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Abstract
Spurious correlations pose a significant challenge
to the robustness of statistical models, often re-
sulting in unsatisfactory performance when dis-
tributional shifts occur between training and test-
ing data. To address this, we propose to trans-
fer knowledge across spuriously correlated cate-
gories within the deep feature space. Specifically,
samples’ deep features are enriched using semantic
vectors extracted from both their respective cate-
gory distributions and those of their spuriously cor-
related counterparts, enabling the generation of di-
verse class-specific factual and counterfactual aug-
mented deep features. We then demonstrate the
feasibility of optimizing a surrogate robust loss in-
stead of conducting explicit augmentations by con-
sidering an infinite number of augmentations. As
spurious correlations between samples and classes
evolve during training, we develop a reinforcement
learning-based training framework called Dynamic
Knowledge Transfer (DKT) to facilitate dynamic
adjustments in the direction and intensity of knowl-
edge transfer. Within this framework, a target net-
work is trained using the derived robust loss to en-
hance robustness, while a strategy network gener-
ates sample-wise augmentation strategies in a dy-
namic and automatic way. Extensive experiments
validate the effectiveness of the DKT framework
in mitigating spurious correlations, achieving state-
of-the-art performance across three typical learning
scenarios susceptible to such correlations.

1 Introduction
While deep learning models have demonstrated remarkable
performance across a wide range of tasks, studies have high-
lighted that deep models frequently capture spurious corre-
lations between non-causal attributes and classes, posing a
threat to the validity and reliability of the models [Wu et al.,
2023; Deng et al., 2024; Tian et al., 2025]. For instance,
in natural language processing tasks, classifiers may learn
that the term “Spielberg” is correlated with positive movie
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Figure 1: Illustration of spurious correlations induced by imbal-
anced attributes. Transferring knowledge across categories facili-
tates the generation of instances with rare attributes, aiding in mit-
igating such pseudo correlations. Here, A and C refer to attributes
and classes, respectively.

reviews, or that the word “ugly” is associated with toxic com-
ments [Gupta et al., 2022]. Similarly, in computer vision
tasks, an image classifier might associate a forest background
with the label “bird” [Deng et al., 2024]. The embedding
of spurious correlations during training can lead to perfor-
mance degradation when faced with varying distributions in
test data, raising concerns regarding prediction robustness
and trustworthiness.

Data augmentation has proven to be effective in helping
models discern genuinely significant features by diversify-
ing and balancing the training data [Zhou and Wu, 2023;
Deng et al., 2024]. Among these techniques, counterfactual
data augmentation, which generates counterfactual samples
with modified attributes, emerges as one of the most potent
approaches for dismantling spurious correlations between
non-causal attributes and classes [Wu et al., 2024; Reddy et
al., 2023]. However, determining which features should be
modified and how to modify them is a complex issue that
often relies on human annotation or group information, mak-
ing the process both costly and time-consuming [Deng et al.,
2023]. Additionally, training models with expanded training
data inevitably leads to decreased training efficiency [Wang
et al., 2025]. Implicit semantic data augmentation [Wang et
al., 2019; Zhou et al., 2024] is a technique that transforms
samples along semantic directions within the deep feature
space. Notably, this method is accomplished solely by op-
timizing a novel robust loss, ensuring efficiency. Building
upon their research, we believe that generating counterfac-
tual samples within the deep feature space could eliminate
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the need for explicit differentiation between causal and non-
causal attributes, while also bypassing the necessity to expand
the training dataset.

Drawing on the aforementioned insights, this study pro-
poses enhancing model robustness by dynamically transfer-
ring knowledge across spuriously correlated classes in the
deep feature space. Specifically, the deep features of samples
are transformed using semantic vectors extracted from both
their respective category distributions and those of their spuri-
ously correlated classes. This process generates class-specific
factual and counterfactual augmented deep features, aiding in
enhancing intra-class data diversity and reducing inter-class
spurious correlations. As illustrated in Fig. 1, pigeons with
dark feathers are spuriously correlated with the crow class
due to the prevalence of dark feathers in the crow class and
their rarity in the pigeon class. Conveying knowledge from
the crow class to the pigeon class, e.g., generating counterfac-
tual instances of pigeons with dark feathers, helps the model
rely more on causal features rather than color information
during prediction. By considering an infinite number of aug-
mentations, we theoretically derive a surrogate loss function
for the proposed augmentation strategy. Consequently, rather
than explicitly augmenting sample features, we can directly
minimize this robust loss function, leading to a highly effi-
cient algorithm.

