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Abstract
Multivariate time series forecasting is a critical
focus across many fields. Existing transformer-
based models have overlooked the explicit mod-
eling of inter-variable correlations. Similarly, the
graph-based methods have also failed to address
the dynamic nature of multivariate correlations and
the noise in correlation modeling. To overcome
these challenges, we propose a novel Dynamic
Graph Learning Guided Multi-Scale Transformer
(DGraFormer) for multivariate time series fore-
casting. Specifically, our method consists of
two main components: Dynamic correlation-aware
graph Learning (DCGL) and multi-scale tempo-
ral transformer (MTT). The former aims to cap-
ture dynamic correlations across different time win-
dows, filters out noise, and selects key weights to
guide the aggregation of relevant feature represen-
tations. The latter can effectively extract tempo-
ral patterns from patch data at varying scales. Fi-
nally, the proposed method can capture rich local
correlation graph structures and multi-scale global
temporal features. Experimental results demon-
strate that DGraFormer significantly outperforms
existing state-of-the-art models on ten real-world
datasets, achieving the best performance across
multiple evaluation metrics. The code is available
at https://github.com/yh-Hanniel/DGraFormer.

1 Introduction
In the context of the digital era, time series forecasting has be-
come a crucial focus for businesses and organizations, offer-
ing significant applications across various domains, includ-
ing finance [Cao, 2022], energy [Zhu et al., 2023], meteo-
rology [Zhao et al., 2024], transportation [Cao et al., 2025].
These applications often involve vast amounts of multivari-
ate time series data. Multivariate time series refers to mul-
tiple sequences of data evolving over time, where each se-
quence represents a specific time-dependent variable. These
sequences often show inherent interdependencies or correla-

∗Corresponding author: Yanwei Yu.

Window 3Window 2Window 1 Window 4

Window 1 Window 2

Window 3 Window 4

Figure 1: Dynamic and complex correlations of variables across
varying time windows. The left shows the time series data divided
into time windows, while the right illustrates the adjacency graphs
corresponding to the top three weighted edges for each time window.

tions. By analyzing and modeling historical data, organiza-
tions can predict trends, detect anomalies, and facilitate data-
driven decision-making, ultimately optimizing economic ac-
tivities and resource allocation.

Deep learning models like Recurrent Neural Networks
[Chen et al., 2021] and Long Short-Term Memory net-
works [Zhao et al., 2017] excel at processing nonlinear, non-
stationary time series data with time lags and seasonality,
which has promoted the development of time series fore-
casting. Recently, Transformer achieves outstanding success
across various fields [Karita et al., 2019; Brown et al., 2020;
Chang et al., 2024], and it shows great promise in time series
forecasting as well [Chen et al., 2024; Zhou et al., 2024b].

Although a few transformer-based methods have been pro-
posed for multivariate time series forecasting, they have ne-
glected the explicit modeling of correlations between vari-
ables to better explore their complex relationships. For in-
stance, PatchTST [Nie et al., 2023] adopts a channel inde-
pendence approach, treating each variable separately and in-
tentionally ignoring the complex correlations between them.
Thus, a key challenge in advancing multivariate time series
forecasting is how to capture these inter-variable correlations
better. Graph Neural Networks offer an effective solution by
representing multivariate time series as graphs, where vari-
ables are nodes and edge weights indicate inter-variable cor-
relations [Chen et al., 2023]. Multivariate time series fore-
casting faces a challenge for obtaining a good dynamic graph
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representation due to the dynamic and complex relationships
among variables. Generally, existing methods have made
some progress in correlation modeling, but two issues remain.

Dynamic nature of multivariate correlations: The re-
lationships between variables are not static, and they can
evolve over time, showing periodic or trend-based changes.
As shown in Fig. 1, by treating time points as a time win-
dow, we observe that the correlation similarities vary across
time windows. By learning from real sequence data, we can
capture the dynamic relationships that evolve across different
windows. Existing method (e.g., MTGNN [Wu et al., 2020])
has used a single graph to propagate correlation information
across the entire time scale, and it fails to capture the vary-
ing correlation weights across different time windows. This
limits the accuracy of feature aggregation based on overall
sequence correlation, thereby affecting prediction precision.

Noise caused by negative relationships: Although ex-
isting methods (e.g., MSGNet [Cai et al., 2024]) have ex-
plored learnable graph structures, they often struggle to learn
the optimal structure. This difficulty arises because real-
world datasets are typically influenced by various unfore-
seen factors, which can cause uncorrelated variables to ex-
hibit spurious similarities. As a result, these variables might
propagate negative relationships (noise information) during
the message-passing process, leading to model performance
degradation. The noise can hinder the effective transmission
of critical information between key variables, ultimately re-
ducing the ability of model for capturing essential patterns.

