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Abstract

Federated learning, as a distributed learning frame-
work, aims to develop a global model while pre-
serving client privacy. However, heterogeneity of
client data leads to fairness issues and reduced
performance. Techniques like parameter decou-
pling and prototype learning appear promising,
yet challenges such as forgetting historical data
and limited generalization persist. These methods
also lack local insights, with locally trained fea-
tures prone to overfitting, which affects general-
ization in global parameter aggregation. To ad-
dress these challenges, we propose FedCPD, a per-
sonalized federated learning framework. FedCPD
maintains historical information, reduces informa-
tion loss, and increases personalization through hi-
erarchical feature distillation and cross-layer fea-
ture fusion. Moreover, we utilize representation
techniques like prototype contrastive learning and
prototype alignment to capture diverse client data
features, thus improving model generalization and
fairness. Experiments show FedCPD outperforms
state-of-the-art models, enhancing generalization
by up to 10.40% and personalization by up to
4.90%, highlighting its effectiveness and superior-

1ty.

1 Introduction

Federated Learning (FL) [McMahan er al., 2017] is a decen-
tralized machine learning strategy that improves data privacy
by enabling local model training on various devices with up-
dates communicated to a central server. However, training a
single global model becomes inefficient when the data is het-
erogeneous or the devices handle distinct tasks, as traditional
FL approaches such as FedAvg [McMahan er al., 2017] and
FedProx [Li et al., 2020] inadequately address personalized
demands. Client data heterogeneity poses a fairness issue,
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a major challenge for federated learning in diverse settings.
Personalized Federated Learning (PFL), [Tan ef al., 2022a]
addresses these issues by allowing client-specific models that
leverage global insights to enhance local outcomes. The main
challenge in PFL lies in balancing global knowledge sharing
with preserving client-specific information, making the trade-
off an important research area.

In personalized federated learning, historical information
forgetting proves challenging as it causes local test accu-
racy to drop post-global model update. This happens be-
cause global model optimization prioritizes overall perfor-
mance, often overlooking the requirements of individual
clients. Consequently, personalized local knowledge dimin-
ishes over time. Commonly, personalized federated learn-
ing (PFL) employs parameter decoupling to tackle this issue.
Techniques like FedPer [Arivazhagan et al., 2019], FedRep
[Collins et al., 2021], and FedGH [Yi et al., 2023] separate
local private parameters from global ones, allowing clients to
tailor task-specific representations using local data. While a
shared backbone network (feature extractor) exists, the clas-
sifier (head) is customized for local tasks. Despite partially
mitigating historical information forgetting, this strategy’s ef-
ficacy in extracting local features declines when client data
exhibits substantial heterogeneity. The core challenge is that
task-specific knowledge preservation mechanisms are lack-
ing, making local knowledge loss during global optimization
almost unavoidable. Additionally, global optimization objec-
tives might gradually neglect some client-specific tasks, cur-
tailing local model test accuracy improvements.

Personalized federated learning contends with limited gen-
eralization performance alongside historical information for-
getting. To boost generalization, earlier approaches used pro-
totype methods in representation learning. Prototype learning
involves shared class prototypes to curb overfitting and en-
hance generalization. FedProto [Tan et al., 2022b] enhances
generalization by aligning prototypes through measuring dis-
tances between similar label representations. FedProc [Mu
et al., 2023] and FedCRL [Huang et al., 2024] utilize con-
trastive loss to connect local features with global prototypes,
minimizing representation variations. Yet, as most methods
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tweak FedAvg’s basic averaging for data aggregation, they
struggle with diverse data and fall short in representation
learning. Thus, current methods inadequately merge pro-
totype alignment with contrastive techniques, limiting their
generalization efficacy on varied data.

