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Abstract

In this paper, we revisit the problem of fair alloca-
tion with subsidy. We first consider the allocation
of m indivisible chores to n agents with additive
(dis)utility functions. Under the assumption that
the maximum (dis)utility of an item can be com-
pensated by one dollar, Wu et al. (WINE 2023)
showed that a total of n/4 dollars suffices to guar-
antee a proportional allocation by rounding frac-
tional allocations. Their subsidy guarantee is opti-
mal when n is even. For odd n, there is still a small
gap between the upper and lower bounds for the to-
tal subsidy. In this paper, we propose a much sim-
pler algorithm for the problem, which does not re-
quire rounding fractional allocations, and achieves
an optimal subsidy guarantee for all values of n.
We further show that our algorithm and analysis
framework can be extended to the mixture of (sub-
jective) goods and chores, achieving the optimal
subsidy guarantee.

1 Introduction

The fair division problem, with a research history dating back
to 1948 [Steihaus, 1948], remains a central issue in eco-
nomics, computer science, and mathematics. The problem
involves fairly allocating a set of m items M among a group
of n heterogeneous agents N, where an allocation is a par-
tition of the items M into n disjoint bundles. The first and
most natural fairness criterion, known as proportionality, was
introduced and studied by Steihaus [1948]. Proportionality
requires that each agent receives a bundle whose utility is at
least 1/n of the total utility of all items. When all items are di-
visible, the existence of proportional allocations has been ex-
tensively studied under the frameworks of “cake cutting” and
“bad cake cutting”, which correspond to the cases when items
have positive utility and negative utility, respectively. In re-
cent decades, the focus of fair division research has shifted to-
wards discrete scenarios, where items are indivisible and pro-
portional allocations may not exist. For example, consider the
instance of allocating a single item between two agents with
non-zero values on the item. In the discrete setting, we dis-
tinguish between the fair allocation of goods (when all items
have positive utility) and the fair allocation of chores (when

all items have negative utility). When the set of items con-
tains both goods and chores, we call the allocation instance a
mixture of goods and chores.

In this paper, we explore the allocation of both indivisible
goods and chores, as well as their mixtures. We use u; :
2M _; R to denote the utility function of agent i, and we
say that agent i derives utility u;(S) from the bundle of items
S C M. The proportionality of agent ¢ is thus defined by
% -u;(M). In this paper, we assume that the utility functions
are additive. We say that an item e € M is a good (resp.,
chore) for agent i € N if u;(e) > 0 (resp., u;(e) < 0). In the
most general case, an item can be good to some agent while
being a chore to another.

Relaxations of Proportionality. Since proportional allo-
cations are not guaranteed to exist and do not admit any
bounded (multiplicative) approximation ratio, several relax-
ations of proportionality have been proposed. One such relax-
ation is proportionality up to one item (PROP1), introduced
by Conitzer et al. [2017], which requires that each agent
can achieve her proportional share by either adding some
good she does not own or removing some chore she owns.
It has been shown that PROP1 allocations always exist and
can be computed efficiently for goods [Conitzer et al., 2017,
Barman and Krishnamurthy, 20191, chores [Brinzei and San-
domirskiy, 2024], and the mixture of goods and chores [Aziz
et al., 2020]. A stronger variant, proportionality up to any
item (PROPX), requires that the proportional share can be
achieved by adding or removing any single item (for goods
and chores, respectively). For the allocation of goods, Aziz et
al. [2020] showed that PROPX allocations may not exist. In
contrast, PROPX allocations for chores always exist and can
be computed efficiently [Moulin, 2018; Aziz er al., 2024b].

Fair Allocation with Subsidy. The concept of resource al-
location with monetary compensation has been extensively
studied in economics. Maskin [1987] was one of the first to
introduce the idea of incorporating monetary subsidies into
the fair division problem. In this setting, each agent may re-
ceive a subsidy s; > 0 to eliminate the perceived unfairness,
with the goal of minimizing the total subsidy required. For
the allocation of goods, several studies [Halpern and Shah,
2019; Brustle et al., 2020] considered the fairness notion of
envy-freeness (which implies proportionality), demonstrating
that a total subsidy of n — 1 dollars is sufficient to achieve
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envy-freeness. The subsidy setting can also be applied to
the allocation of chores. Wu et al. [2023] were the first to
consider this problem, showing that the same amount of sub-
sidy (n — 1) is sufficient to ensure envy-freeness for chores
and proposing an algorithm that computes proportional allo-
cations with a total subsidy at most n/4. They also proved
that the upper bound of n/4 is optimal when n is even. How-
ever, when n is odd, their result leaves a small gap between
the lower bound of (n? — 1)/(4n) and the upper bound of
n/4. Recently, Wu and Zhou [2024] partially closed this gap
for the case of n = 3, showing that a total subsidy of 2/3 is
sufficient to guarantee proportional allocations.