To address the challenges outlined above, we propose a
Dynamic Graph Learning Guided Multi-Scale Transformer
(DGraFormer), which comprises two main components: Dy-
namic Correlation-aware Graph Learning (DCGL) and Multi-
Scale Temporal Transformer (MTT). The method views time
series data as multiple time windows with stable correlations.
It adaptively learns the graph adjacency matrices for each
time window, filters out noise, and selects the most crucial
correlation weights to guide the aggregation of feature repre-
sentations based on correlations. This approach significantly
improves the ability of the model to adapt to dynamic correla-
tion changes and overcomes the issue of redundant informa-
tion propagation caused by external noise in existing meth-
ods. Our contributions are summarized in three main aspects:
• We propose a novel multivariate time series forecasting

model, named DGraFormer, which combines DCGL and
MTT in a unified framework to simultaneously achieve the
dynamic correlation-aware graph learning and multi-scale
temporal information interaction.

• A DCGL is designed to adaptively capture the dynamic
correlations among multivariate variables in temporal win-
dows, and then select essential information to guide the
process of correlation feature aggregation, effectively elim-
inating noise in the weights and learning critical corre-
sponding adjacency weights for dynamic graph learning.

• Extensive experiments on ten real-world datasets demon-
strate that DGraFormer outperforms SOTA multivariate
time series forecasting models. Compared to the latest
graph-based model, MSGNet, our model achieves average
reductions of 11% in MSE and 10.6% in MAE.

2 Related Work
2.1 Time Series Forecasting
Time series forecasting has been extensively studied. Re-
cently, Transformer [Vaswani, 2017; Kitaev et al., 2020;
Tang and Matteson, 2021] shows superior performance in
semantic extraction and long-range dependency modeling,
outperforming methods based on TCNs [Bai et al., 2018;
Liu et al., 2022a; Lai et al., 2023] and RNNs [Rangapuram
et al., 2018; Qin et al., 2017]. This trend drives interest in
Transformer-based models. Informer [Zhou et al., 2021] has
led the adoption of Transformer for time series forecasting.
Autoformer [Wu et al., 2021] introduces seasonal trend de-
composition, while FEDformer [Zhou et al., 2022] extends
this approach by transforming the time domain into the fre-
quency domain for decomposition learning. Pyraformer [Liu
et al., 2022b] employs convolution to capture multi-scale fea-
tures, and Non-stationary Transformers [Liu et al., 2022e] fo-
cus on time series stationarization.

Despite challenges raised by linear models [Zeng et al.,
2023; Das et al., 2023], Transformers remain top-performing
in time series forecasting [Jiang et al., 2023]. PatchTST [Nie
et al., 2023] leverages channel independence by represent-
ing each variable as a separate channel and segmenting it
into subsequence-level patches, which are subsequently used
as tokens for the Transformer model. In contrast, Cross-
former [Zhang and Yan, 2023] adopts variable patching and
a hierarchical encoder-decoder to capture cross-dimensional
dependencies. Recent work [Zhou et al., 2024a] proposes
inputting the same number of auxiliary variables for each
variable into the Transformer for learning. And iTrans-
former [Liu et al., 2024] encodes variables independently as
distinct tokens, using attention for inter-variable and feed-
forward networks for temporal dependencies. Further tech-
niques are under exploration [Pan et al., 2021; Deng et al.,
2022; Li et al., 2023; Liu et al., 2023; Deng et al., 2024a;
Deng et al., 2024b], including TimesNet [Wu et al., 2023],
which projects one-dimensional time series data into a two-
dimensional space and analyzes it with sophisticated visual
networks.

Most existing methods overlook the modeling of correla-
tions between variables. Existing methods for learning vari-
able correlations fail to account for the dynamic nature of
multivariate correlations and the noise in correlation model-
ing. These approaches propagate information across all vari-
ables, while neglecting isolated variables (those not corre-
lated with others).

2.2 Graph Modeling for Multivariate Time Series
Forecasting

The use of GNNs [Kipf and Welling, 2016; Defferrard et al.,
2016; Abu-El-Haija et al., 2019] introduces a new perspec-
tive to model multivariate time series data. However, most
existing approaches apply them to specific domains, such
as traffic [Yu et al., 2017; Li et al., 2017; Wu et al., 2019;
Wen et al., 2023; Liu et al., 2022c], where prior knowledge
(e.g., Euclidean distance or POI) can naturally define graph
structures. In contrast, general multivariate time series fore-
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Figure 2: The overall architecture of the proposed DGraFormer.

casting models involve datasets from multiple domains, mak-
ing it difficult to obtain a unified, predefined graph structure.