Both challenges pertain to optimizing personalized feder-
ated learning, yet their solutions don’t cross-apply. Parame-
ter decoupling protects local knowledge to prevent forgetting
but falls short on sharing global insights, thus struggling with
generalization. On the other hand, prototype learning curbs
overfitting and boosts generalization by sharing class proto-
types, yet it misses retaining clients’ historical task knowl-
edge.

In this paper, we introduce a Federated Class Prototype
and Feature Distillation (FedCPD) framework that tackles the
challenges of historical information loss and restricted gener-
alization in personalized federated learning. Key contribu-
tions are as follows.

Advanced Cross-Layer Fusion and Prototype Alignment
for Optimal Historical Conservation and Improved Gen-
eralization. In preliminary experiments, we identified his-
torical information forgetting and limitations in parameter de-
coupling. To address these, we developed techniques like
cross-layer feature fusion, hierarchical feature distillation,
and attention mechanisms to reduce information loss from
global model aggregation and improve personalized model
accuracy. We also explored global prototypes for better
model generalization and proposed a prototype contrast and
alignment strategy to optimize global-local prototype rela-
tionships, mitigate overfitting from local data scarcity, en-
hance cross-label knowledge sharing, and boost generaliza-
tion in data-limited environments.

Comprehensive Theoretical Analysis Uncovers Key
Mechanisms Enhancing Model Performance. We rigor-
ously prove the upper bound of FedCPD algorithm conver-
gence, highlighting two findings. (1) Feature distillation mit-
igates historical information forgetting from global model ag-
gregation bias by retaining key local features across training,
enhancing stability and speed. (2) Aligning global and lo-
cal prototypes enhances generalization in data-scarce envi-
ronments, reducing overfitting, aiding cross-label knowledge
sharing, accelerating convergence, and improving adaptabil-
ity to new data.

Empirical Validation Shows Outstanding Performance
Across Various Real-World Datasets. We conducted ex-
tensive experiments on multiple real-world datasets with
varying data heterogeneity. The results showed that, com-
pared to traditional methods, FedCPD significantly improved
generalization ability by up to 10.40% and maintained per-
sonalization accuracy with an improvement of up to 4.90%,
validating the effectiveness and superiority of our approach.

2 Related Work

2.1 Personalized Federated Learning

In personalized federated learning, various approaches have
been developed to address data heterogeneity between clients.

Parameter decoupling techniques improve model personal-
ization by isolating specific parameters from local modules.
For example, FedRep [Collins et al., 2021] alternates between
training the global extractor and the local classifier following
FedPer’s [Arivazhagan ef al., 2019] separation strategy. Pro-
totype learning methods mitigate data heterogeneity by com-
puting the average feature representation for each category,
efficiently utilizing sparse sample information for classifica-
tion tasks. These strategies hold significant promise in sce-
narios with limited learning samples. For example, FedTGP
[Zhang er al., 2024a] uses an adaptive margin contrastive
learning technique on the server to greatly enhance the repre-
sentational capabilities of feature vectors. Meanwhile, Fed-
KTL [Zhang et al., 2024b] creates prototype image vector
pairs aligned with client tasks through a server-based pre-
trained generator, thus supporting the learning of the client
model and improving performance. These approaches effec-
tively handle heterogeneous data with shared representations,
but still offer room for advances through better utilization
of these representations. We merge parameter decoupling
with prototype learning in the personalized federated learning
framework, efficiently tackling the challenges of data hetero-
geneity between clients and enhancing the model’s general-
ization.

2.2 Feature Distillation

Knowledge Distillation (KD) is a model compression tech-
nique that transfers knowledge from well-trained large mod-
els to simpler, smaller models, making them suitable for de-
ployment on various devices. Proposed by Hinton et al. [Hin-
ton, 20151, KD reduces model complexity while maintaining
performance. FitNets [Adriana ef al., 2015] uses interme-
diate teacher features to guide the student model, ensuring
similar predictions. FEED [Park and Kwak, 2019] facilitates
knowledge transfer through distillation of feature map-level
features through non-linear transformations. Heo et al. [Heo
et al., 2019] improve the synergy between teacher and stu-
dent models with methods such as feature localization and
distance functions. DKKR [Chen et al., 2021] uses multilevel
feature distillation to guide the student layer by layer. Our
method introduces feature distillation into federated learn-
ing, combined with attention mechanisms and feature fusion,
to facilitate efficient knowledge transfer between teacher and
student models.