1.1 Our Results

In this paper, we revisit the problem of ensuring proportion-
ality by introducing subsidies to the agents. Our main re-
sult is summarized as follows. Throughout the whole paper,
we use X = (Xq,...,X,,) to denote an allocation of the
items, s = (s1,...,5,) € [0,1]" to denote the subsidies to
the agents, and 7(s) = >, s; to denote the total subsidy.

Main Result. For the allocation of a mixture of indivis-
ible goods and chores to a group of n agents with addi-
tive utility functions, we can compute in polynomial time a
PROPI allocation X and subsidies s such that (X, s) is pro-
portional (meaning that u;(X;) + s; > % ~u;(M),¥i € N),
where the total subsidy 7(s) < n/4 when n is even and
7(s) < (n? — 1)/(4n) when n is odd.

As a warm-up, we first consider the allocation of chores
(the primary concerned setting of existing works [Wu er al.,
2023; Wu and Zhou, 2024]), where all items have negative
utility to all agents. As in many of the existing works that
study share-based fairness notions, we show that it is without
loss of generality (w.l.o.g.) to only consider IDO instances,
in which all agents agree on the same ordering of items, i.e.,
u;(er) > ui(ea) > -+ > w;(ey,) forall i € N. More im-
portantly, we show that such a reduction preserves the upper
bounds on the total subsidy and the PROP1 property of the
allocation, and can be extended to the mixture of goods and
chores. Given that agents share the same ordinal preference
on the items in an IDO instance, we can partition the items
into n bundles such that any two bundles admit a small gap
in utility for all agents: in fact, a partition based on round-
robin would work. Now that we have n “even” bundles, it
suffices to assign each bundle to the agent requiring the mini-
mum subsidy on it in a sequential manner, and bound the total
subsidy taking the perspective of the agent who receives the
last bundle. Since our algorithm does not require computing
any fractional allocation and rounding, the overall algorithm
is very simple (consists of 5 lines), and the analysis is much
shorter than that of [Wu et al., 2023].

Then we show that a similar algorithm and analysis can
be applied to the allocation of a mixture of objective goods
and chores, where each item is either a good to all agents, or
a chore to all agents. We show that we can still compute a
partition of items into n bundles that are even to all agents,
by adapting the double round-robin algorithm [Aziz et al.,
2022a], which first allocates the goods using round-robin in
one order of agents, and then allocates the chores under a

reversed order. Then, by applying the same assignment prin-
ciple and analysis for upper bounding the total subsidy, we
show that the optimal subsidy guarantee can also be achieved
for this setting.

Finally, we generalize the algorithms and results to the
mixture of subjective goods and chores, where an item can
be a good to some agent while being a chore to another. In-
stead of devising a new algorithm for this setting, we show
that we can reduce any subjective mixed instance to an ob-
jective mixed instance while preserving the property of the
total subsidy and of PROP1. Then by using the algorithm for
the objective mixed instances as a black box, we derive our
results for the subjective mixed instances.

1.2 Other Related Works

Besides the fairness criteria we have introduced, several
other share-based fairness notions have been proposed for
specific settings. A prominent example is maximin share
(MMS) [Budish, 2011]. To address scenarios where agents
might have different weights, Farhadi et al. [2019] intro-
duced weighted maximin share (WMMS), while Babioff et
al. [2021] proposed anyprice share (APS). Further research
by Babioff and Feige explored general fair share alloca-
tion in both unweighted [Babaioff and Feige, 2022] and
weighted [Babaioff and Feige, 2025] settings. More recently,
Babichenko et al. [2024] introduced and studied quantile
share, which measures expected utility in random allocations.
Another well-studied class of fairness notions is envy-based,
tracing back to [Foley, 1967]. While envy-freeness implies
proportionality when valuations are additive, it’s not guaran-
teed for indivisible items. Relaxations of envy-freeness, such
as envy-freeness up to one item (EF1) [Lipton et al., 2004]
and envy-freeness up to any item (EFX) [Caragiannis ef al.,
2019], have received significant attention. For a comprehen-
sive overview of the fair allocation literature, we refer to the
surveys by Amanatidis et al. [2023] and Aziz et al. [2022b].