To address this, some methods [Wu et al., 2020] have
explored learnable graph structures, replacing predefined
graphs with learnable parameter matrices. However, meth-
ods such as MAGNN [Chen et al., 2023] and MSGNet [Cai
et al., 2024] still employ static graphs to represent time se-
ries, which are insufficient to capture the dynamic nature of
variable correlations. Although TPGNN [Liu et al., 2022d]
captures temporal dynamics through matrix polynomials, it
ignores noise caused by external factors. Consequently, ef-
fectively learning the core correlations between variables re-
mains a critical challenge in correlation modeling.

3 Problem Definition
For multivariate time series forecasting, we denote the in-
put data over a look-back window as X = {x1, . . . , xT } ∈
RN×T , where T is the number of time steps and N is the
number of variables. The objective is to forecast the next τ
time steps, represented as Y = {xT+1, . . . , xT+τ} ∈ RN×τ .

We model the multivariate time series data using graphs
G = {V, E}, where V denotes the set of nodes and E ∈
RN×N is the correlation weight matrix between the nodes.
To capture the dynamic correlations between variables, we
divide the time series data into W windows, each containing
m time steps. The correlation graph structure is then repre-
sented as G =

{
V, {E1, E2, . . . , EW }

}
, where Ew ∈ RN×N

is the correlation weight matrix for the w-th time window.

4 Methodology
To effectively capture multivariate correlations, we propose
a novel multivariate time series forecasting model called
DGraFormer. The overall architecture of DGraFormer is il-
lustrated in Fig. 2, comprising two main components: Dy-
namic correlation-aware graph Learning (DCGL) and Multi-
Scale Temporal Transformer (MTT).

First, the DCGL generates the corresponding graph struc-
ture matrices with dynamic essential multivariate correlations
for the input sequence. Then it takes the instance-normalized
data and its corresponding edge weight matrices to learn the
correlation representations. The MTT extracts temporal rep-
resentations from the patch data at varying scales. Finally,
the learned representations, which encapsulate both correla-
tion and temporal information, are passed through the Flatten
and Linear layers in the predictor to produce the final forecast
output.

4.1 Dynamic Correlation-aware Graph Learning
The Dynamic Correlation-aware Graph Learning is designed
to capture graph structures that reflect dynamic correlations
and focus on essential correlation weights. We construct the
weight matrix A ∈ RN×N×T , which guides the propagation
of the correlation information for the input data X.

Dynamic Multivariate Correlation Weight Learning
Existing methods have modeled the entire time series with
a single graph, which failed to capture dynamic changes in
multivariate correlations. To overcome this limitation, and
enable more precise correlation modeling, we divide the time
series into W time windows, each containing m data points.
For each time window, we independently learn its correlation
graph weights.

First, we compute the overall correlation weights based on
the information from the entire dataset used for training. It
represents the general relationships between variables in the
training set Xall ∈ RN×M , where M denotes the total num-
ber of time steps in the training set. Raw data is often in-
fluenced by trends and external factors, which complicates
the extraction of the underlying correlations among variables
masked by the overall trend. To mitigate these influences,
we transform the data from the time domain to the frequency
domain, removing trend components and extracting seasonal
information. Specifically, we decompose Xall into Fourier
bases using the Discrete Fourier Transform (DFT(·)), select
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the top Kf amplitudes, and apply the Inverse Discrete Fourier
Transform (IDFT(·)) to obtain the seasonal representation of
the data, denoted as Xsea ∈ RN×M :

Xsea = IDFT
(

arg topKf
(|DFT(Xall)|) ,A,Φ

)
, (1)

where A is the set of amplitudes for all selected frequency
components, and Φ is the set of phase angles for all selected
frequency components. Using Xsea, we calculate the cosine
similarity between all pairs of variables, which results in the
overall matrix of correlation weights C ∈ RN×N :

C =
XseaX

⊤
sea

∥Xsea∥∥Xsea∥⊤
. (2)

Secondly, we generate a unique parametric correlation ma-
trix for each time window and optimize it during the learning
process. This enables precise modeling of variable correla-
tions by capturing the fine-grained correlation graph struc-
tures within different time windows. Specifically, for the ma-
trix of weights Rw ∈ RN×N of the w-th time window, it is
computed as follows:

(Fw)1 = Linear
(
(Ew)1

)
,

(Fw)2 = Linear
(
(Ew)2

)
,

Rw = ReLU
(
tanh((Fw)1(Fw)

⊤
2

)
,

(3)

where (Ew)1 and (Ew)2 ∈ RN×h denote randomly initial-
ized node embeddings (with each row corresponding to a
variable). The subscripts 1 and 2 indicate different initial-
ization instances, both of which are learnable during training.
h is the embedding dimensionality.