3 Methodology

In this section, we dive into the details of the implementation
of the proposed FedCPD, as illustrated in Figure 1 (global
structure diagram) and Algorithm 1.

3.1 Problem Statement

In PFL, an architecture consists of [V clients and one server,
where each client ¢ has non-IID private data D;. Clients
collaboratively train their personalized models W7, ..., Wx.
Similarly to FedPer and FedRep, the backbone network is
split into a feature extractor f and a classifier g, where f :
RP — R maps the input samples into a feature space and
g : RE — R transforms the feature vectors into the label
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Figure 1: Architecture Tllustration of the FedCPD. @ Clients upload their local feature extractors and prototype representations. @ The server
aggregates these to create global feature extractors and prototypes. @ The server sends the global extractors and prototypes back to the clients.
@ Clients initialize their local extractors with the global extractors. FedCPD tackles the challenge of historical information forgetting and
limited generalization performance by using (a) feature distillation to preserve past information and reduce forgetting, and (b) prototype
learning to identify varied features and strengthen class distinctions, which in turn boosts the model’s ability to generalize.

space. For each client i, the local model W; = [W/; W]
is trained on the data set D;. For each sample-label pair
(i,y;) € D;, the model predicts §; = g(f(zs; W); W¥)
and the objective is to minimize the empirical risk across all
clients as follows.

arg min — Z Li(

Wi,... WN i=1

where L;(W) = E, y)~p, L(T3, ys; Wif, W) represents
the empirical loss for client i, given by the expected loss
across all samples in D;. We adopt FedRep as our baseline
algorithm. In the ¢-th round of communication, the central
server sends the global extractor T/ 7+ to the active client set
C; C C. Each client C; € C, initializes its parameters Wlf (’]t
and performs K optimization iterations using its local data,
alternating updates between the local extractor and the local
classifier in each iteration. The server collects the local ex-
tractors Wif " and computes the global extractor for the next
round W/t by averaging the parameters, repeating the pro-
cess until convergence.

3.2 Motivation

Global Model Performance Gap and Historical Informa-
tion Forgetting. In federated learning, clients receive and
train on a global model each round. However, this global
model, being an aggregate of multiple client models, may not
perform well on clients with significantly different data dis-
tributions. This often results in a gap in personalized testing
accuracy between the global model and previous local mod-
els of clients, as shown in Figure 2a, indicating a potential de-
crease in personalized performance after updating the global
model, especially in cases of high data heterogeneity.
Methods such as FedRep [Collins er al., 2021] tackle
the challenge of forgetting historical information [Jin er al.,
2022] through techniques such as parameter decoupling.
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Figure 2: The performance gap between the received global model

and the previous round’s locally trained model (blue) is
shown in the top two images above. The comparison of accuracy
between FedAvg and FedRep under different loss function combi-
nations is illustrated in the bottom two images below. The above
algorithms were applied to the CIFAR-100 dataset with 20 non-I1ID
clients (8 = 0.1) and evaluated for local test accuracy.