Allocation of Chores. While chore allocations are as com-
mon as goods allocations in real-world scenarios, the prob-
lem receives less attention and usually tends to admit worse
results. As we have introduced, both PROP1 and PROPX al-
locations are guaranteed to exist for chore allocation. While
MMS allocations are not guaranteed to exist [Aziz er al.,
2017, Feige et al., 2021], much attention focuses on ap-
proximate MMS allocations [Aziz ef al., 2022c; Barman
and Krishnamurthy, 2020; Huang and Lu, 2021], which
led to the state-of-the-art ratio of 13/11 [Huang and Segal-
Halevi, 2023]. While EFX has been considered the most
popular envy-based fairness notion, its existence has only
been shown for some restricted settings [Aziz er al., 2023;
Gafni et al., 2023; Aziz et al., 2024b; Zhou and Wu, 2024;
Kobayashi et al., 2025; Tao et al., 2025; Lin ef al., 2025].

Mixture of Goods and Chores. A setting that generalizes
both the allocations of goods and chores is the mixture of
goods and chores. It is worth mentioning that many exist-
ing algorithmic techniques developed for the non-mixture set-
tings fail to work in the mixture setting [Aziz et al., 2022a;
Chaudhury er al., 2023; Bhaskar et al., 20211, and hence the
mixture setting usually demands independent analysis and
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scrutiny [Hosseini and Sethia, 2025]. As we have introduced
before, Aziz et al. [2020] proposed an algorithm that com-
putes PROP1 allocations in polynomial time. When strength-
ening PROPI to EF1, the existence and computation of EF1
allocations have been solved by Bhaskar et al. [2021] and
Aziz et al. [2022a]. There are also works that study other
fairness notions for the mixed setting, e.g., for EFX [Alek-
sandrov and Walsh, 2020; Hosseini et al., 2023a; Hosseini
et al., 2023b] and MMS [Feige, 2022; Cousins et al., 2023;
Kulkarni et al., 2021].

Subsidy Setting and Beyond. While our setting assumes
symmetric agents, recent studies have extended the model to
the weighted setting. Wu and Zhou [2024] were among the
first to investigate weighted fair allocations with subsidies,
demonstrating that a total subsidy of n/3 is sufficient to guar-
antee weighted proportionality. Recently, Aziz et al. [2024a]
and Elmalem et al. [2024] explored weighted envy-free al-
locations with subsidy for the allocation of goods. Another
generalization involves extending the utility function beyond
additive, for example, to monotone functions [Brustle er al.,
2020; Kawase et al., 20241, matroid rank functions [Barman
et al., 2022; Goko et al., 2024]. The subsidy setting has also
been introduced to the house allocation problem [Choo et al.,
2024; Dai et al., 2024]. In settings where money is treated as
a divisible good, our problem shares similarities with the fair
allocation of mixed divisible and indivisible items, a topic
that has received considerable attention [Bei et al., 2021a;
Bhaskar et al., 2021; Bei et al., 2021b; Li et al., 2023;
Bu er al., 2024]. For a comprehensive review of existing
works on mixed fair allocation, please refer to the survey by
Liu et al. [2024].

2 Preliminaries

We consider the allocation of a set of indivisible items M =
{e1,...,em} ton agents N = {1,... ,n}, where the items
can be either goods or chores. Each agent ¢ has an additive
utility function u; : 2" — R. Thatis, for any bundle S C M,
ui(S) = > .cg uil{e}), where u;({e}) is the utility of item e
allocated to agent ¢. For convenience, we use u;(e) to denote
u;({e}). We say that an item e € M is a good (resp., chore)
for some agent ¢ € N if u;(e) > 0 (resp., u;(e) < 0). We
assume w.l.o.g. that u;(e) € [—1,1] for all agent7 € N and
item e € M. An instance is denoted by Z = (M, N, u),
where u = (uq, ..., u,) represents the utility functions of all
agents. An allocation for instance Z is an n-partition X =
(X1,...,Xy) of the items M, where X; N X; = ( for all
i # jand UjenyX; = M. In allocation X, agent i € N
receives bundle X;. For convenience of notation, given any
set X C M and e € M, weuse X + ¢ and X — e to denote
X U{e} and X \ {e}, respectively. For any integer k > 1, we
use [k] to denote the set {1,2,...,k}.
Definition 2.1 (Proportionality). Given an instance Z =
(M, N,u), the proportional share of each agent ¢ € N is
defined as PROP; = 1 . u;(M). An allocation X is called
proportional (PROP) if each agent receives a bundle with util-
ity at least her proportional share, i.e., u;(X;) > PROP;.
Next, we define two fairness notions envy-freeness up to
one item (EF1) and proportionality up to one item (PROP1).