To dynamically adjust the direction and intensity of knowl-
edge transfer across categories during training, we propose a
novel reinforcement learning-based training framework that
incorporates a target network and a strategy network. The tar-
get network is trained using the derived robust loss to enhance
its resilience. Meanwhile, as training progresses, the strategy
network dynamically adjusts the sample-specific augmenta-
tion strategies, encompassing both augmentation distribution
and strength, to align with the evolving learning dynamics
of the target network. We conduct extensive experiments
across three typical learning scenarios susceptible to spurious
correlations: subpopulation shift learning, generalized long-
tail (GLT) learning, and domain shift learning, encompassing
benchmarks from both text and image domains. The results
demonstrate that our method consistently attains state-of-the-
art (SOTA) performance across various learning scenarios,
affirming its efficacy in mitigating the deleterious effects of
spurious correlations.

In summary, our main contributions are threefold:

• We undertake a pioneering effort to reduce spurious cor-
relations through dynamic inter-class knowledge trans-
fer. This approach generates diverse factual and coun-
terfactual augmented deep features, achieved exclu-
sively through the optimization of a robust loss function,
thereby enhancing efficiency and applicability.

• We present a new reinforcement learning-based training
framework, termed dynamic knowledge transfer (DKT),
for training classifiers using the derived robust loss func-
tion, where the direction and intensity of knowledge
transfer are dynamically and automatically determined
by a strategy network based on the unique training char-
acteristics of samples.

• We conduct comprehensive experiments across three

typical learning scenarios characterized by distribution
shifts between training and test data. The results un-
equivocally demonstrate the effectiveness and broad ap-
plicability of our approach.

2 Related Work
Prior research has demonstrated that deep learning models
frequently rely on spurious patterns for predictions, con-
sequently exhibiting inadequate generalization and robust-
ness when confronted with unseen environments [Moay-
eri et al., 2022; Zhao et al., 2025; Veitch et al., 2021;
Sun et al., 2021]. For instance, models trained on ImageNet
often classify images based on background rather than fore-
ground attributes [Moayeri et al., 2022]. Similarly, Young et
al. [2019] demonstrated that deep networks for CT scans, de-
spite high accuracy, often produce explanations outside the
relevant regions when visualized with Grad-CAM [Selvaraju
et al., 2017]. Additionally, Chew et al. [2024] found that
a sentiment classifier might mistakenly learn that the word
“performance” is associated with positive reviews, even if the
word itself is not commendatory.

To eliminate spurious correlations, various approaches
have been proposed, including dataset modifications [Zhao
et al., 2024; Wu et al., 2024], causal inference [Tang et
al., 2020], model ensembles [Zhang et al., 2021; Wang
et al., 2020], regularization techniques [Tang et al., 2022;
Krueger et al., 2021; Zhang et al., 2022], and re-training
strategies [Zhao et al., 2023; Zhou et al., 2023b]. Among
these methods, our work is particularly aligned with counter-
factual data augmentation, which involves generating coun-
terfactual samples by modifying attributes to train deep learn-
ing models [Wu et al., 2024; Reddy et al., 2023]. For in-
stance, Gupta et al. [2022] mitigated gender bias in the text
by swapping gender words (e.g., “he” becomes “she”) to aug-
ment the data. Xiao et al. [2023] employed masked im-
ages, where either semantics-related or semantics-unrelated
patches were masked, as counterfactual samples to enhance
the robustness of the fine-tuning model. Moreover, Reddy et
al. [2023] enabled the generation of counterfactual data by
quantifying and eliminating confounding bias. While effec-
tive, existing augmentation methods rely on explicit differen-
tiation between causal and non-causal attributes to produce
counterfactual data [Gupta et al., 2022; Xiao et al., 2023],
which can be resource-intensive and restrictive in their scope.
Additionally, these strategies are hand-crafted, thereby lack-
ing flexibility and potentially constraining the generalization
and robustness of models [Deng et al., 2023].

3 Methodology
This study introduces a novel learning framework to diminish
spurious correlations by transferring knowledge across cate-
gories in the deep semantic space. We start by elucidating the
mechanism of the proposed knowledge transfer strategy. Fol-
lowing this, we theoretically derive a robust loss function to
implement our strategy efficiently. Finally, we propose a re-
inforcement learning-based training framework that dynam-
ically determines the direction and intensity of knowledge
transfer throughout the training process.
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Notation Consider training a deep classifier f , with
weights θ, on a training set denoted as Dtr = {(xi, yi)}Ni=1,
where N represents the number of training samples, and
yi ∈ {1, · · · , C} denotes the label of sample xi. The deep
feature (before logit) learned by f for xi is represented
as a Z-dimensional vector zi = fθ(xi) ∈ RZ . More-
over, N (µ,Σ) represents a multi-variant Gaussian distribu-
tion with the mean vector µ and the covariance matrix Σ.