Finally, we aggregate C and Rw to derive the correlation
graph weights matrix Ew ∈ RN×N for the w-th time window:

Ew = αC+ (1− α)Rw, α ∈ [0.1, 0.9], (4)

where α governs the relative contribution of C to Ew. Ini-
tially, α is set to 0.9 and is gradually decreased to 0.1 as train-
ing progresses. This adjustment ensures that the parameter-
ized weights matrix Rw progressively takes precedence over
C in Ew, gradually reflecting the unique correlations among
variables in the w-th time window.

Essential Correlation Information Focusing
To eliminate redundant information that may interfere with
the learning of correlation features, such as temporary false
correlations induced by external factors, and to focus on the
essential correlation weights, we focus essential correlation
information to Ew for each time window. Specifically, we
generate a corresponding mask matrix Mw ∈ RN×N for the
w-th time window by selecting the top Ke values from the
vectorized form of Ew:

indices = arg topKe

(
vec(Ew)

)
,

Mw = reshape (1indices, N,N) .
(5)

Given the learnable nature of Ew, Mw evolves dynamically
during training, adaptively guiding the model in selecting the
essential correlation weights. We apply the mask matrix to
Ew as follows Ew :

Ẽw = Mw ⊙ Ew, (6)

where Ẽw ∈ RN×N denotes the sparsified correlation weight
matrix for the w-th time window, and ⊙ indicates element-
wise multiplication. We apply the above operation to the cor-
relation edge weight matrix of each time window, obtaining
a set of dynamically sparsified correlation edge weight matri-
ces Ẽ = {Ẽ1, Ẽ2, . . . , ẼW } ∈ RN×N×W .

For each input data X ∈ RN×T , we apply advanced index-
ing to extract the weight matrix A ∈ RN×N×T for correla-
tion feature learning:

A[:, :, t] = Ẽ [:, :, I[t]], for t = 1, 2, . . . , T, (7)

where I ∈ RT×1 denotes the index information of the time
window for each time point. We then feed A into the GCN-
based correlation fusion module to guide the information
propagation process.

Correlation-aware Graph Message Passing
To propagate information based on the output weight matrix
A, we use input data processed with Instance Norm, which is
a technique used to mitigate distribution shifts between train-
ing and testing data, to learn feature representations that ag-
gregate essential correlations. Inspired by MTGNN [Wu et
al., 2020], we adopt a graph convolution approach that in-
corporates residual connections and the mix-hop concept for
learning correlation representations. The information propa-
gation step is defined as follows:

H(l) = βH(0) + (1− β)AH(l−1), (8)

where H(0) denotes the input data X processed with Instance
Normalization and feature dimensional upsampling, and H(l)

represents the result of the l-th layer of message passing. β
controls the proportion of the root node’s original state re-
tained, ensuring that the propagated node states explore the
depth of the neighborhood while preserving locality. We use
the following approach for information selection:

Hout = Concat(H(0),H(1), . . . ,H(LMP)) ·W, (9)

where the learnable parameter matrix W acts as a feature se-
lector, and LMP represents the total number of layers for mes-
sage passing. It adaptively selects the message passing fea-
tures at different depths to generate the output Hout ∈ RN×T

of the correlation fusion module.

4.2 Multi-Scale Temporal Transformer
The Multi-Scale Temporal Transformer is designed to capture
the temporal patterns within sequence data. Existing meth-
ods, such as PatchTST [Nie et al., 2023], have shown that
dividing time series into patches and using them as tokens in
a Transformer Encoder for feature learning can significantly
improve the accuracy of multivariate time series prediction.
Aggregating time steps into subsequence-level patches en-
hances locality and captures comprehensive semantic infor-
mation that cannot be obtained at the point level. However,
using a single patch size to divide the time series overlooks
the features present at different time resolutions. To address
this, we adopt a multi-scale patch division and combination
strategy to model temporal correlations.
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Patch Division
For the output Hout ∈ RN×T of the correlation fusion mod-
ule, we divide the i-th univariate time series hi

out ∈ R1×T into
S = T/P non-overlapping patches, where P represents the
number of time steps in each patch, denoted as hi

p ∈ RP×S .
We then apply a trainable linear projection Wp ∈ RD×P to
map the patches to the Transformer latent space of dimension
D. In addition, we use a learnable additive position encoding
Wpos ∈ RD×S to capture the temporal order of the patches:

x̄i = Wph
i
p +Wpos, (10)

where x̄i ∈ RD×S denotes the univariate input to the Trans-
former encoder.