We remark that any EF1 allocation is also PROPI1, for the
mixture of indivisible goods and chores [Aziz et al., 2022a].

Definition 2.2 (PROP1). An allocation X is called propor-
tional up to one item (PROP1) if for any agent+ € N, either

2 ul(Xl) > PROP,, or
* u;(X; —e) > PROP; for some e € X;; or
* u;(X; + e) > PROP; for some e € M \ X;.

Definition 2.3 (EF1). An allocation X is called envy-free up
to one item (EF1) if for any two agents 7, j € N, either

o ui(X;) > wi(X;); or
e Jee X; UX]' such that ’U,Z(XZ — 6) > Ui(Xj — 6).

We consider the subsidy setting, where each agent i € N
is subsidized with a non-negative subsidy s; > 0. We use
vector s = (s1,...,S,) to denote the set of subsidies and
7(s) = D _,cn Si to denote the total subsidy.

Definition 2.4. An outcome (X, s) consisting of an alloca-
tion X and subsidies s = (s1, ..., S, ) is proportional (PROP)
if for any ¢ € N we have u;(X;) + s; > PROP;.

Given any instance Z = (M, N, u), we aim to find a PROP
outcome with a small amount of total subsidy. We remark
that given any allocation X of some instance Z, we can turn
X into a proportional outcome by introducing subsidies to the
agents as follows:

S; :maX{PROPi—ul(XZ),O}, VZGN

Moreover, with the allocation fixed, this is the optimal way
to set the subsidies. Therefore, to describe a PROP outcome,
it suffices to define the allocation X. The subsidy to each
agent is automatically determined by the above equation.

It has been proved that to bound the required subsidy for
proportional allocations for chores, it suffices to consider IDO
instances by implementing a reduction. We show that such a
reduction can be extended to the mixed setting. We remark
that Feige [2022] claimed a similar reduction for the mixed
setting with respect to the fairness notion of MMS.

Specifically, given any Z, we can construct (in polynomial
time) another instance that is IDO and requires at least the
same amount of subsidy to guarantee proportionality as 7.
We define IDO(+) as the subroutine that takes an instance as
input and outputs the corresponding IDO instance.

Definition 2.5 (IDO Instances). An instance is called identi-
cal ordering (IDO) if for all agent i € N we have u;(e;) >

-+ > w;(en). For any instance Z = (M, N,u), IDO(Z)
returns the instance (M, N,u’) such that for any i € N
and £ € {1,...,m}, we have ul(eg) = u;(o;(k)) where
0;(k) € M is the k-th most valuable item under u;.

Lemma 2.6 (IDO Reduction). Given a PROP outcome
(X', s") for IDO(Z) where X' is PROPI, we can compute
a PROP outcome (X, s) for instance T in polynomial time,
where X is PROPI and 7(s) < 7(s').

With Lemma 2.6, in the following, we only have to con-
sider instances that are IDO.
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3 Allocations of Chores

In this section, we propose an algorithm for computing PROP
outcomes for the allocation of chores. Recall that Wu et
al. [2023] showed that no algorithm can ensure the existence
of PROP outcomes for n agents with a total subsidy smaller
than «(n), where

a(n) = n/4
() {<n21>/<4n>

In the following, we prove the following theorem.

when n is even,
when n is odd.

Theorem 3.1. Given any instance T = (M, N,u) for the
allocation of chores, we can compute in polynomial time a
PROPI allocation X such that in the corresponding PROP
outcome, the total subsidy is at most a(n).

Our algorithm follows a simple idea:

(1) Suppose that we can partition the items into bundles
whose utilities are roughly the same for all agents (e.g.,
differ by at most 1), then we can treat the n bundles as n
“mega-items”;

(2) By sequentially allocating each mega-item to the agent
requiring the minimum subsidy on it, we can upper
bound the total subsidy utilizing the efficiency of sub-
sidization.

Observe that the first step can be easily done for IDO in-
stances in a round-robin manner. For the second step, we can
upper bound the total subsidy by a(n) from the perspective
of the agent who receives the last bundle. We assume that m
is divisible by n by adding dummy items with zero utility to
all agents. Following these ideas, we formalize our algorithm
as follows.

Algorithm 1: PROP Outcome for Chores

Input: An IDO instance Z = (M, N, u) with
u;(e1) > ui(ez) > -+ > u;(ey,) foralli € N.
1 Let A; < {e; : j = i + 2z - n for some integer z}, for
alli € [n] ;
2 Let N/ < N ;
sforj=1,2,...,ndo
4 L Let i* < argmin;c n  {PROP; —u;(4;)};
5 Update X;+ < A; and N' < N\ {i*};
Output: PROP outcome with allocation X.