3.1 Knowledge Transfer Strategy
To alleviate spurious correlations between non-causal at-
tributes and classes, this study proposes transferring knowl-
edge across categories within the deep semantic space. In par-
ticular, the deep features of samples undergo transformations
along semantic directions derived from the deep feature dis-
tributions of their respective categories and those exhibiting
spurious correlations. These transformations generate aug-
mented deep features that encompass both factual and coun-
terfactual variations specific to each class, thereby enriching
the diversity of training data and helping to eliminate erro-
neous associations between samples and their non-ground-
truth categories.

In line with Wang et al. [2019], we enhance intra-class data
diversity by sampling semantic vectors for the deep feature of
each sample, zi, from a zero-mean multivariate normal distri-
bution N (0,Σyi

). Here, Σyi
represents the class-conditional

covariance matrix of class yi. Additionally, to eliminate spu-
rious correlations across categories, semantic vectors are ex-
tracted from the category distributions with spurious associa-
tions in the samples. In our approach, the class with the high-
est predicted probability, excluding the ground-truth class, is
treated as the spuriously correlated class. Let the spuriously
correlated category for sample xi be denoted as class c. We
perform counterfactual augmentation by sampling semantic
vectors from the deep feature distribution of class c, repre-
sented as N (µc,Σc). The feature mean µc of each class is
computed as:

µc =
1

Nc

Nc∑
i=1

zi, (1)

where Nc represents the number of samples in class c. Addi-
tionally, the covariance matrix Σc is calculated as:

Σc =
1

Nc

Nc∑
i=1

(zi − µc)
T (zi − µc). (2)

In implementation, the mean and covariance matrix are com-
puted online by aggregating statistics from all mini-batches.
Specifically, as training progresses, the feature means are es-
timated as follows:

µt
c =

nt−1
c µt−1

c +mt
cµ

′t
c

nt−1
c +mt

c

, (3)

where µt
c and µ′t

c represent the feature mean estimates of
class c at the tth step and within the tth mini-batch, respec-
tively. nt−1

c and mt
c denote the cumulative count of training

samples belonging to class c across all t−1 mini-batches and

the count of training samples belonging to class c in the tth
mini-batch. The covariance matrices are estimated by:

Σt
c =

nt−1
c Σt−1

c +mt
cΣ

′t
c

nt−1
c +mt

c

+
nt−1
c mt

c

(
µt−1

c − µ′t
c

)(
µt−1

c − µ′t
c

)T(
nt−1
c +mt

c

)2 ,

(4)

where Σt
c and Σ′t

c represent the covariance matrix estimates
of class c at the tth step and within the tth mini-batch, respec-
tively. Furthermore, nt

c = nt−1
c +mt

c.
Based on the unique training dynamics of the samples, the

augmentation distributions for different samples, which con-
trol the direction of knowledge transfer, should vary. In other
words, the proportions of semantic and counterfactual aug-
mentations should differ across samples. Consequently, the
augmented deep features z̃i for zi are given by

z̃i ∼ N (zi + αiµc, βiΣyi
+ αiΣc), (5)

where αi and βi are two positive coefficients controlling the
proportions of counterfactual and factual augmentations, re-
spectively. Their values are automatically and dynamically
computed by a deep network, utilizing the distinctive train-
ing characteristics of the samples as input, which will be de-
tailed in Section 3.3. Notably, our method can sample arbi-
trary semantic directions from spuriously correlated classes
for counterfactual augmentation. While we cannot guarantee
the exclusion of inherent attributes from spurious categories,
the limited scope of counterfactual perturbations and the re-
tention of original labels are expected to encourage the model
to focus more on other intrinsic attributes of the current class
for classification. Additionally, since early epoch estimates
are less informative when the network is undertrained, both
values are decayed by a factor of t/T , where t and T denote
the current and total number of epochs, respectively.

As for the augmentation strength, that is the number of
augmented features for each sample, it is assumed to follow
Ki = K × γi, where K is a constant and γi refers to the
strength factor. The value of γi is also dynamically calcu-
lated based on the unique training characteristics of sample
xi. Consequently, for each deep feature zi, a set of aug-
mented deep features can be obtained in each iteration, repre-
sented as {z̃1

i , z̃
2
i , · · · , z̃

Ki
i }.