Transformer Encoder
The structure of our transformer encoder follows the stan-
dard vanilla Transformer architecture. Initially, the multi-
head self-attention mechanism is used to model the temporal
correlations between different patches. By applying a linear
transformation to the input x̄i, we obtain the query, key, and
value matrices, denoted as Qi,Ki,Vi. The attention output
zia ∈ RD×S is then computed as follows:

zia = softmax

(
QiKiT

√
dk

)
Vi. (11)

Subsequently, the attention output is processed through the
Add & Norm layer, which integrates residual connections and
batch normalization to improve training stability and conver-
gence. This operation can be mathematically expressed as:

ziadd = Norm(zia + x̄i), (12)

where Norm(·) denotes the BatchNorm. Following the Add
& Norm layer, the intermediate representation is further re-
fined using a position-wise feed-forward network (FFN). The
FFN is composed of two linear transformations separated by
a non-linear activation function. The output of this stage is
given by:

ziffn = Norm
(
FFN(ziadd) + ziadd

)
. (13)

As a result, the transformer encoder produces the multi-
variate output Z ∈ RN×D×S , which encapsulates the tempo-
ral feature representation of the input sequence.

Patch Combination and Multi-Scale Encoding
To capture the diverse features embedded in multi-scale
patches, we combine neighboring patches pairwise and input
them into another identical Transformer encoder for further
learning. This process is represented as:

X(l)
p = reshape

(
Z(l−1), [N, 2D(l−1),

S(l−1)

2
]
)
,

Z(l) = TE(l)(X(l)
p ),

(14)

where Z(l) ∈ RN×D(l)×S(l)

represents the output of the l-
th layer of the transformer encoder TE(l)(·), which includes
multi-head attention, BatchNorm layers, and feed-forward
network. The input to the first encoder TE0(·) is denoted

as X
(0)
p , and its output as Z(0). Through multiple itera-

tions, we learn feature representations that capture informa-
tion across different time resolutions. Finally, After being
processed by LTE layers of Transformer encoder, the out-
put of the last Transformer encoder is flattened, and a Lin-
ear layer is applied to generate the final prediction result
Y = {xT+1, . . . , xT+τ} ∈ RN×τ .

5 Experiments
The experiments are designed to address the following re-
search questions:

• RQ1: What is the performance of our DGraFormer as com-
pared to various state-of-the-art baselines?

• RQ2: How do the key components contribute to the perfor-
mance?

• RQ3: How do the key hyperparameters influence the per-
formance of the proposed DGraFormer?

5.1 Datasets
In our experimental evaluation, we employ 10 real-world
datasets, including ETT (4 subsets), Weather, Electricity,
Solar-Energy, Traffic used by iTransformer [Liu et al., 2024],
Flight evaluated in MSGNet [Cai et al., 2024] and AirQuali-
tyUCI1, to assess the performance of all methods.

5.2 Baselines
We compare our DGraFormer against with four categories
of baselines: (1) Graph-based method: MSGNet [Cai et al.,
2024]; (2) Transformer-based methods: iTransformer [Liu et
al., 2024], PatchTST [Nie et al., 2023], Crossformer [Zhang
and Yan, 2023], Pyraformer [Liu et al., 2022b]; (3) Linear-
based methods: DLinear [Zeng et al., 2023], TiDE [Das et al.,
2023]; (4) TCN-based method: TimesNet [Wu et al., 2023].

5.3 Experiment Settings and Evaluation Metrics
DGraFormer uses the Adam optimizer and a combination of
L1 and L2 loss for model training. The number LMP of graph
message passing layers is set to 2, and the number LTE of the
Transformer encoder is set to 3. Additionally, a patch length p
= 8 is used for division. The number of time points m in each
time window depends on the dataset’s time frequency, corre-
sponding to the number of data points in one day (e.g., 24
for Electricity, 144 for Solar). The weight focusing ratio Ke

ranges from 0.5 to 0.005 based on the number of variables in
the dataset, decreasing as the number of variables increases.
And we set Kf=3 in Eq. (1). All experiments are conducted
using PyTorch and executed on an NVIDIA GeForce RTX
4090 24GB GPU. To ensure fair comparisons, all models are
configured with the same look-back window T = 96 and pre-
diction lengths τ ∈ {96, 192, 336, 720} for all datasets. The
hyperparameters for the baseline models are set according to
the configurations provided in the original papers. We evalu-
ate model performance using two common metrics in multi-
variate time series forecasting: Mean Absolute Error (MAE)
and Mean Squared Error (MSE).

