Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Block Circulant Adapter for Large Language Models

Xinyu Ding, Meiqi Wang, Siyu Liao and Zhongfeng Wang

Sun Yat-sen University

dingbail357718507 @gmail.com, wangmqS53 @mail.sysu.edu.cn, liaocs2008 @ gmail.com,
wangzf83 @mail.sysu.edu.cn

Abstract

Fine-tuning large language models (LLMs) is diffi-
cult due to their huge model size. Recent Fourier
domain-based methods show potential for reduc-
ing fine-tuning costs. We propose a block circu-
lant matrix-based fine-tuning method with a stable
training heuristic to leverage the properties of cir-
culant matrices and one-dimensional Fourier trans-
forms to reduce storage and computation costs.
Experiments show that our method uses 14x less
number of parameters than VeRA, 16x smaller
than LoRA and 32x less FLOPs than FourierFT,
while maintaining close or better task performance.
Our approach presents a promising way in fre-
quency domain to fine-tune large models on down-
stream tasks.

1 Introduction

Large language models (LLMs) have been applied to serve
as foundation models for many applications [Cheng er al.,
2024] because of their outstanding performance in various
tasks. Different from many traditional deep learning appli-
cations, these models are trained in an unsupervised fashion
on large scale of data. The huge data volume also indirectly
forces LLMs to perform unsupervised training, since collect-
ing human labels can be expensive and slow. Starting from
the classical BERT model [Devlin et al., 2019], LLMs de-
velops into GPT model [Brown et al., 2020], which inspires
many modern LLMs like the LLaMA model [Touvron et al.,
2023].

Given a well trained LLM, it is not directly applicable to
downstream tasks. As a task is often highly customized (e.g.,
write a story based on some keywords), there is some need
to further fine-tune the model to better fit the application. In
general, there are three ways to fine-tune a LLM, i.e., full
fine-tuning, partially fine-tuning and prompt tuning. Full fine-
tuning means training all parameters of the LLM on down-
stream task data, but it can be challenging due to the huge
computation resource cost. Partially fine-tuning is training
a small part of parameters, which takes much less memory,
computation time, and power consumption. Prompt tuning is
to add more description (e.g., some task examples) in input so
that LLM can learn during inference time. Such capability is

also called in context learning. However, prompt tuning can
be difficult as it is unclear how LLLM understands the prompt.
For example, changing the task examples amount or order can
significantly affect the model performance [Lu et al., 2022].
Given the high cost of full fine-tuning and unknown mech-
anism underlying prompt tuning, this paper studies efficient
methods to partially fine-tune LLMs.

It should be noted that partially finetuning method is also
called parameter-efficient fine-tuning (PEFT) method in the
literature. Many PEFT methods tend to freeze LLM parame-
ters and train on added and task dependent parameters, which
are called adapters [Houlsby er al., 2019]. For example, low
rank adapter (LoRA) by [Hu et al., 2021a] factorizes weight
matrices into trainable low rank components. Ladder side
tuning (LST) method [Sung er al., 2022] inserts flexible and
parameterized modules that help reduce memory consump-
tion. The state-of-the-art Fourier domain based fine-tuning
(FourierFT) by [Gao er al., 2024] utilizes highly sparse pa-
rameter matrix in Fourier domain to construct weight matrix.

Adapters can be categorized into mergeable and non-
mergable adapters. Mergeable adapters can be merged into
the LLM after training, since their parameters are in the same
shape as LLM parameters. The merging process is often an
summation operation that adds up original LLM parameters
and adapter parameters, e.g., like the LoRA method. As a
result, these adapters do not incur extra inference cost after
training. Other adapters like LST method does not have this
advantage. Instead, without the parameter shape restriction,
they are more flexible in the adapter architecture design.

In this paper, we focus on the adapter design that can be
merged into LLM after training. Given the recent success of
Fourier domain based method, the result of significantly small
number of training parameters is promising. We notice that
the FourierFT method uses 2D FFT operations which can be
very expensive in terms of computation cost. In contrast, pre-
vious success of circulant structure in deep learning [Cheng
et al., 2015] with 1D FFT operation seems to be able to fur-
ther reduce the computation cost of Fourier domain based
fine-tuning method. However, we find that circulant structure
based training method can diverge in LLMs. Through theo-
retical analysis and empirical experiments, we propose block
circulant matrix based adapter with a special training heuris-
tic to help model converge in practice. Overall, the contribu-
tion of this paper can be summarized as follow:

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

We propose the Block Circulant Adapter (BCA), a novel
and efficient parameter-efficient fine-tuning approach for
fine-tuning LLMs. BCA leverages the structure of block cir-
culant matrices and FFT operations to significantly reduce
both storage consumption and computation complexity. This
approach not only ensures stable and convergent training by
mitigating the gradient explosion risk associated with block
circulant matrix-based linear layers but also achieves a ”win-
win” scenario in terms of efficiency and scalability for LLMs.

We are the first to theoretically analyze and demonstrate
that the gradient explosion risk associated with block circu-
lant matrix-based linear layers can be effectively mitigated
by a heuristic of learning rate adjustment, ensuring stable and
convergent training processes for BCA, which is crucial for
practical application of LLM adapters.