3.2 Surrogate Robust Loss Function
Given the computational inefficiency of directly using all aug-
mented deep features for training, we address this by explor-
ing the scenario where the number of augmented features for
each sample approaches infinity and derive an upper bound
for the expected Cross-Entropy (CE) loss. This approach al-
lows us to achieve a highly efficient implementation while
maintaining the benefits of augmentation.

The CE loss for all augmented features is as follows:

LK(W , b) = − 1

K̂

N∑
i=1

Ki∑
j=1

log
ew

T
yi

z̃j
i+byi∑C

k=1 e
wT

k z̃j
i+bk

, (6)

where K̂ =
∑N

i=1 Ki. W = [w1, · · · ,wC ]
T ∈ RC×Z and

b = [b1, · · · , bC ]T ∈ RC . Each wk and bk represent the
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Figure 2: Illustration of the DKT framework. Given a sample,
the target network first generates a series of training characteris-
tics, which are then input into the strategy network to determine the
sample-wise augmentation strategies (including distributions and
strengths). Using these strategies, the target network can be trained
with the derived DKT loss LDKT to enhance its robustness.

weight vector and bias, respectively, associated with the final
fully connected layer for class k. We then investigate the sce-
nario of augmenting an infinite number of times on the deep
feature of each sample. As K in Ki approaches infinity, the
expected CE loss is expressed as:

L∞ = −
N∑
i=1

γiEz̃i
[log

ew
T
yi

z̃i+byi∑C
j=1 e

wT
j z̃i+bj

]. (7)

However, accurately calculating Eq. (7) is computationally
challenging, and thus we aim to derive a more efficient surro-
gate loss for it. Let µ̂i and Σ̂i denote the mean and covariance
matrix for the spuriously correlated class of sample xi. Due
to the concave nature of the logarithmic function log(·), with
Jensen’s inequality, E[logX] ≤ log E[X], we derive an upper
bound for the expected loss in Eq. (7):

L∞ ≤
N∑
i=1

γi log(
C∑

j=1

Ez̃i
[e(w

T
j −wT

yi
)z̃i+(bj−byi )]). (8)

Given that z̃i follows a Gaussian distribution characterized
by z̃i ∼ N (zi + αiµ̂i, βiΣyi + αiΣ̂i), we have (wT

j −
wT

yi
)z̃i + (bj − byi

) ∼ N
(
(wT

j −wT
yi
) (zi + αiµ̂i) + (bj −

byi
), (wT

j −wT
yi
)(βiΣyi

+ αiΣ̂i)(wj −wyi
)
)
. Then, lever-

aging the moment-generating function E
[
etX
]
= etµ+

1
2σ

2t2 ,
the upper bound in Eq. (8) can be written as

L∞ ≤ −
N∑
i=1

γi log
eF

yi
i∑C

j=1 e
Fj

i

:= LDKT , (9)

where F j
i = wT

j (zi+αiµ̂i)+ bj +
1
2 (w

T
j −wT

yi
)(βiΣyi +

αiΣ̂i)(wj−wyi).
Consequently, the above deviation provides a surrogate

loss for our proposed knowledge transfer strategy. Instead of
explicitly performing the augmentation process, we can di-
rectly optimize the derived upper bound (LDKT ) during clas-
sifier training, thereby enhancing efficiency.

3.3 Reinforcement Learning-Based Framework
The augmentation distribution and strength for each sample
dictate the direction and intensity of knowledge transfer. As

determining the optimal augmentation strategies is inherently
a parameter selection problem without gold labels, we em-
ploy reinforcement learning to address it. The workflow of
our proposed DKT framework is illustrated in Fig. 2.

Pipeline of the DKT Framework
Our framework comprises a target network and a strategy
network. The target network undergoes training using the
derived DKT loss to bolster its robustness. Meanwhile, the
strategy network receives a series of training characteris-
tics extracted from the target network as input and generates
sample-specific augmentation strategies, encompassing aug-
mentation distributions and strengths. Given that the input to
the strategy network is tabular data, we design it as a two-
layer Multilayer Perceptron. Accordingly, as training pro-
gresses, the strategy network dynamically adjusts augmenta-
tion strategies to align with the evolving learning dynamics
of the target network.