As shown in Algorithm 1, we first partition the items into
A = (A4, -+ ,A,) in a round-robin manner, and then se-
quentially allocate each bundle to the active agent who re-
quires the minimum amount of subsidy (to guarantee propor-
tionality), where N’ contains all active agents (who have not
received a bundle). Clearly, the algorithm runs in polynomial
time. Therefore, to prove Theorem 3.1, it suffices to show
that the total required subsidy is upper bounded by a(n).

We show that the partition A is approximately even, i.e.,
for all agents, the utility difference between any two bundles
is small. Moreover, we show that the partition is EF1 for all

agents, meaning that as long as each agent receives exactly
one bundle, then the allocation is EF1'.

Lemma 3.2. For the partition A computed in Alg. 1, for any
agent i € N and any two bundles A, Ay, either A, =0, or
there exists e € Ay such that u;(A; — e) > u;(Ay).

Proof. Suppose m = k - n, we have |[A;| = |A,| = k. By
definition we have A, = {es, €atny €aton, - - Jand A, =
{ey, ey+n,€yt2n, ...} Since the instance is IDO, we have

k—2
ui(Az = €xy(h—1)n) = D0 Uil€otzn)
= le;i ui(eyqzn) > ui(Ay),
which proves the lemma. m

Next, we provide an upper bound for the total subsidy.

Lemma 3.3. For the allocation X computed in Alg. 1, the
total subsidy of the corresponding PROP outcome (X,s) is
at most a(n).

Proof. We allocate the bundles in n rounds while in each
round j € {1,2,...,n} we allocate bundle A4; to the active
agent ¢ € N’ with minimum PROP; — u;(A;). For the con-
venience of notation, we reindex agents and assume w.l.o.g.
that agent i receives bundle A;. Thus, agent n is the last active
agent. By definition, when allocating each bundle A; where
j < n,agent n is one of the active agents but does not receive
bundle A;. Hence for all j € [n] we have

Therefore, we can upper-bound the total subsidy by
7(s) = >_jen max {PROP; —u;(4;),0}
< ZJEN max {PROP,, — u,(4;),0}.

|
—_
T

Bundle Utility
|
)
T

|
w

|

I

Figure 1: An example for the bundle utilities under agent n’s per-
spective. The difference between any two bundles’ utilities is at most
1. The lower horizontal dashed line represents the proportional share
of agent n. We have H = { A1, A2, A3} and f = 3.

Let H = {A; : u,(4;) < PROP,} be the bundles with
utility lower than the proportional share of agent n and f =
|H|. We use h to denote maxa;cr {PROP,, —u,(4;)}.
See Figure 1 for an example. Then we can upper bound the
total required subsidy by

7(s) < 32,y max {PROP,, —u,(4;),0}
=2 a,en (PROP, —un(4;)) < f-h (1)

"Note that EF1 holds only for the IDO instances. The IDO re-
duction cannot guarantee preserving EF1.
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On the other hand, observe that >,y un(4;) =
un(M) = n - PROP,,, which implies

> (PROP, —un(A4;)) = Y (un(A;) — PROP,).

AjeH A;EA\H

Hence, the total subsidy can also be bounded by

7(s) < Y (un(4;) — PROP,) < (n—f)-(1-h), (2)

Aj €EA\H

where the last inequality holds by Lemma 3.2: for all A; €
A\ H we have

un(A,;)—PROP,, < (?éij{[l{un(Ai)}—Fl)—PROPn <1—h.

Combining Equations (1) and (2), we upper bound the total
subsidy by

r(s) = min{fh, (n — £)(1 = )} < L) < o),

n

n—f

where the first inequality holds because when h < =, we

have fh < w;whenh > "= wehave (n—f)(1—h) <

@. The second inequality holds because f € {1,...,n}

and f(n— f) attains the maximum value o(n) when f = n,/2
forevenn; f = (n— 1)/2 for odd n.

4 Allocation of Mixed Items

In this section, we show that our algorithm and analysis can
be extended to the settings of mixed items. We first consider
the mixture of objective goods and chores, where every item
is either a good to all agents or a chore to all agents. Note
that this setting subsumes the allocation of goods and chores
as special cases. For this case, we show that the optimal sub-
sidy guarantee «(n) can be obtained. Then we generalize the
results to the mixture of subjective goods and chores, where
an item can be a good to some agent while being a chore to
another. We show that every subjective mixed instance can be
reduced to an objective mixed instance, and we can transform
the allocation for the objective mixed instance to an allocation
for the subjective mixed instance, preserving the upper bound
on the total subsidy and the PROP1 property.