Extensive experiments on standard NLP tasks and datasets
substantiate the effectiveness of our BCA method. We
demonstrate that BCA not only matches the performance
of prior works like LoRA and FourierFT but also achieves
this with substantially lower computational costs and storage
costs, highlighting the advantages of our approach for LLM
fine-tuning.

2 Related Work

In the domain of LLLMs, the evolution of Parameter-Efficient
Fine-Tuning methods has marked a significant shift towards
enhancing model performance without the computational
burden of full-parameter tuning. Besides the capability of
mergeable or not into LLMs, PEFT methods are also clas-
sified into additive, selective, reparameterized, and hybrid
fine-tuning approaches in the literature [Xu et al., 2023].
Additive fine-tuning methods, such as adapters [Houlsby et
al., 2019] and soft prompts [Wang er al., 2023], introduce
additional trainable parameters into the model architecture,
allowing for efficient task-specific tuning without modify-
ing the pre-trained parameters. Selective fine-tuning meth-
ods focus on updating a subset of the model’s parameters,
thereby reducing the computational overhead [Perifanis et al.,
2024]. Reparameterized fine-tuning methods, such as low-
rank adapter [Hu ef al., 2021a] and its derivatives [Dettmers
et al., 2024], involve constructing a low-dimensional repa-
rameterization of the original model parameters for training,
which is then transformed back to maintain inference speed.
Hybrid fine-tuning methods [Zhou et al., 2024a] combine the
advantages of different PEFT approaches to build a unified
model that balances efficiency and performance.

In parallel, the exploration of the Fourier domain for fine-
tuning LLMs has opened new avenues, especially with stud-
ies indicating that LLMs leverage Fourier domain features
in certain tasks [Zhou et al., 2024b]. For example, Fouri-
erFT by [Gao er al., 2024] significantly reduces the number
of trainable parameters while maintaining or even improv-
ing performance across various tasks. Existing Fourier-based
tuning methods, have not yet resolved the issue of memory
consumption due to the necessity of weight matrix genera-
tion through 2D Fast Fourier Transform. This limitation has
spurred the need for a more efficient method that can leverage
the Fourier domain without incurring excessive memory and

computation costs.

However, Fourier domain based training method can be
traced back to compressing computer vision models [Cheng
et al., 2015; Ding et al., 2017]. The circulant structure
is utilized due to its connection to FFT operation. It is
found that circulant structure falls into the family of low
displacemnt rank matrix which is proven applicable in deep
learning [Zhao et al., 2017]. These methods are further gener-
alized into displacement rank learning [Thomas et al., 2018;
Zhao et al., 2017] of structure matrices. Later, it gradually
develops into the design of structure matrices to enable pow-
erful feature representations [Dao et al., 2022].

3 Preliminary

In this section, we briefly introduce the concept of circulant
matrix and block circulant matrix. The related matrix vector
multiplication algorithm is also shown via using fast fourier
transform (FFT) algorithm. It should be noted that the corre-
sponding back-propagation [LeCun erf al., 1988] formulation
is skipped in this paper, since auto-differentiation [Paszke et
al., 2017] has been widely adopted in modern deep learning
frameworks.

3.1 Circulant Matrix

Given a vector ¢ = {¢; ?:_01 € R™*1 the circulant matrix

cire(c) € R™™ can be determined by:

Co Ch—1 ... C1
. c
cire(c) = ! (1)
Cn—1
Cn—1 PN C1 Co

For matrix vector multiplication, there exist a fast multiplica-
tion algorithm [Oppenheim, 1999] for circulant matrix utiliz-
ing fast fourier transform:

cire(c)x = IFFT(FFT(c) o FFT(x)), ()

where x € R™*! is an input vector, IFFT is the inverse fast
frourier transform, and o is the element-wise product, respec-
tively. In addition, circulant matrix can also be written as a
matrix polynomial:

0 0 0 1
1 0 0

P= ,
0 3)
: . 0
0O ... 0 1 0

circ(c) = cgl + ;P + -4 ¢, P71
where P € R™*™ is a cyclic permutation matrix.

3.2 Block Circulant Matrix

A block circulant matrix is a block matrix with each block be-
ing a circulant matrix. For the simplicity of implementation,
the block circulant matrix in deep learning community is of-
ten an equally partitioned matrix [Ding et al., 2017]. More

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

x: € Rp><1

7 i
I I I m DFT DFT

Element-wise
multiplication

x1
4 BUERPXP / xiER”_Xl ERp
{IE x| i anf] | i
=" . - ;
B € RV Ep_
n n i
x i ‘ . Shi € RP*1
Pre-trained i IDFT
Weights | _ -
W € RV n
z N

Y

q

Figure 1: Tllustration of block circulant adapter. h is the output from pre-trained weight matrix W. Ah is the output from fine-tuned weight
change matrix AW which in this case is the block circulant matrix B. The summation of h and Ah form the output of the fine-tuned model.
After training, the block circulant matrix can be directly added to pre-trained weight matrix such that no extra inference cost is incurred.