Let Ai = {αi, βi, γi} ∈ A represent an augmentation
strategy for sample xi, where αi and βi jointly determine the
augmentation distribution, while γi determines the augmen-
tation strength. Here, A represents the value space of aug-
mentation strategies. Each parameter has E options, which
are encoded by a one-hot vector. For example, γi takes val-
ues from the set {γ1, γ2, · · · , γE}, providing E options (γ1 to
γE ) such as {0.1, 0.2, · · · , 1} for the augmentation strength
of each sample. If Ai = {0.1, 0.2, 0.1}, then the augmenta-
tion distribution for zi is N (0.1µc, 0.2Σyi + 0.1Σc), and its
augmentation strength is 0.1K. Nevertheless, instead of ex-
plicitly augmenting deep features, the parameters of augmen-
tation strategies are employed to compute the derived DKT
loss LDKT in our framework. Accordingly, during the train-
ing process, the strategy network captures the conditional dis-
tribution p(Ai|ξi;Ω) where ξi denotes the training character-
istics of sample xi, detailed in subsequent subsections, and Ω
represents the parameters of the strategy network.

Training Characteristics Extraction
In each iteration, a series of training characteristics are ex-
tracted from the classifier for each sample, which serves
to capture the degree of spurious correlations between the
sample and various classes, along with its learning diffi-
culty [Zhou and Wu, 2023; Lin et al., 2024; Zhou et al.,
2023a]. These characteristics are then input into the strat-
egy network to facilitate the generation of sample-specific
augmentation strategies. The characteristics that reflect the
sample-class correlation include the prediction distribution
and the cosine similarity between the sample feature and the
classifier weights for each class. Each of these two character-
istics has C dimensions. Furthermore, to gauge the learning
difficulty of samples comprehensively, we consider metrics
including loss, loss gradient, uncertainty, margin, forgetful-
ness, and class proportion, all of which are scalar values. As
a result, a characteristic vector ξi ∈ R2×C+6 is derived for
each sample at each iteration.

Optimization Process
We introduce a reinforcement learning-based algorithm for
the alternating optimization of parameters in both the target
(θ) and strategy (Ω) networks. With Ω fixed, the optimization
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Dataset CelebA CMNIST Waterbirds CivilComments
Metric Avg. (↑) Worst (↑) Avg. (↑) Worst (↑) Avg. (↑) Worst (↑) Avg. (↑) Worst (↑)

ERM 94.88 47.76 27.79 0.11 97.00 63.73 92.22 56.13
CORAL [Li et al., 2018] 93.82 76.91 71.79 69.48 90.32 79.83 88.68 65.57
IRM [Arjovsky et al., 2019] 94.01 77.82 72.07 70.33 87.45 75.64 88.82 66.30
GroupDRO [Sagawa et al., 2020] 92.11 87.23 72.29 68.58 91.76 90.62 89.94 70.01
DomainMix [Xu et al., 2020] 93.44 65.59 51.41 48.07 76.45 53.11 90.87 63.62
IB-IRM [Ahuja et al., 2021] 93.62 85.03 72.25 70.73 88.52 76.51 89.14 65.38
V-REx [Krueger et al., 2021] 92.24 86.79 71.77 70.25 88.03 73.61 90.22 64.90
LISA [Yao et al., 2022] 92.44 89.36 74.08 73.36 91.84 89.28 89.20 72.63
CNC [Zhang et al., 2022] 89.92 88.86 90.88 77.25 90.81 88.53 81.73 68.78
C-GAN [Reddy et al., 2023] 93.04 87.62 78.95 75.66 93.57 89.84 - -
ACE [Singla et al., 2023] 92.02 87.33 55.41 50.54 90.76 75.09 - -
DISC [Wu et al., 2023] 94.13 89.75 76.38 74.52 93.49 89.67 - -
PDE [Deng et al., 2024] 92.05 91.07 78.08 75.92 92.41 90.53 86.87 72.69
DKT (Ours) 94.57 92.34 91.45 78.36 95.50 92.56 92.30 76.02

Table 1: Comparison of average and worst-group accuracy (%) across four subpopulation shift datasets. (↑) indicates that higher values are
better. The best and second-best results are highlighted in bold and underlined. DKT consistently achieves the highest worst-group accuracy,
indicating its efficacy in breaking spurious correlations.

subproblem for the target network can be defined as
minθ E(x,y)∼DtrEA∼p(A|ξ;Ω)

[
LDKT (θ,Ω)

]
. (10)

Given the characteristics of a sample, the strategy network
generates a strategy distribution p(Ai|ξi;Ω), from which an
augmentation strategy is randomly sampled. Utilizing these
sampled strategies, we update the parameters of the target
model by minimizing LDKT via gradient descent:

θt+1 = θt − η1
1

n

∑n

i=1
∇θLDKT

i , (11)

where η1 represents the learning rate of the target network
and n denotes the mini-batch size.

