81 70.08±1.48 69.52±0.96 69.84±0.20

F1 (↑) 81.73±2.31 81.58±0.56 81.08±1.04 79.57±2.61 78.27±1.25 81.33±0.55 77.89±6.06 80.87±0.94 81.75±0.92 82.17±0.22

∆SP (↓) 20.36±5.27 6.70±4.92 14.33±5.11 6.21±2.34 8.03±7.19 2.50±3.01 4.35±4.29 1.40±0.99 1.55±0.70 0.42±0.75

∆EO(↓) 19.71±5.19 5.80±3.32 12.53±7.56 5.36±2.07 4.40±4.18 1.26±1.07 4.41±3.81 0.78±0.61 1.95±1.02 0.57±1.08

Bail

ACC (↑) 82.49±0.82 82.93±0.53 87.44±1.34 83.56±2.70 80.11±5.39 87.61±1.30 83.15±2.96 87.48±0.28 88.35±0.62 89.16±1.60

F1 (↑) 77.52±1.35 77.28±0.58 81.57±1.19 78.37±1.99 79.85±3.16 82.67±0.87 80.42±2.53 82.52±0.50 83.54±0.68 85.60±1.92

∆SP (↓) 9.31±2.12 7.74±1.19 8.14±1.08 6.88±1.41 5.96±2.13 3.49±1.74 6.57±1.35 3.17±0.21 1.27±0.78 0.53±0.43

∆EO(↓) 8.59±1.13 6.77±0.81 7.43±1.75 5.77±1.48 5.57±1.69 2.42±1.29 5.61±1.73 1.72±0.56 1.05±0.74 0.83±0.89

Table 3: We conducted comparative experiments on three real-world datasets to evaluate the effectiveness and fairness of the models. The
best results for each metric are highlighted in dark brown, and the second-best results are highlighted in light brown.

Dataset Metric w/o CF w/o FD w/o AM CDFG

Credit

ACC (↑) 74.50±4.02 76.82±2.82 74.26±9.31 77.74±0.27
F1 (↑) 84.06±4.14 86.41±2.33 86.68±9.63 87.32±0.25
∆SP (↓) 2.07±2.79 1.16±0.97 1.67±1.12 0.44±0.53
∆EO(↓) 1.50±1.98 1.16±0.99 0.98±0.53 0.44±0.53

German

ACC (↑) 69.92±0.78 69.92±0.78 69.60±0.25 69.84±0.20
F1 (↑) 81.89±0.37 81.96±0.36 81.94±0.12 82.17±0.22
∆SP (↓) 3.53±4.16 1.65±1.25 0.89±0.82 0.42±0.75
∆EO(↓) 2.10±3.18 2.08±1.02 0.97±0.57 0.57±1.08

Bail

ACC (↑) 85.91±0.64 88.48±0.79 87.28±0.58 81.62±0.53
F1 (↑) 80.75±1.04 84.18±0.79 81.62±0.53 85.60±1.92
∆SP (↓) 1.36±0.87 0.64±0.55 0.76±0.78 0.53±0.43
∆EO(↓) 1.53±1.06 1.37±1.00 1.16±0.97 0.83±0.39

Table 4: Ablation study results. We removed the CounterFactual
data generation module (CF), the Factor Disentanglement module
(FD), and the Adaptive Masking module (AM), respectively.

perform worse than CDFG in terms of both utility and fair-
ness, demonstrating the effectiveness of each module and the
rationality of the combination. This indicates that each com-
ponent plays a crucial role in achieving the desired outcomes.
(2) When the counterfactual data generation module is re-
moved, the model achieves the worst experimental results.
This highlights the necessity of counterfactual data for iden-
tifying causal factors. It shows that our method effectively
intervenes on sensitive factors and successfully distinguishes
between sensitive and causal factors through the factor disen-
tanglement module. (3) When either the factor disentangle-
ment module or the adaptive masking module is removed, the
model still achieves relatively good results, but not as good
as CDFG. This further emphasizes the importance of coun-
terfactual data in the overall framework. The combination of
these modules is essential for achieving both high utility and
fairness in the learned representations.

To answer RQ3, we construct three variants of the coun-
terfactual data generation moudle. The experimental results
are shown in Table 5, from which we can get the following
conclusions: (1) A&R variant achieves the best fairness re-
sults and F1 scores. This indicates that our method effectively

Dataset Metric F R A&F A&R

Credit

ACC (↑) 76.65±2.72 76.67±2.80 77.30±1.67 77.74±0.27
F1 (↑) 86.23±2.32 86.18±2.45 86.61±1.50 87.32±0.25
∆SP (↓) 1.23±1.23 3.12±3.13 1.05±0.92 0.44±0.53
∆EO(↓) 0.93±0.81 2.17±2.04 0.72±0.68 0.44±0.53