specifically, let B € R™*™ be a block circulant matrix with
partition size p such that n/p = ¢. Then, each row and each
column contain g submatrices in shape p x p that is denoted by
B, ;, where 7 and j are integers from 0 to ¢ — 1, respectively.
According to Eq. (1), assume that each submatrix B; ; is de-
fined by the corresponding vector ¢; ; € RP*!. Similarly, let
vector x be partitioned into g subvectors with each subvector
x; € RP>*1. Denote the matrix vector multiplication result by
column vector h € R™*1. Apply the same partition into h
such that h; € RP*!, The block matrix vector multiplication
can be then written as:

h=Bx={h; }l 0>
-1
B, x;

Q

h;

Q.
[
= O

“

IFFT(FFT(c; ;) o FFT(x;))
0

j
qg—1

= IFFT() FFT(c; ;) o FFT(x;)),
=0

where the IFFT computation is combined into single compu-
tation for each h; [Liao and Yuan, 2019].

It should be noted that block circulant matrix is a more flex-
ible and general representation of circulant structure. When
p = n, there is only one block, and block circulant matrix is
a single circulant matrix. When p = 1, block circulant matrix
becomes a general dense matrix. Therefore, block circulant
matrix connects circulant with dense matrix by adjusting the
partition size p.

4 Method

There are many explorations of applying circulant struc-
ture to deep learning model [Cheng et al., 2015; Moczul-
ski et al., 2016; Ding et al., 2017; Thomas et al., 2018;
Liao and Yuan, 2019]. In practice, it is found that training
block circulant structure can occasionally diverge, especially

when p or n becomes large. To the best of our knowledge, we
for the first time show the reason why circulant structure can
diverge sometimes with the first order derivative based opti-
mizing approaches, which are widely adopted in the commu-
nity.

In this section, we start with theoretical proof of the gra-
dient explosion risk of block circulant matrix. Next, we sim-
ulate training block circulant matrix on a single layer neural
network. It can be empirically observed that block circulant
matrix results in much larger gradients than dense matrix.
Last, we provide a simple but effective solution to ensure a
stable training process for learning block circulant matrix.

4.1 Derivative of Circulant Structure

Modern deep learning model optimization methods mainly
focus on the first order derivative. It can be proved that the
first order derivative of block circulant matrix can explode
in the sense that the corresponding gradient value is propor-
tional to p. However, different from the gradient explosion
effect like in recurrent neural network [Bengio ef al., 1994],
the large gradient of block circulant matrix does not affect the
back-propagation process for updating other neural network
layers.

Proposition 1. Given a vector ¢ € R"*! and an input vector
x € R let h = circ(c)x and f(h) : R — R be a
differentiable function. The first order derivative of ¢ has a
bounded bilinear form.

Proof. According to Eq. (3), it can be noticed that the Jaco-
bian matrix J for the linear mapping from c to h has the form

[I,P,...,P" 1]x. Next, we apply chain rule to calculate the
first order derivative as following:
Vi(e)=Vf(h)"J
=VfmTLP,...,. P)x
Vf(c:) = Vf(h) Pix (&)
<|IVF)]| x [[Px]]
< IV < JIx]],

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

le7
3.5
3.0 1
2.5 1
w 2.01
(2]
2 1.5
1.0 —*— dense n=1024
' block circ p=1024
054 ™ block circ p=512
' —*— block circ p=256
0.04 ™ block circ p=128

Gradient Mean

0 B
—1000 4
—2000 1
—3000 4
—4000 ~ —— dense n=1024
block circ p=1024
—5000 A —— block circ p=512
—— block circ p=256
—6000 1 —&— block circ p=128

0 2 4 6 8
Iteration (x1000)

0 2 4 6 8
Iteration (x1000)

Figure 2: Gradient of single layer neural network with n = 1024 for dense matrix and p € {128, 256,512, 1024} for block circulant matrix.
Dense matrix can be seen as a special case of block circulant matrix with block size p = 1. When p = n, the block circulant matrix becomes
a circulant matrix. MSE curve shows all simulated training processes converge. Gradient mean value curve demonstrates that gradient of

block circulant matrix is proportional to block size setting p.

where || - || is a norm function. It can be seen that V f(c;)
a bounded bilinear mapping from V f(h) x x to c;.

Oz

Proposition 2. Given a general matrix A € R"*", let g
Ax. For the same differentiable function f, min{V f(c)}
n x min{V f(A)}.

Proof. Note that the derivative of g and h are independent of
A and c, thereby V f(g) = Vf(h). Then, we can compute
the derivative of A by:
Vi(A) =V [h)xT,
Vf(Aj:) =V [f(h)x;.
In the case of circulant vector based weight parameters, we
have the result:

>

(6)

n—1
Vf(c)) =Vfh)I Pix = Z Vf(hj)x;_;, 7

=0

where for 7 — ¢ < 0, it refers to the index of j — ¢ + n.
Therefore, it can be seen that:

min{Vf(c)} = min{V f(c))}

n—1
= ml_in{z Vf(hj)x;—i}
=0

= min{n x {min V£ (h;)x;i}} (®)
> n x min{min{V f(h;)x;_;}}
i
>n x miin{mjin{min Vf(A)}}
>n x min{Vf(A)}.
O

Proposition 3. Given a block circulant matrix B, for
any submatrix B; ;, the corresponding vector c; ; satisfies

min{V f(c;;)} > p x min{Vf(A)}.