1https://github.com/Gauhar1107/AirQualityUCI
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iTransformer MSGNet PatchTST TimesNet TIDE Dlinear Crossformer PyraformerModels Ours (ICLR2024) (AAAI2024) (ICLR2023) (ICLR2023) (arXiv2023) (AAAI2023) (ICLR2023) (ICLR2022)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.367 0.393 0.386 0.405 0.390 0.411 0.414 0.419 0.384 0.402 0.479 0.464 0.386 0.400 0.423 0.448 0.664 0.612
192 0.438 0.426 0.441 0.436 0.442 0.442 0.460 0.445 0.436 0.429 0.525 0.492 0.437 0.432 0.471 0.474 0.790 0.681
336 0.479 0.442 0.487 0.458 0.480 0.468 0.501 0.466 0.491 0.469 0.565 0.515 0.481 0.459 0.570 0.546 0.891 0.738ETTh1

720 0.484 0.467 0.503 0.491 0.494 0.488 0.500 0.488 0.521 0.500 0.594 0.558 0.519 0.516 0.653 0.622 0.963 0.782
96 0.300 0.344 0.297 0.349 0.328 0.371 0.302 0.348 0.340 0.374 0.400 0.440 0.333 0.387 0.745 0.584 0.645 0.597

192 0.382 0.397 0.380 0.400 0.402 0.414 0.388 0.400 0.402 0.414 0.528 0.509 0.477 0.476 0.877 0.656 0.788 0.683
336 0.388 0.415 0.428 0.432 0.435 0.443 0.426 0.433 0.452 0.452 0.643 0.517 0.594 0.541 1.043 0.7731 0.907 0.747ETTh2

720 0.418 0.436 0.427 0.445 0.417 0.441 0.431 0.446 0.462 0.468 0.874 0.679 0.831 0.657 1.104 0.763 0.963 0.783
96 0.326 0.366 0.334 0.368 0.319 0.366 0.329 0.367 0.338 0.375 0.364 0.387 0.345 0.372 0.404 0.426 0.543 0.510

192 0.358 0.376 0.377 0.391 0.376 0.397 0.367 0.385 0.374 0.387 0.398 0.404 0.380 0.389 0.450 0.451 0.557 0.537
336 0.387 0.397 0.426 0.420 0.417 0.422 0.399 0.410 0.410 0.411 0.428 0.425 0.413 0.413 0.532 0.515 0.754 0.655ETTm1

720 0.446 0.436 0.491 0.459 0.481 0.458 0.454 0.439 0.478 0.450 0.487 0.461 0.474 0.453 0.666 0.589 0.908 0.724
96 0.173 0.253 0.180 0.264 0.177 0.262 0.175 0.259 0.187 0.267 0.207 0.305 0.193 0.292 0.287 0.366 0.435 0.507

192 0.243 0.302 0.250 0.309 0.247 0.307 0.241 0.302 0.249 0.309 0.290 0.364 0.284 0.362 0.414 0.492 0.730 0.673
336 0.315 0.348 0.311 0.348 0.312 0.346 0.305 0.343 0.321 0.351 0.377 0.422 0.369 0.427 0.597 0.542 1.201 0.845ETTm2

720 0.404 0.401 0.412 0.407 0.414 0.403 0.402 0.400 0.408 0.403 0.558 0.524 0.554 0.522 1.730 1.042 3.625 1.451
96 0.168 0.207 0.174 0.214 0.163 0.212 0.177 0.218 0.172 0.220 0.202 0.261 0.196 0.255 0.158 0.230 0.896 0.556

192 0.213 0.249 0.221 0.254 0.212 0.254 0.225 0.259 0.219 0.261 0.242 0.298 0.237 0.296 0.206 0.277 0.622 0.624
336 0.270 0.291 0.278 0.296 0.272 0.299 0.278 0.297 0.280 0.306 0.287 0.335 0.283 0.335 0.272 0.335 0.739 0.753Weather

720 0.345 0.338 0.358 0.349 0.350 0.348 0.354 0.348 0.365 0.359 0.351 0.386 0.345 0.381 0.398 0.418 1.004 0.934
96 0.136 0.229 0.148 0.240 0.165 0.274 0.195 0.285 0.168 0.272 0.237 0.329 0.197 0.282 0.219 0.314 0.386 0.449

192 0.155 0.244 0.162 0.253 0.184 0.292 0.199 0.289 0.184 0.289 0.236 0.330 0.196 0.285 0.231 0.322 0.386 0.443
336 0.171 0.261 0.178 0.269 0.195 0.302 0.215 0.305 0.198 0.300 0.249 0.344 0.209 0.301 0.246 0.337 0.378 0.443Electricity