4.1 Objective Mixed Instance

We first consider the mixture of objective goods and
chores [Hosseini et al., 2023b], for which we can partition the
items M into M T and M ~, where M T contains all the goods
and M~ contains all the chores. We show that the optimal
subsidy guarantee «(n) can be achieved by implementing the
double round-robin algorithm, which is proposed by Aziz et
al. [2022a] to compute EF1 allocations for the mixed setting.
Note that in their setting, the input instance is not necessarily
IDO. In the following, we show that for IDO instances, any
arbitrary permutation of the bundles in the computed alloca-
tion results in an EF1 allocation. We call such a partition an
EF1 partition.

Definition 4.1 (EF1 Partition). A partition A is EF1 if for all
i€ Nand A, Ay € A, either

* ui(Az) > ui(Ay); or

* there exists some item e € A, U A, such that u; (A, —
e) > u; (A, —e).

As we have introduced before, we implement the double
round-robin algorithm (see Lines 1 - 7 of Alg. 2) to com-
pute an approximately even partition, which is used to replace
the round-robin partition we used in Algorithm 1. Roughly
speaking, we allocate the goods and the chores both in a
round-robin manner. However, when allocating the goods,
bundle A; has the highest priority, e.g., e; (the best good)
is allocated to A; while bundle A,, has the lowest priority.
When allocating the chores, bundle A,, has the highest prior-
ity while bundle A1 has the lowest priority, e.g., e, (the worst
chore) is allocated to A; (see Figure 2 for an illustration). We
show in Lemma 4.2 that the computed partition is EF1. We
remark that the partition (instead of the allocation) being EF1
is crucial to our setting because we need the freedom to de-
cide the assignment of the bundles to minimize the required
total subsidy. Note that we can assume w.l.o.g. that both
M| and | M ~| are divisible by n, as we can add dummy
items with zero utility to all agents. Suppose |M ™| = z - n.
Since the instance is IDO, for all i € N we have

ui(er) > - > ui(ezn) > 0 > ui(ezny1) > - > ui(em).

Algorithm 2: PROP Outcome for Objective Mixed

Input: An IDO objective mixed instance
Z = (M,N,u) withu;(e;) > --- >

ui(ezn) Z 0 Z Ui(ezn+1) 2 T Z_Ui(em) for

alli € N.
1 Let A; « QO foralli € N ;
2 forj=1,2,...,2ndo

3 Leti«+ ((j —1) modn)+1;

4 | A, +— A + €;;

sforj=zn+1,...,mdo

6 Leti < n—((j—1) modn);

7 A — A + €;;

s Let N/ < N ;

9 forj=1,2,...,ndo

10 Let i* < argmin,c . {PROP; — u;(4;)} ;

u | Update X;- < Ajand N < N"\ {i*} ;
Qutput: PROP outcome with allocation X.

Lemma 4.2. The partition A computed in Alg. 2 is EF 1.

Proof. Fix any agent ¢ € NN and any two bundles A4,, A, €
A. Suppose u;(A;) < u;(Ay), we show that there exists an
item e € A, U A, such that u;(A; — €) > u;(Ay —e).

We first consider the case when © < y. Recall that in
the round-robin allocation of goods, bundle A, has a higher
priority and in each round receives an item that is at least
as good as the one bundle A, receives. Therefore we have
ui(Ay " M*) > w;(A, N M*). On the other hand, for
the chores allocated to A, and A, bundle A, has a higher
priority. However, by the property of round-robin, if we
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Figure 2: Tllustrations for the partition by double round-robin when < y. When allocating goods, bundle A, has a higher priority (compared
with Ay). On the other hand, bundle A, has a higher priority when allocating the chores.

remove the last item (the worst chore) e,,_,1 that is al-
located A,, the total utility of chores in A, — €,,—z4+1 i
at least that of chores in A, (see Figure 2 for an illustra-
tion). Therefore, combining both goods and chores, we have
uz<Aw - emfa:Jrl) > uz(Ay)

Next, we consider the case when x > y. By a similar
argument as above, since A, has a higher priority than A,
during the allocation of chores, we have w;(A, N M~) >
u;(Ay N M~). On the other hand, while A, has a lower
priority in receiving goods, by removing the first item (the
best good) e, allocated to A,, the total utility of goods in
A, is at least that of the goods in A, — e,. Hence we have
u;(Az) > u;(Ay —ey). Since the bundles A, and A, and the
agent ¢ € N are chosen arbitrarily, by definition the partition
is EF1 for all agents. O

Given that the partition A is EF1, we can bound the total
required subsidy of allocation X by an analysis almost iden-
tical to that of the chores instance (Lemma 3.3).