Proof. According to Eq. (4), we can calculate derivative:

Vf(ci,j) = vf(hi)T[Ia Qa caiey Qpil]xja (9)

where Q is in the similar form as P but in shape p x p. Thus,
for each circulant submatrix, it follows from the aforemen-
tioned result of circulant matrix derivative:

min{V f(c;;)} > p x min{V f(A)}. (10)

O

Corollary 1. Compared with gradients of dense matrix based
linear layer; circulant matrix based linear layer gradient ex-
plodes by n, and block circulant matrix based linear layer
explodes by p.

4.2 Single Layer Neural Network Simulation

Besides theoretical proof, we empirically simulate the gra-
dient exploding phenomenon of circulant structure by train-
ing on a single linear layer neural network. Given a random
matrix W € R" ", lety = Wx + ¢ with ¢ ~ N(0,1I).
The training data (x,y) can be randomly generated on-the-
fly. For dense matrix based linear layer, we train W with
prediction y = Wx by minimizing the mean square error
(MSE) between y and y:

MSE(y,y) = [ly - yI*.

For block circulant matrix based linear layer, we train B ac-
cording to Eq. (4), where there are ¢ X ¢ submatrices that are
circulant matrices.

In practice, we set batch size 32, training iteration 10000
and learning rate 0.1 for Adadelta optimizer [Zeiler, 2012].
For both dense matrix and block circulant matrix based lin-
ear layer, MSE and gradient mean values are reported and
compared in Fig. 2. It can be seen that both dense matrix
and block circulant matrix based linear layers converge. But
block circulant matrix based linear layer training ends with

(1)

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

smaller and better MSE. Such result may be caused by the
circulant structure that may work as regularization.

As shown in Fig. 2, the gradient curve of block circulant
matrix starts with large gradient values and decreases along
with the increase of training iterations. This is caused by the
convergence of learning block circulant matrix. It can also
be noticed that gradients of different block circulant matrices
are linearly proportional to block size settings. The larger
block size results in larger gradient value, and corresponding
gradient is around p times larger than dense matrix. When
p = 1024, the block circulant matrix results in a single block,
and it becomes a circulant matrix that has the largest gradient
value.

4.3 Learning Heuristic

We propose using block circulant matrix based linear layer as
adapter for fine-tuning large language models. More specif-
ically, for a large weight matrix W, the adapter learns the
weight change matrix AW by letting B = AW. Given in-
put x, the forward process now becomes:

h+ Ah = Wx + AWx = Wx + Bx. (12)

In this way, the storage complexity is linear, as block circu-
lant matrix can be constructed from corresponding vectors.
The computation complexity is loglinear, since block circu-
lant matrix vector multipliation can be executed using FFT
operations which has loglinear computation complexity. Fig.
1 visualizes the forward process. It can be seen that all com-
putations are performed on vectors, thereby effectively re-
ducing the training complexity especially compared with full
fine-tuing on AW.

Besides, according to our theoretical proof and empircal
observation, the gradient explosion risk of block circulant
matrix can cause model to diverge occasionally. To achieve a
stable training process, we propose to factor down the learn-
ing rate a by block size p:

o+ afp. (13)

This heuristic solution aims at updating weight parameters of
each c; ; inside B with gradient values as large as in general
dense matrix. In this way, at each training step, the updated
block circulant matrix does not change significantly, thereby
resulting in less output change for next iteration. It turns out
that this solution can effectively ensure a successful training
of the block circulant adapter.

5 Experiments

The proposed block circulant adapter is evaluated by fine-
tuning large language models on natural language process-
ing tasks. To verify the effectiveness of our method, we
analyze the downstream task performance, fine-tuning com-
plexity and model convergence. The complexity analysis
presents storage and computation complexity of the experi-
mental model. The convergence analysis confirms the effec-
tiveness of our proposed solution as expressed in Eq. (13).
Models and Datasets. We fine-tune both the RoBERTa
model [Liu et al., 2019] and the LLaMA2-7B model [Tou-
vron et al., 2023], which are the most frequently selected

o o
o ©
L

Training loss
o
=

0.2 w
—¢ 1r=0.06/1024
0.04 Ir=0.06
10 15 25 30 35

T T T
0 5 40

Epochs

(a) Partition size p = 1024

0.6
%]
051
‘© 0.3
0.2
0.11 =& Ir=0.06/512
0.0 Ir=0.06
15

Epochs

in

Tr

(b) Partition size p = 512

Figure 3: Training loss curve of the RoBERTa-large model on the
MRPC dataset with our block circulant adapter. The learning rate
0.06 is the setting for training the FourierFT adapter that is also a
Fourier domain based method like ours. It can be seen that without
applying our heuristic (Eq.13), the model training diverges. How-
ever, after using the heuristic, the model successfully converges.

models for fine-tuning adapters. RoBERTa model has two
different versions: RoBERTa-base with hidden dimension
n = 768 and RoBERTa-large with n = 1024.