720 0.210 0.298 0.225 0.317 0.231 0.332 0.256 0.337 0.220 0.320 0.284 0.373 0.245 0.333 0.280 0.363 0.376 0.445
96 0.184 0.219 0.203 0.237 0.259 0.285 0.234 0.286 0.250 0.292 0.312 0.399 0.290 0.378 0.310 0.331 0.218 0.274

192 0.211 0.234 0.233 0.261 0.268 0.293 0.267 0.310 0.296 0.318 0.339 0.416 0.320 0.398 0.734 0.725 0.227 0.284
336 0.234 0.250 0.248 0.273 0.316 0.326 0.290 0.315 0.319 0.330 0.368 0.430 0.353 0.415 0.750 0.735 0.246 0.296Solar

720 0.235 0.254 0.249 0.275 0.313 0.326 0.289 0.317 0.388 0.337 0.370 0.425 0.356 0.413 0.769 0.765 0.252 0.296
96 0.442 0.245 0.395 0.268 0.598 0.339 0.544 0.359 0.593 0.321 0.805 0.493 0.650 0.396 0.522 0.290 2.085 0.468

192 0.469 0.257 0.417 0.276 0.616 0.358 0.540 0.354 0.617 0.336 0.756 0.474 0.598 0.370 0.530 0.293 0.867 0.467
336 0.481 0.266 0.433 0.283 0.651 0.373 0.511 0.358 0.629 0.336 0.762 0.477 0.605 0.373 0.558 0.305 0.869 0.469Traffic

720 0.510 0.281 0.467 0.302 0.699 0.404 0.586 0.375 0.640 0.350 0.719 0.449 0.645 0.394 0.589 0.328 0.881 0.473
96 0.143 0.250 0.144 0.252 0.183 0.301 0.175 0.305 0.237 0.350 0.225 0.341 0.221 0.337 0.151 0.259 0.229 0.343

192 0.143 0.247 0.147 0.253 0.189 0.306 0.176 0.304 0.224 0.337 0.225 0.340 0.220 0.336 0.159 0.264 0.248 0.357
336 0.154 0.257 0.159 0.266 0.206 0.320 0.187 0.314 0.289 0.394 0.235 0.347 0.229 0.342 0.178 0.285 0.329 0.413Flight

720 0.191 0.291 0.193 0.297 0.253 0.358 0.228 0.343 0.310 0.408 0.272 0.373 0.263 0.366 0.203 0.307 0.656 0.606
96 1.147 0.580 1.192 0.601 1.232 0.616 1.240 0.620 1.203 0.607 1.309 0.650 1.303 0.682 1.177 0.621 1.350 0.750

192 1.238 0.606 1.308 0.633 1.350 0.658 1.337 0.644 1.330 0.645 1.472 0.688 1.385 0.702 1.321 0.665 1.607 0.824
336 1.344 0.644 1.401 0.659 1.490 0.675 1.408 0.660 1.466 0.673 1.572 0.709 1.468 0.722 1.445 0.707 1.600 0.795AirQualityUCI

720 1.482 0.696 1.532 0.708 1.592 0.717 1.609 0.726 1.580 0.704 1.806 0.777 1.599 0.763 1.721 0.813 1.807 0.889

Table 1: Forecast results with 96 look back window and prediction length {96, 192, 336, 720}. Best results are in bold, followed by underline.

5.4 Experiment Results
Performance Comparison (RQ1)
The results of multivariate time series forecasting are pre-
sented in Table 1, DGraFormer achieves optimal perfor-
mance on most of the evaluation metrics. Compared with
2024 SOTA models iTransformer and MSGNet, DGraFormer
reduces MSE and MAE by an average of 6.75% and 7.25%.
All models face performance decline with longer prediction
lengths due to information decay and error accumulation. Yet
DGraFormer consistently outperforms SOTA, e.g., exceed-
ing MSGNet by 10.5%/10.8% (MSE/MAE) at horizon=192,
11.7%/11.0% at 336, and 10.5%/9.8% at 720. This demon-
strates its robust capability in long-term forecasting.

Specifically, on high-dimensional datasets (Electricity, So-
lar, Traffic) with 100+ variables, DGraFormer reduces MAE
by 6.6% over iTransformer by (1) capturing richer inter-
variable correlations via graph attention and (2) leverag-
ing more contextual information for improved accuracy. Al-
though Transformer-based models (e.g., iTransformer) em-
ploy multi-head attention to capture inter-variable correla-
tions, they do not explicitly model multivariate correlations.
In contrast, graph-based methods more flexibly model dy-
namic, complex variable correlations. iTransformer uses
shared attention across variables, limiting its ability to capture
evolving, heterogeneous correlations in multivariate series.