Lemma 4.3. For the allocation X computed in Alg. 2, the
total subsidy of the corresponding PROP outcome (X,s) is
at most a(n).

Combining the above two lemmas with Lemma 2.6, we
have proved Theorem 4.4.

Theorem 4.4. Given any objective mixed instance T =
(M, N,u), we can compute in polynomial time a PROPI al-
location X such that in the corresponding PROP outcome,
the total subsidy is at most a(n).

Since the allocation of goods is a special case of objective
mixed instances, Theorem 4.4 not only generalizes our first
result (Theorem 3.1) but also implies that the optimal subsidy
guarantee o(n) can be obtained for the allocation of goods.?

4.2 Subjective Mixed Instance

In this section, we extend our framework to the setting where
an item can be a good for one agent but a chore for another,
i.e., the identity of goods and chores can be subjective.

Our analysis involves a reduction from the subjective
mixed instances to the objective mixed instances’. Given any

21t is also shown in [Wu ez al., 2023] that no algorithm can guar-
antee PROP outcomes with subsidy strictly less than a(n) for the
allocation of goods.

3Similar reductions can be obtained for other share-based fair-
ness notions like maximin share (MMS).

IDO subjective mixed instance Z, we construct a new instance
7' which is IDO and objective mixed. By running Algo-
rithm 2 on instance Z’, we obtain a PROP outcome (X', s’)
for 7', based on which we construct (X, s) that is a PROP
outcome for the original instance Z. We show that the total
subsidy 7(s) < 7(s’), which implies that the optimal subsidy
bound of «(n) can also be achieved for the subjective mixed
instance. We first describe our construction of the objective
mixed instance Z.

Reduction to Objective Mixed Instances Given any sub-
jective mixed instance Z that is IDO, we first identify the
agent with the maximum number of goods, i.e.,

i* = argmax |[{e € M : u;(e) > 0}].
ieN
Note that we can assume w.l.o.g. that¢* = 1. For any agent
i, we let k; be the number of items that are goods to agent :.
Therefore we have k; < kq forall © € N. We construct a new
instance Z' = (M, N,u’) as follows: for every agenti € N,
we define her utility function v} as

e = {0

ui(ej)a

In other words, for the items that are goods to agent 1 but
chores to agent ¢, we raise their utilities to zero in u; Particu-
larly, we have u} = u;. Hence we can view all these items as
goods to all agents, resulting in an objective mixed instance.

ifk; <j <k
otherwise.

Observation 1. The constructed instance I’ is an IDO ob-
Jective mixed instance.

Proof. Fix some agenti € N. We show that u/(e,) > u}(e,)
for any x < y. Recall that Z is an IDO instance and u}(e;) =
u; (e, ) holds for any x < k; and « > k;. Hence to show that
7' is IDO, it suffices to consider: 1) k; < z < k;; and 2)
ki <y <k
o Ifk; < x < ky, we have u}(e,) = 0. Forany y > x, we
have u/(e,) < 0 = uj(ey).
e If k; <y < ky, we have u)(e,) = 0. For any x < y, we
have u}(e,) > 0 = uj(ey).
Hence we have u(e;) > --- > ul(ey,) for all i € N, and
the instance is IDO. Moreover, for all agent ¢ € N, we have
uj(ej) > 0 forall j < ki and uj(e;) < O forall j > k.
Therefore the instance Z' is an objective mixed instance. [



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

For the constructed instance Z’, we use PROP; to denote

agent i’s proportional share, i.e., PROP’, = @ Since the
utility of any item on any agent does not decrease during the
reduction, we have PROPQ > PROP,; foralli € N.

Observation 2. Foralli € N, we have PROP;» > PROP,.

Following Theorem 4.4, we can compute a PROP outcome
(X', ') for instance Z’, where the total subsidy 7(s’) < a(n)
and for any agent ¢ € N we have

ul(X]) + s; > PROP/.

Based on the allocation X', we construct a new allocation
X for instance Z as follows. For any agent ¢ > 2, we define
S; as the set containing all the items e; € X that are chores
to ¢ (under u;) but goods to agent 1, which can be equivalently
expressed as S; = {e; € X 1 k; < j < ki}.

Note that by the construction of u}, we have u/(S;) = 0
for all 7 > 2. Then we define the allocation X as follows:

o foralli > 2,let X; = X[\ Si;
* foragent1,let X; = X[ U (Ui>2 Si).