Additionally, with θ given, the optimization problem for
the parameters of the strategy network can be formulated as

minΩ E(x,y)∼DtrEA∼p(A|ξ;Ω)

[
LDKT (θ,Ω)

]
. (12)

Following the REINFORCE algorithm [Williams, 1992], we
compute the derivative of the objective function, H(Ω) :=
E(x,y)∼DtrEA∼p(A|ξ;Ω)LDKT , with respect to Ω as:

∇ΩH(Ω) = ∇ΩE(x,y)∼DtrEA∼p(A|ξ;Ω)LDKT

= E(x,y)∼Dtr

∑
A

LDKT · ∇Ωp(A | ξ;Ω)dA

= E(x,y)∼Dtr

∑
A

LDKT · p(A | ξ;Ω)∇Ω log p(A | ξ;Ω)dA

= E(x,y)∼DtrEA∼p(A|ξ;Ω)

[
LDKT · ∇Ω log p(A | ξ;Ω)

]
.

(13)
Similar to solving Eq. (10), we sample augmentation strate-
gies from the conditional distribution to calculate the sample
losses. The gradient with respect to the parameters of the
strategy network can be approximately computed as:

∇ΩH(Ω) ≈ 1

n

∑n

i=1
LDKT
i ·∇Ω log p (Ai | ξi;Ω) . (14)

Consequently, the parameters of the strategy network can be
updated using gradient descent as follows:

Ωt+1 = Ωt − η2∇ΩH
(
Ωt
)
, (15)

where η2 denotes the learning rate for the strategy network.

Convergence Analysis
Based on Eqs. (11) and (15), we have the following conver-
gence result for the effectiveness of the proposed optimiza-
tion algorithm.
Theorem 1. Suppose that the objective function for the strat-
egy network LDKT satisfies the gradient Lipschitz conditions
w.r.t. Ω and θ, and LDKT is λ-strongly concave in Ω̂, the
feasible set of Ω. If A′ is a δ-approximation of the optimal
augmentation strategy A∗, the variance of the stochastic gra-
dient is bounded by a constant σ2 > 0, and we set the learn-
ing rate of θ as

η1 = min

(
1

LDKT
,

√
Γ

σ2TLDKT

)
, (16)

where LDKT = LθΩLΩθ/λ+Lθθ denotes the Lipschitz con-
stant of LDKT and Γ = LDKT

(
θ0
)
− minθ LDKT (θ), it

holds that

1

T

T−1∑
t=0

E
[∥∥∇LDKT

(
θt
)∥∥2

2

]
≤ 4σ

√
ΓLDKT

T
+

5δL2
θΩ

λ
,

(17)
where T represents the maximum training epoch.

According to Theorem 1, if the inner minimization process
yields a δ-approximation of the optimal augmentation strat-
egy A∗, then the training algorithm can converge to a station-
ary point at a sub-linear rate with an accuracy of 5δL2

θΩ/λ.
Moreover, if 5δL2

θΩ/λ is sufficiently small, our method ef-
fectively identifies the desired robust model θT by generat-
ing a good augmentation strategy capable of approximating
A∗ well.

4 Experimental Investigation
We conduct experiments on three typical learning scenar-
ios susceptible to spurious correlations: subpopulation shift
learning, GLT learning, and domain shift learning. The ex-
periments are repeated three times using different random
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Benchmark ImageNet MSCOCO

Protocol CLT GLT ALT GLT
Metric Acc. (↑) Prec. (↑) Acc. (↑) Prec. (↑) Acc. (↑) Prec. (↑) Acc. (↑) Prec. (↑)

CE loss† 42.52 47.92 34.75 40.65 41.73 41.74 63.79 70.52

Re-balancing techniques
LDAM† [Cao et al., 2019] 46.74 46.86 38.54 39.08 42.66 41.80 67.26 70.70
De-confound-TDE† [Tang et al., 2020] 45.70 44.48 37.56 37.00 41.40 42.36 66.07 68.20
BLSoftmax† [Ren et al., 2020] 45.79 46.27 37.09 38.08 41.32 41.37 64.07 68.59
BBN† [Zhou et al., 2020] 46.46 49.86 37.91 41.77 43.26 43.86 64.48 70.20
LA [Menon et al., 2021] 46.53 45.56 37.80 37.56 41.73 41.74 66.17 68.35
IFL† [Tang et al., 2022] 45.97 52.06 37.96 44.47 45.89 46.42 65.31 72.24
BKD [Zhang et al., 2023] 46.51 50.15 37.93 41.50 42.17 41.83 65.48 70.59