German

ACC (↑) 70.00±0.25 69.60±0.72 70.16±0.70 69.84±0.20
F1 (↑) 81.74±1.05 81.23±1.84 82.11±0.29 82.17±0.22
∆SP (↓) 2.45±4.80 4.36±7.19 1.56±1.54 0.42±0.75
∆EO(↓) 1.60±2.44 3.47±4.99 1.08±0.98 0.57±1.08

Bail

ACC (↑) 82.44±3.33 85.17±1.20 87.43±0.74 81.62±0.53
F1 (↑) 76.39±4.61 79.43±1.32 82.98±1.16 85.60±1.92
∆SP (↓) 2.04±1.81 1.31±0.67 0.92±0.70 0.53±0.43
∆EO(↓) 1.90±1.05 1.01±0.62 0.88±0.30 0.83±0.39

Table 5: (1) Flipping sensitive attributes (F); (2) Randomising sen-
sitive attributes (R); (3) reconstructing the Adjacency matrix with
Flipped sensitive attributes (A&F); (4) reconstructing the Adjacency
matrix with Randomised sensitive attributes (A&R).

intervenes on sensitive factors, providing a favourable condi-
tion for subsequent factor disentanglement. By randomizing
sensitive attributes and reconstructing the adjacency matrix,
we ensure that the model learns representations that are both
fair and useful. (2) All variants that involve adjacency ma-
trix reconstruction achieve excellent fairness results and F1
scores. This highlights the importance of the adjacency ma-
trix in graph data, which contains non-negligible sensitive
factors. Reconstructing the adjacency matrix helps to miti-
gate the influence of these sensitive factors, leading to more
fair and accurate representations. (3) F and R results in worse
and more fluctuating results compared to w/o CF. This sug-
gests that focusing solely on node attributes can mislead the
model, causing it to confuse sensitive factors with causal fac-
tors. This confusion leads to unstable training and suboptimal
performance.

5.4 Hyper-parameter Analysis
To answer RQ4, we perform the hyper-parameter sensitivity
analyses on the Credit and Bail datasets for α, β, γ and δ.
Due to space constraints, we place the experimental results
on the German dataset and the analysis of κ in Appendix C.
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(a) α on Credit (b) α on Bail (c) β on Credit (d) β on Bail

Figure 3: Fairness performance under different values of α and β.

(a) Credit (b) Bail

Figure 4: Fairness performance under different values of γ and δ.

In the counterfactual data generation module, a critical pa-
rameter is the K-value α used for adjacency matrix recon-
struction. The experimental results, as shown in Fig. 3 (a) -
(b), provide insights into the optimal values of α for differ-
ent datasets. For datasets with a higher average node degree
(Credit and German), a smaller K-value (α = 3) is effective.
For datasets with a lower average node degree (Bail), a larger
K-value (α = 6) is necessary. This approach ensures that the
reconstructed adjacency matrix is sufficiently different from
the original, thereby effectively intervening on sensitive fac-
tors and improving the fairness and utility of the learned rep-
resentations. This finding underscores the importance of con-
sidering both attribute and structural changes when generat-
ing counterfactual data for fair graph representation learning.

The hyperparameter β represents the weight of the fairness
constraint for the causal representation. The experimental re-
sults for β are shown in Fig. 3 (c) - (d). For all three datasets,
the model achieves the best fairness metrics when β = 0.2.
When β is set to a larger value, it can lead to suboptimal
disentanglement between causal and sensitive factors. This
results in a decrease in fairness performance.

In the factor disentanglement module, the hyperparame-
ters γ and δ play crucial roles in achieving effective disen-
tanglement of factors. We set γ to {0.001-0.005} and δ to
{0.0001-0.0005}. The experimental results for these hyper-
parameters are shown in Fig 4. Due to space constraints, we
present the experimental results for the ∆SP metrics here and
place the experimental results for the ∆EO metrics in Ap-
pendix C. For the Credit and German datasets, which are rel-
atively dense, lower values of γ (0.002) and δ (0.0003) are

sufficient to achieve effective disentanglement. For the Bail
dataset, which is relatively sparse, larger values of γ (0.5) and
δ (0.001) are required to achieve effective disentanglement.
This may signify that causal and sensitive factors in the rep-
resentation of sparse data are more difficult to disentangle.

6 Conclusion
In this paper, we formalise the causal mechanism of GNN
from a fairness perspective and propose a causally inspired
CFDG framework. By leveraging counterfactual data with
similar causal factors but different sensitive factors, we en-
sure the independence of causal and sensitive factors in node
representations through the factor disentanglement module.
Finally, causal representations independent of sensitive fac-
tors are extracted using the adaptive mask module. Extensive
experiments demonstrate that the CDFG framework has the
best results in both fairness and utility. This paper provides
a new causal perspective on the area of fair GNNs, and we
hope this work inspires further advancements in the research
community. In future work, we will continue to explore more
complex architectures to achieve superior results.
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