In other words, we reallocate all items that are chores to its
receiver in allocation X’ but goods to agent 1 back to agent 1
in allocation X. We summarize the steps of the whole algo-
rithm in Algorithm 3.

Algorithm 3: PROP Outcome for Subjective Mixed

Input: An IDO subjective mixed instance
Z = (M, N, u) with
ui(er) > ui(ex) > -+ > u;(ey,) foralli € N.
1 Let k; < max{j € [m] : u;(e;) > 0} forall: € N;
2 Leti* < argmax;c y{ki};
3 fori € N do
4 L Let u}(e;) = u;(e;) forall j < k; or j > k;-;
5 Let uj(e;) = 0forall k; < j < k;=;
¢ Let (X', s) be the output of Algorithm 2 on instance
7' = (M,N,u');
7 for i # i* do
8 L Let S; < {ej € X,: sk <j< kz*},
9 X; + XL/ \ Si;

10 X < X U (Ui#* Si);
Output: PROP outcome with allocation X.

We argue that for all i € N, we have u;(X;) >

i)-

ui (X
Lemma 4.5. For any agent i € N, we have u;(X;) >
u(XY)). Moreover, for all e € X; we have u;(e) = uj(e).

K2

Proof. We first consider agent 1. Since u; = u} and X7
X1, it suffices to argue that u; (|, >2 Si) > 0. Note that for
any item e; € |J;5, Si, we have j < kq. Following the
definition of k:l, we have u;(e;) > 0forall j < k;. Hence we
have u;(lJ;, Si) > 0, which implies that u; (X;) > u}(X)).
Next, we consider any agent ¢ > 2. By the deﬁnition of u;
and S;, we have u;(e;) = uj(e;) foralle; € X; = X[\ S;.

Therefore we have
ui(Xi) = ui(X]\ i) = wi(X;\ Si)
= wi(X}) —ui(Si) = ui (X)),

where the last equality holds since u}(S;) = 0. Hence, the
lemma follows. O

Finally, we show that X is a PROP1 allocation, and the cor-
responding PROP outcome requires a total subsidy < 7(s’).

Lemma 4.6. The allocation A computed in Alg. 3 is PROPI.

Lemma 4.7. For the allocation X computed in Alg. 3, the
total subsidy of the corresponding PROP outcome (X,s) is
at most 7(s').

Proof. Following Lemma 4.5 and Observation 2, for any
agent 7 € [N we have

ui(X;) > ul(X]) > PROP, — s, > PROP; — s..

Since s; = max{PROP; —u;(X;),0}, wehave s; < s/ forall
i € N. Hence, the total required subsidy is at most 7(s"). O

Combining the above two lemmas with the result for the
objective mixed instances (see Theorem 4.4) and the IDO re-
duction (see Lemma 2.6), we have proved Theorem 4.8.

Theorem 4.8. Given any subjective mixed instance T =
(M, N,u), we can compute in polynomial time a PROPI
allocation X whose corresponding PROP outcome requires
subsidy at most a(n).

5 Conclusion

In this paper, we revisit the problem of fair allocation with
subsidy, for goods, chores, and their mixture. We show that
even for the mixture of subjective goods and chores, we can
compute PROP outcomes with subsidy at most «(n) (which
is n/4 for even n and (n? — 1)/(4n) for odd n). Our up-
per bound matches the previous lower bound of the required
subsidy for PROP allocations in the setting of chores, mak-
ing it optimal. Unlike previous results based on the rounding
framework, we present a new framework that first computes a
partition of items into n bundles that are even to all agents and
then decides a subsidy-efficient assignment of the bundles.

Our result completes the work of Wu et al. [2023] and gen-
eralizes it to the mixed setting. However, there are still many
open problems on the topic of fair allocation with subsidy.
For example, for the case when agents have general weights,
there is still a gap between the upper bound of n/3 [Wu and
Zhou, 2024] and the lower bound of n/4 for the total subsidy.
It seems difficult to extend our framework to the weighted set-
ting since when agents have different weights, it is inherently
impossible to partition the items into n bundles without de-
ciding their assignments. It would also be interesting to inves-
tigate the problem together with efficiency or strategyproof-
ness guarantees. Finally, we believe that it would be a nice
topic to study allocations with subsidy for other fairness cri-
teria, e.g., Maximin Share (MMS) or AnyPrice Share (APS).
Since these fairness notions are strictly easier to satisfy than
proportionality, it would be interesting to know whether a to-
tal subsidy strictly less than n/4 is sufficient.
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