Augmentation methods
MixUp† [Zhang et al., 2018] 38.81 45.41 31.55 37.44 42.11 42.42 64.45 71.13
ISDA [Wang et al., 2019] 42.66 44.98 36.44 37.26 43.34 43.56 66.57 71.09
RandAug† [Cubuk et al., 2020] 46.40 52.13 38.24 44.74 46.29 46.32 67.71 72.73
MetaSAug [Li et al., 2021] 48.47 54.09 38.31 43.24 43.15 43.50 65.89 71.91
Meta-IADA [Zhou et al., 2024] 53.45 58.05 44.36 50.07 52.54 53.23 70.06 74.55

Ensemble learning approaches
RIDE† [Wang et al., 2020] 52.08 51.65 43.00 43.32 47.24 46.67 68.59 72.20
TADE† [Zhang et al., 2021] 50.47 51.85 41.75 44.15 47.10 47.32 66.98 71.22

DKT (Ours) 54.87 59.49 45.64 52.10 54.32 54.71 72.36 75.69

Table 2: Accuracy and precision (%) of the CLT, GLT, and ALT protocols on the ImageNet-GLT and MOCOCO-GLT benchmarks. † indicates
the results reported in [Tang et al., 2022]. DKT surpasses all compared baselines in terms of both accuracy and precision.
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Figure 3: Visualization of the input regions utilized by the model
for predictions. Blue and red indicate regions that are non-
discriminative and highly discriminative, respectively.

seeds. For all experiments, the parameter sets for αi, βi, and
γi range from 0.1 to 1, with intervals of 0.1.

4.1 Subpopulation Shift Learning
Settings. We evaluate the performance of DKT under
four subpopulation shift datasets: Colored MNIST (CM-
NIST) [Yao et al., 2022], Waterbirds [Sagawa et al., 2020],
CelebA [Liu et al., 2016], and CivilComments [Borkan et al.,
2019]. In these datasets, certain attributes are highly spuri-
ously correlated with the labels. Following Yao et al. [2022],
we adopt pre-trained ResNet-50 [He et al., 2016] and Dis-
tilBERT [Sanh et al., 2019] as the model for image (i.e.,
CMNIST, Waterbirds, CelebA) and text data (i.e., CivilCom-
ments), respectively. We compare DKT with a variety of
robust methods designed to break spurious correlations and
learn invariant predictors. To ensure a comprehensive assess-
ment, we report both the average and worst-group accuracy.

Results. The comparative results are reported in Table 1.
DKT achieves a higher average accuracy compared to other
robust learning methods across diverse datasets, highlighting
its strong generalization capability. Moreover, it consistently
surpasses other methods in terms of worst-group accuracy,
demonstrating its efficacy in enhancing model robustness for
underrepresented groups, such as samples belonging to the
landbird class with a water background. These findings man-
ifest that models trained using the DKT framework rely more
on causal attributes for predictions, rather than non-causal
factors like colors and backgrounds, thereby bolstering the
model’s resilience to spurious correlations. Furthermore, data
modification methods, such as PDE, and our approach, gener-
ally outperform previous regularization techniques (e.g., IRM
and LISA), underscoring the effectiveness of data expansion
in mitigating spurious correlations.

4.2 Generalized Long-Tail Learning
Settings. GLT learning accounts for both long-tailed class
and attribute distributions within the training data, as both
types of imbalances contribute to spurious correlations. We
employ two GLT benchmarks [Tang et al., 2022]: ImageNet-
GLT and MSCOCO-GLT. Each benchmark consists of three
protocols: Class-wise Long Tail (CLT), Attribute-wise Long
Tail (ALT), and GLT, showcasing variations in class distri-
bution, attribute distribution, and combinations of both be-
tween training and testing datasets. We report the mean ac-
curacy and precision for all approaches. Following Tang et
al. [2022], the ResNeXt-50 [Xie et al., 2017] model serves
as the backbone network. We compare DKT with three cate-
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Dataset Camelyon17 FMoW RxRx1
Metric Avg. (↑) Worst (↑) Avg. (↑)