For RoBERTa models, we evaluate on the GLUE bench-
mark dataset, a standard multi-task dataset proposed by
[Wang er al., 2018] for natural language understanding. Fol-
lowing [Gao et al.,, 2024], we run experiments on Cor-
pus of Linguistic Acceptability (CoLA) by [Warstadt et al.,
2019], Stanford Sentiment Treebank (SST-2) by [Socher et
al., 2013], Microsoft Research Paraphrase Corpus (MRPC)
by [Dolan and Brockett, 2005], Semantic Textual Similarity
Benchmark (STS-B) by [Cer et al., 2017], Question Natural
Language Inference (QNLI) by [Rajpurkar, 2016], and Rec-
ognizing Textual Entailment (RTE) by [Dagan et al., 2005].

For the LLaMA2-7B model, we train on a cleaned version
of Alpaca [Rohan Taori and Hashimoto, 2023] and evalu-
ate on MT-Bench [Zheng et al., 2023], which contains 51K
instruction-response pairs for instruction tuning. The cleaned
version addresses issues like hallucinations, merged instruc-
tions, and empty outputs. We also evaluate on the GSMSK
dataset [Cobbe et al., 2021], a high-quality dataset with 8.5K
grad school math word problems.

Baselines. We compare our proposed adapter with differ-
ent adapters. The classical full fine-tuning (FF) adapter up-
dates all parameters within the model. Low rank adaption
(LoRA) by [Hu er al., 2021b] is a well-known fine-tuning

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method SST-2 MRPC CoLA QNLI RTE STS-B Avg.

FF 94.8 90.2 63.6 92.8 8.7 91.2 85.2

. LoRA 95.1402 89.7107 634112 933103 784105 91.5102 85.2
»vn VeRA 94.640.1 89.540.5 65.840.8 91.840.2 78.7+0.7 90.7+0.2 85.2
Eg FourierFT 94.2:&043 900:&0,8 63.8:&146 92.2:&041 79.1:&045 90.8:&042 85.0
Oursp:256 94.7:(:0‘5 89.5:‘:0‘7 62.1:&0‘6 91.8:&0‘2 80.1:&1‘4 90.8;{:041 84.8
Oursp:768 93.8;&0_1 890:&0.6 644:&1.6 92.0;&0_2 79.8;&0_9 90.3;&0_3 84.9

96.4 90.9 68.0 94.7 86.6 92.4 88.2

m LoRA 96.2105 902410 682119 948403 852411 92.310.5 87.8
Q VeRA 96.1.01 909107 680105 94419> 85.9i07 91.7i0s 878
< FourierFT 96.0;&0‘2 90.9:&043 67.1:&1‘4 94.4:&044 87.4:&146 91.9:&044 88.0
= Ourspesiz | 96003 907410 678110 941i0q 881i1n 917403 88.1
Oursp:1024 95.8;&0_2 89.7;&0_7 66.7i0_8 94.2;&0_1 85.6:&1'2 91.4:&0'4 87.2

Table 1: Fine-tuning RoBERTa base and large model on GLUE. Larger metric value means better model performance.

method for large language models. It applies low rank factor-
ization to weight change matrix and has been successfully
used in various applications. Vector-based random matrix
adaptation (VeRA) by [Kopiczko er al., 2024] uses a pair of
low-rank matrices shared among all layers and learns a small
scaling vector. LaMDA++ by [Azizi et al., 2024] freezes
the first projection matrix (PMA) in the adaptation path and
the second projection matrix (PMB) in the early fine-tuning
stage, while introducing a low-dimensional trainable square
matrix. FourierFT [Gao et al., 2024] is the state-of-the-art
fine-tuning method that trains with parameters in fourier do-
main. Similarly, our method can also be seen as a fourier do-
main based method since FFT in Eq. (2) directly transforms
parameters to fourier domain. However, FourierFT uses 2D
FFT computation rather than 1D FFT as in our method.

Implementations. Our block circulant adapter is imple-
mented using the PyTorch framework [Paszke et al., 2019].
The partition size p is set as large as possible to achieve
the smallest storage and computation cost. Thus, p is set
as 768 and 256 for RoBERTa-base model, 1024 and 512 for
RoBERTa-large model, 1024, 512, 256 and 128 for LLaMA2-
7b model. Following [Gao et al., 2024], we apply block circu-
lant fine-tuning on query and value weight matrices inside the
attention layer of two RoBERTa models and the LLaMA2-
7B model fine-tuned on the alpaca dataset. Following [Azizi
et al., 2024], we fine-tune on the MHSA and FFN layers of
LLaMA2-7B model on the GSM8K dataset. The classifica-
tion head is fully fine-tuned.