Despite both using graph-based correlation modeling,
DGraFormer outperforms MSGNet by 11% MSE and 10.6%
MAE on average. On MSGNet’s FLight dataset, DGraFormer
reduces MSE by 24% and MAE by 18.7%. While MSGNet
learns graph structures across multiple scales, it does not dy-
namically model within each scale or handle noise effectively.
This demonstrates that dynamic modeling and focusing on
key correlations can significantly improve forecast accuracy.

Compared with linear-based models TiDE and DLinear,
DGraFormer reduces MSE/MAE by 21.7%/17.9%. This fur-
ther confirms that a well-designed Transformer model can
still achieve strong performance in time series forecasting.

Ablation Study (RQ2)
We ablate DGraFormer’s components with four variants:

• w/o Dynamic Time Windows (DTW): Using a single
graph to learn variable correlations across all time steps.

• w/o Dynamic Graph Learning (DGL): Using only the ini-
tial adjacency matrix C to model variable correlations.

• w/o Essential Correlation Weight Focusing (ECF): Us-
ing all positive weights for graph message propagation.

• w/o Multi-scale Transformer Encoding (MTE): Using a
fixed uniform patch size across all Transformer encoder
layers for temporal learning, without patch combination.
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w/o DGL w/o MEw/o ECF DGraformerw/o DTW

(a)

(a) Solar. (b) Electricity. (c) AirQualityUCI.

Figure 3: Performance comparison of DGraFormer and its variants. MSE uses the left y-axis, and MAE uses the right y-axis.

(a) m on Weather. (b) m on Solar.

(c) Ke on Weather. (d) Ke on Solar.

(e) α on Weather. (f) α on Solar.

Figure 4: Parameter impact of the number m of time points in each
time window, the weight focusing ratio Ke, and the cosine similarity
matrix proportion α on Weather and Solar datasets. MSE uses the
left y-axis, and MAE uses the right y-axis.

Fig. 3 illustrates the predictive performance of differ-
ent model variants on Solar, Electricity, and AirQualityUCI
datasets. Removing the dynamic time window caused a sub-
stantial decrease in accuracy, highlighting the importance of
modeling dynamic correlations in inter-variable relationships.
The removal of dynamic graph learning impairs the model’s
ability to adaptively capture correlations among variables.
Excluding the essential correlation weight focusing resulted
in the model’s inability to effectively filter out noise, which
disrupted the communication of core correlations. Finally, re-
moving multi-scale encoding restricted the model’s capacity

to capture time features at different scales. Overall, graph
learning effectively captures the correlations between vari-
ables, while the Transformer excels in learning temporal fea-
tures across different time scales. The combination of these
components results in improved prediction performance.

Parameter Sensitivity Analysis (RQ3)
We analyze the parameter sensitivity of DGraFormer with re-
spect to three key hyperparameters, the number m of time
points, the weight focusing ratio Ke, and the cosine similar-
ity matrix proportion α on Weather and Solar datasets.

Fig. 4a and 4b show the prediction performance for varying
values of m, the number of time points in each time window.
The model performs best when m = 144, corresponding to
a full day, as correlations within a single day may tend to
be stable. Larger time windows, however, introduce varying
correlations, reducing performance.

Fig. 4c and 4d assess the impact of the weight focusing ra-
tio Ke. As Ke decreases, performance improves up to a point
before declining. A moderate decrease helps eliminate redun-
dant noise, preserving essential correlations for accurate fea-
ture aggregation. However, too low a Ke discards important
weights, weakening model performance.

Fig. 4e and 4f assess the cosine similarity matrix propor-
tion α. Performance remains stable across α values, as graph
structure learning adaptively adjusts weights to mitigate fluc-
tuations. The cosine similarity matrix helps prevent random
initialization fitting issues and guides the model to adjust
based on a correlation matrix that reflects seasonal patterns.
Graph learning compensates for changes introduced by vary-
ing retention ratios.

6 Conclusion
In this paper, we propose the Dynamic Graph Learning
Guided Multi-Scale Transformer (DGraFormer) to address
challenges in multivariate time series forecasting. The model
integrates two key components: Dynamic Correlation-aware
Graph Learning (DCGL), which captures dynamic correla-
tions and filters noise, and Multi-Scale Temporal Feature
Learning (MTF), which extracts temporal patterns at multiple
scales. Experimental results demonstrate that DGraFormer
outperforms sota methods on ten real-world datasets, achiev-
ing superior performance.
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