ERM 70.32 32.29 29.91
CORAL [Li et al., 2018] 59.53 31.74 28.45
IRM [Arjovsky et al., 2019] 64.20 30.04 8.23
GroupDRO [Sagawa et al., 2020] 68.45 30.82 23.07
DomainMix [Xu et al., 2020] 69.71 34.23 30.86
IB-IRM [Ahuja et al., 2021] 68.90 28.41 6.44
V-REx [Krueger et al., 2021] 71.52 27.26 7.55
LISA [Yao et al., 2022] 77.15 35.52 31.90
C-GAN [Reddy et al., 2023] 68.74 32.41 27.86
ACE [Singla et al., 2023] 67.53 30.88 26.95
PDE [Deng et al., 2024] 75.72 35.91 31.92
DKT (Ours) 78.94 37.35 32.43

Table 3: Comparison results (%) on three domain shift datasets. The
performance of DKT surpasses that of all other compared methods
across the various domain shift datasets.

gories of approaches: re-balancing techniques, augmentation
methods, and ensemble learning approaches.

Results. The comparative results are reported in Table 2,
where DKT demonstrates significant performance improve-
ments, with its accuracy and precision surpassing the best
comparative results by 1.70% and 1.52%, respectively. These
findings underscore its effectiveness in enhancing model gen-
eralization and robustness against imbalanced class and at-
tribute distributions. Moreover, the results presented in Fig. 3
further illustrate its efficacy in mitigating spurious associa-
tions between non-causal attributes and class labels, thereby
guiding the model to focus more on causal attributes. Addi-
tionally, methods tailored for long-tailed learning generally
exhibit inferior performance on the GLT and ALT protocols,
primarily due to their class-level characteristics. Neverthe-
less, DKT dynamically generates sample-specific augmenta-
tion strategies, making it more effective in breaking sample-
wise spurious correlations.

4.3 Domain Shift Learning

Settings. We examine three domain shift benchmarks fea-
turing out-of-distribution test data. These benchmarks (i.e.,
Camelyon17 [Bandi et al., 2018], FMoW [Christie et al.,
2018], and RxRx1 [Taylor et al., 2019]) are sourced from
WILDS [Koh et al., 2021], covering domains including
healthcare and vision. Following previous studies [Yao et al.,
2022], the evaluation metrics are average accuracy for Came-
lyon17 and RxRx1, and worst-group accuracy for FMoW.
The compared baselines are consistent with those for subpop-
ulation shift learning.

Results. The comparison results for the three datasets are
presented in Table 3. DKT consistently outperforms other
compared methods across diverse datasets, achieving an av-
erage accuracy improvement of 1.25%. Moreover, we have
validated the significance of the performance improvement
achieved by DKT using the Wilcoxon signed-rank test, which
produced a p-value of 0.04, smaller than the threshold of 0.05.
These findings demonstrate the efficacy of DKT in enhancing
model robustness against spurious correlations.

Figure 4: (a) Ablation studies of augmentation distributions. (b)
Evolution of the average α and β values during the training process.
The ImageNet-GLT benchmark is utilized.

4.4 Analytical Experiments

We compare the performance of DKT under four aug-
mentation distributions: (I) excluding knowledge transfer
among categories, N (0,Σyi), (II) excluding the augmenta-
tion of samples within their own classes, N (µc,Σc), (III)
adopting the augmentation distribution with a zero mean,
N (0,Σc+Σyi

), and (IV) our adopted augmentation distribu-
tion, N (µc,Σc +Σyi

). The accuracy across all protocols is
presented in Fig. 4(a). Our augmentation distribution proves
to be the most effective, due to its ability to enhance intra-
class diversity and reduce inter-class spurious associations.
Additionally, the evolution of the average α and β values dur-
ing training is illustrated in Fig. 4(b). At the start of training,
both the average values of α and β are approximately equal to
0.5, as the selected values encompass the entire range of pos-
sible options. During the early stages of training, the average
value of β surpasses that of α, prioritizing feature represen-
tation. In contrast, later in training, the average value of β
drops below that of α, enhancing the model’s robustness to
spurious correlations.

5 Conclusion

This paper proposes enhancing model robustness against
spurious correlations by transferring knowledge across cat-
egories. Specifically, the deep features of the samples are
transformed along semantic vectors derived from their re-
spective category distributions, as well as those of spuriously
correlated categories. We then demonstrate that our knowl-
edge transfer strategy can be achieved solely by optimizing a
surrogate robust loss and introduce a reinforcement learning-
based framework to train classifiers using this loss, where the
direction and intensity of knowledge transfer are dynamically
determined based on the unique training dynamics of sam-
ples. Extensive experiments across various learning scenar-
ios prone to spurious correlations validate the effectiveness
of our approach in mitigating spurious correlations and en-
hancing model robustness.
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