Metrics. Note that different datasets have different per-
formance metrics. Matthew correlation coefficient (MCC) is
report for CoLA, Pearson correlation coefficient (PCC) is re-
ported for STS-B, and accuracy (Acc.) is reported for all re-
maining tasks. We evaluate the fine-tuned model on the Al-
paca dataset using MT-Bench [Zheng et al., 2023], with GPT-
4 [gpt, 2023] subsequently assigning scores to the model’s re-
sponses for 80 multi-turn questions on a scale of 10. Follow-
ing [Gao et al., 2024], we perform 5 runs on each dataset with
different random seeds and report the median metric value
with standard deviation. Overall, larger task metric value
means better model performance. For complexity analysis of
all methods, we compute related number of trainable parame-
ters and floating point operations (FLOPs). Smaller complex-
ity value means better model performance. Letters K, M, G
in experimental results indicate data volume units, and they

0.3{ QO.3M 1.4G

B Param. [1.4
FLOPs
1.2
=02 10 _
E o
: to.8 %5
£ &
© [e]
& t0.6 2
0.1
0.4
43K K Lo
38M 24K 18K '
00l 3.8M 27M |4,
LoRA VeRA FourierFT Ours256 Ours768
(a) Adapter complexity on RoOBERTa-base model.
0.8 3 5,26 N Param.
fLors [0
0.7
0.6 { t4.0
S 051 G
- 3.0
E 0.4 <
© e
< 0.3 2.0
0.2
98K 1.0
L0.0

LoRA

FourierFT Ours512 Ours1024

(b) Adapter complexity on RoBERTa-large model.

Figure 4: Complexity comparison of different adapters. The larger
partition size p results in smaller storage and computation complex-
ity of our block circulant adaper. FF method is not presented due to
its high cost in both parameters and FLOPs. Our proposed block cir-
culant adapters can balance between parameter amount and FLOPs.

stand for kilo, mega and giga, respectively.

5.1 Convergence Analysis

Given that our weight parameters are injective to its frequency
domain representation, both FourierFT and our approach can
be seen as Fourier domain based fine-tuning methods. We
adopt the same learning rate setting for fine-tuning on GLUE
dataset. Divergence of fine-tuning block circulant adapter on
GLUE dataset can be observed on some tasks without apply-
ing our proposed heuristic Eq. (13). Such phenomenon can
be caused by a bad initialization due to poorly chosen ran-
dom seeds or the large gradients of block circulant matrix as
proved in this paper. Bad initialization is an universally ap-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

plicable hypothesis, which is also orthogonal to our proposal.
However, according to our theoretical proof and empirical ob-
servation, we argue that our proposed heuristic can effectively
ensure a stable training process.

Fig. 3 shows an example of training loss curve comparison
between with and without applying our proposed heuristic. It
can be seen that when p = 1024 and p = 512, the training
loss curve does not converge with learning rate 0.06 which
is used for training FourierFT adapter. After adopting the
proposed heuristic, it converges successfully.

5.2 Fine-tuning Performance

Table 1 presents fine-tuned RoBERTa base and large mod-
els performance on GLUE dataset. In terms of RoBERTa
base model, while p = 256 results in more training param-
eters than p = 768, our method with p = 256 is slightly
worse than our method with p = 768 on average. This is
mainly caused by the result on CoLA datasets, where over-
parameterization seems not improving model performance.
For rest datasets, p = 256 achieves close or better perfor-
mance than p = 768. For RoBERTa large model, our method
with partition size p = 512 achieves the best average perfor-
mance. From p = 1024 to p = 512, our model performance
improves significantly on average. Note that partition size
p = 1024 is the maximum configurable partition size, since
n = 1024 for RoBERTa-large model. This shows even when
p = 1024 our method results in the smallest block circulant
adapter, it still achieves competitive performance compared
with other approaches.

Table 2 shows the performance of the fine-tuned LLaMA2-
7b model on the Alpaca and GSM8K datasets. It can be
noticed that increasing partition size results in decreasing
parameter amount and FLOPs. However, the task score
or accuracy does not always decrease with larger partition
size. This may be caused by the over-parameterization of the
large LLaMA model or the strong structure of the proposed
method that may serve as a regularization. Compared with
other adapters, our method can balance between parameters
amount and FLOPs.

5.3 Complexity Analysis

Our block circulant adapter has linear storage complexity be-
cause of the circulant structure. More specifically, the storage
complexity is O(n?/p). Thus, larger partition size p results
in smaller number of parameters for fine-tuning. Our com-
putation complexity is loglinear with the FFT operations for
fast matrix vector multiplication, i.e., O(”Tf logp). When p is
close to n, then the computation complexity becomes close to
O(nlogn). In particular, when p = n, it is a single circulant
matrix with exactly O(n logn) computation complexity.
Figure 4 visualizes the complexity comparison between
different adapters. LoRA has large storage complexity but
small computation complexity due to its low rank structure
design. The storage complexity of VeRA is O(n + r), and
the computational complexity is O(nr). However, in practice
VeRA method can take large r to achieve good performance.
FourierFT has small storage complexity but large computa-
tion complexity because of its sparse parameter structure in

Method MT-Bench GSM8K

FLOPs Param. Score|FLOPs Param. Acc.
LoRA 0.03G 33.55M 5.20 | 0.01G 28.05M 36.9

VeRA 2.29G 1.65M 5.08 - - -

FourierFT |133.14G 0.06M 5.18 - - -
LaMDA - - - 0.06G 4.37TM 37.9
LaMDA++ - - - - 5.12M 38.2
Ours,—128 | 0.32G° 8.39M 5.38 | 1.33G 35.13M 38.6
Oursp—o56 | 0.19G 4.19M 5.38 | 0.79G 17.56M 39.7
Oursp—s512 | 0.12G 2.10M 5.26 | 0.48G 8.78M 38.6
Ours,—1024 | 0.08G 1.06M 5.38 | 0.31G 4.39M 37.8

Table 2: Fine-tuning performance of LLaMA2-7B model. Larger
score or accuracy value indicates better model performance. Missing
values “-” means not available. For example, LaMDA++ does not
specify rank for each module, thereby with unknown FLOPs.

Fourier domain and heavy 2D FFT operations. It can be
seen that across all models, LoRA has the largest parame-
ter amount, and FourierFT has the largest FLOPs. The com-
plexity of the different models listed in Table 2 verifies the
analysis.

For our method, we choose p as large as possible for
achieving small storage and computation complexity.

Our proposed method can result in a good balance be-
tween storage and computation complexity. More specifi-
cally, compared with FourierFT, ours FLOPs is 32x smaller
on RoBERTa-large and RoBERTa-base, while maintaining
close or smaller amount of parameters. When compared with
LoRA, ours training parameter amount is 16X smaller on
RoBERTa-large and RoBERTa-base, but our FLOPs is 5x
more than LoRA. On RoBERTA-base, our method is much
smaller than VeRA in terms of both parameter amount and
FLOPs. For LLaMA2-7B model, ours also achieves signif-
icantly smaller FLOPs than FourierFT and smaller parame-
ter amount than LoRA. VeRA takes slightly more parame-
ters than ours and costing much higher FLOPs. On GSM8K
dataset, our method can achieve the smallest number of pa-
rameters while maintaining similar accuracy.

5.4 Overall

The proposed block circulant adapter achieves similar or bet-
ter downstream task performance when compared with other
adapters. In terms of number of parameters, our method
requires as small as the state-of-the-art FourierFT adapter,
which is significantly smaller than classical LoRA adapter.
Regarding FLOPs amount, ours is as small as LoRA, which is
much more smaller than FourierFT and VeRA. In general, our
method can balance between parameter amount and FLOPs
while keeping similar or better performance.

6 Conclusion

In this paper, we present a noval adapter design based on
block circulant matrix and study the potential divergence risk
via theoretical proof and empirical experiments. To achieve
a stable training process, we propose a heuristic solution that
can result in successful convergence. Experimental results
also demonstrate that our block circulant adapter has both low
storage and computation complexity while achieving compet-
itive downstream task performance.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work was financially supported by the National Key
R&D Program of China (Grant No. 2024YFA1211400).

Contribution Statement

Xinyu Ding and Meiqi Wang contributed equally to this work.
Siyu Liao and Zhongfeng Wang are co-corresponding au-
thors.

References

[Azizi et al., 2024] Seyedarmin Azizi, Souvik Kundu, and
Massoud Pedram. Lamda: Large model fine-tuning via
spectrally decomposed low-dimensional adaptation, 2024.

[Bengio et al., 1994] Yoshua Bengio, Patrice Simard, and
Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157-166, 1994.

[Brown et al., 2020] Tom B. Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-
shot learners. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS 20, Red Hook, NY, USA, 2020. Curran Associates
Inc.

[Cer et al., 2017] Daniel Cer, Mona Diab, Eneko Agirre,
Inigo Lopez-Gazpio, and Lucia Specia. Semeval-
2017 task 1: Semantic textual similarity-multilingual
and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

[Cheng et al., 2015] Yu Cheng, Felix X Yu, Rogerio S Feris,
Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks
with circulant projections. In Proceedings of the IEEE
international conference on computer vision, pages 2857—

2865, 2015.

[Cheng et al., 2024] Yu Cheng, Jieshan Chen, Qing Huang,
Zhenchang Xing, Xiwei Xu, and Qinghua Lu. Prompt
sapper: a llm-empowered production tool for building ai
chains. ACM Transactions on Software Engineering and
Methodology, 33(5):1-24, 2024.

[Cobbe et al., 2021] Karl Cobbe, Vineet Kosaraju, Moham-
mad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168, 2021.

[Dagan et al., 2005] Ido Dagan, Oren Glickman, and
Bernardo Magnini. The pascal recognising textual
entailment challenge. In Machine learning challenges
workshop, pages 177-190. Springer, 2005.

[Dao et al., 2022] Tri Dao, Beidi Chen, Nimit S Sohoni, Ar-
jun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch:
Expressive structured matrices for efficient and accurate

training. In International Conference on Machine Learn-
ing, pages 4690-4721. PMLR, 2022.

[Dettmers et al., 2024] Tim Dettmers, Artidoro Pagnoni, Ari
Holtzman, and Luke Zettlemoyer. Qlora: Efficient fine-
tuning of quantized llms. Advances in Neural Information
Processing Systems, 36, 2024.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171-4186. Association
for Computational Linguistics, 2019.

[Ding et al., 2017] Caiwen Ding, Siyu Liao, Yanzhi Wang,
Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang, Xuehai
Qian, Yu Bai, Geng Yuan, et al. Circnn: accelerat-
ing and compressing deep neural networks using block-
circulant weight matrices. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, pages 395408, 2017.

[Dolan and Brockett, 2005] Bill Dolan and Chris Brockett.
Automatically constructing a corpus of sentential para-

phrases. In Third international workshop on paraphrasing
(IWP2005), 2005.

[Gao er al., 2024] Ziqi Gao, Qichao Wang, Aochuan Chen,
Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier trans-
form. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024,
2024.

[gpt, 2023] Gpt-4 technical report. 2023.

[Houlsby et al., 2019] Neil Houlsby, Andrei Giurgiu, Stanis-
law Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for nlp. In Interna-

tional conference on machine learning, pages 2790-2799.
PMLR, 2019.

[Hu er al., 2021a] Edward J Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685, 2021.

[Hu et al., 2021b] Edward J. Hu, Yelong Shen, Phillip
Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation
of large language models, 2021.

[Kopiczko et al., 2024] Dawid J.
Blankevoort, and Yuki M. Asano.
random matrix adaptation, 2024.

Kopiczko, Tijmen
Vera: Vector-based

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[LeCun et al., 1988] Yann LeCun, D Touresky, G Hinton,
and T Sejnowski. A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist
models summer school, volume 1, pages 21-28, 1988.

[Liao and Yuan, 2019] Siyu Liao and Bo Yuan. Circconv: A
structured convolution with low complexity. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 42874294, 2019.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692, 2019.

[Lu et al., 2022] Yao Lu, Max Bartolo, Alastair Moore, Se-
bastian Riedel, and Pontus Stenetorp. Fantastically or-
dered prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8086—8098,
2022.

[Moczulski et al., 2016] Marcin Moczulski, Misha Denil,
Jeremy Appleyard, and Nando de Freitas. ACDC: A struc-
tured efficient linear layer. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[Oppenheim, 1999] Alan V Oppenheim. Discrete-time sig-
nal processing. Pearson Education India, 1999.

[Paszke et al., 2017] Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. 2017.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[Perifanis er al., 2024] Vasileios Perifanis, Efstathios Kary-
pidis, Nikos Komodakis, and Pavlos Efraimidis. Sftc:
Machine unlearning via selective fine-tuning and targeted

confusion. In European Interdisciplinary Cybersecurity
Conference, pages 29-36, 2024.

[Rajpurkar, 2016] P Rajpurkar. ~ Squad: 100,000+ ques-
tions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[Rohan Taori and Hashimoto, 2023] Tianyi Zhang Yann
Dubois Xuechen Li Carlos Guestrin Percy Liang Ro-
han Taori, Ishaan Gulrajani and Tatsunori B. Hashimoto.
Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[Socher ef al., 2013] Richard Socher, Alex Perelygin, Jean
Wau, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In

Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631-1642, 2013.

[Sung er al., 2022] Yi-Lin Sung, Jaemin Cho, and Mohit
Bansal. Lst: Ladder side-tuning for parameter and mem-
ory efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991-13005, 2022.

[Thomas et al., 2018] Anna Thomas, Albert Gu, Tri Dao,
Atri Rudra, and Christopher Ré. Learning compressed
transforms with low displacement rank. Advances in neu-
ral information processing systems, 31, 2018.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gau-
tier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama:
Open and efficient foundation language models. ArXiv,
abs/2302.13971, 2023.

[Wang er al., 2018] Alex Wang, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP, 2018.

[Wang et al., 2023] Zhen Wang, Rameswar Panda, Leonid
Karlinsky, Rogério Schmidt Feris, Huan Sun, and Yoon
Kim. Multitask prompt tuning enables parameter-efficient
transfer learning. ArXiv, abs/2303.02861, 2023.

[Warstadt er al., 2019] Alex Warstadt, Amanpreet Singh,
and Samuel R. Bowman. Neural network acceptability
judgments, 2019.

[Xu et al., 2023] Lingling Xu, Haoran Xie, S. Joe Qin, Xiao-
hui Tao, and Fu Lee Wang. Parameter-efficient fine-tuning
methods for pretrained language models: A critical review
and assessment. ArXiv, abs/2312.12148, 2023.

[Zeiler, 2012] Matthew D Zeiler. Adadelta: an adaptive
learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[Zhao et al., 2017] Liang Zhao, Siyu Liao, Yanzhi Wang,
Zhe Li, Jian Tang, and Bo Yuan. Theoretical properties for
neural networks with weight matrices of low displacement
rank. In international conference on machine learning,

pages 4082-4090. PMLR, 2017.

[Zheng et al., 2023] Lianmin Zheng, Wei-Lin Chiang, Ying
Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-
judge with mt-bench and chatbot arena, 2023.

[Zhou et al., 2024a] Han Zhou, Xingchen Wan, Ivan Vulié,
and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. Transactions

of the Association for Computational Linguistics, 12:525—
542, 2024.

[Zhou et al., 2024b] Tianyi Zhou, Deging Fu, Vatsal Sha-
ran, and Robin Jia. Pre-trained large language models
use fourier features to compute addition. arXiv preprint
arXiv:2406.03445, 2024.

https://github.com/tatsu-lab/stanford_alpaca