However, they still face limitations in fully leveraging his-
torical local knowledge, which can introduce new challenges.
For example, while FedRep preserves the local personalized
head with each update, the shared feature extractor may still
be susceptible to influence from the global model. This can
result in an inadequate representation of local data nuances,
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Algorithm 1 FedCPD

Require: Total communication rounds 7', {D;}}¥,, global
feature extractor parameters W /-0, learning rate 1.
Ensure: {W;/ "}V
1: foriterationt =1,...,T do
2:  Server aggregates {W;"}¥  and {P!}¥, to obtain
W7+t and P?;

3:  Server sends W7t and P? to all clients;
4:  for the i-th client in parallel do
5: Fix Wif ’t, update Wig ’t; > Classifier Update
6: for layer! =1,...,L do
7: Calculate L5 = [ iy g o
8: 1E = Fs
9: end for
10: Calculate Lftlll E(z; ;.y:.;)~D; — log
1 exp(s(pitht)/7) .
: exp(s(p; ;1) /T)+ L econe cap(s(piy )/T)’
12: Calculate %) . = || f(x:) — PLII3;
13: Caleulate L' = LIF] + oLl + BLIEY +
t+1
V/de,i’
14 Train WP — WP — Ve L0
15: Fix W/ ’t,update Wif it
16: Same as Classifier Update;
17: Train W/ WHHL — oo £
18: Collect and upload W, and P**1;
19:  end for
20: end for

21: return {W/ "IN .

ultimately restricting further enhancements in personalized
model performance. As illustrated in Figure 2b, the perfor-
mance of the model after training is inferior to that of FedAvg.
By introducing the hierarchical feature distillation module in
FedRep, we verify that the upper limit of local model accu-
racy can be improved to be comparable with that of local
model in FedAvg after making full use of historical knowl-
edge.

Prototype Alignment and Contrastive Learning for Im-
proved Generalization. In the context of federated learn-
ing, the data between clients is typically non-IID. However,
the success of centralized deep learning indicates that data
share global feature representations, with statistical hetero-
geneity reflected primarily in labels. Due to the limited
amount of data available to each client, locally trained fea-
tures are prone to overfitting, leading to insufficient gener-
alization. Therefore, sharing common prototypes to lever-
age data from other clients is an effective strategy. Inspired
by this, we introduced prototype alignment in our FedAvg
and FedRep experiments to ensure global prototype consis-
tency across classes, improving generalization. We also ap-
plied prototype contrastive learning to enable cross-label col-
laboration. In FedAvg, the prototype alignment significantly
increases accuracy, outperforming both the combination of
alignment and contrastive losses, and contrastive loss alone

(see Figure 2c¢). This suggests that prototype alignment en-
hances representation learning and reduces overfitting due to
limited data.

In FedRep, combining prototype contrast and alignment is
even more effective (see Figure 2d), improving class bound-
ary understanding and classification accuracy. The difference
arises from the methods used: FedAvg relies on prototype
consistency and a simple averaging aggregation, where align-
ment reduces parameter diversity and stabilizes the global
model. In contrast, FedRep focuses on representation learn-
ing and uses contrastive learning to capture subtle sample dif-
ferences, allowing the combination of both methods to better
leverage class structure, significantly boosting performance.

3.3 Attention-Guided Hierarchical Feature
Distillation

To address the limitations of existing methods in overcoming
historical information forgetting and its impact on personal-
ized performance (as discussed in Section 3.2), we propose
a feature distillation method based on FedRep to reduce the
loss of personalized knowledge caused by updates to the fea-
ture extractor, thus improving the performance of personal-
ized models. Specifically, we retain the local feature extractor
from the previous round to fully leverage historical person-
alized knowledge, where Wif ' serves as the teacher model
and W7/*+1 serves as the student model. Through hierarchi-
cal feature distillation, we transfer knowledge from previous
models to the current model and guide the transfer of knowl-
edge by integrating an attention mechanism and a feature fu-
sion mechanism, as shown in Figure 3.

Attention Module. To enhance the effect of feature distilla-
tion, we introduce the Convolutional Block Attention Module
(CBAM) [Woo er al., 2018], aimed at implementing atten-
tion guidance. The goal of feature distillation is to improve
the student model’s performance through knowledge transfer
from the teacher model. With attention mechanisms, we can
precisely guide features, enhancing the effectiveness of the
distillation process.
The attention map after the CBAM can be represented as:

Al = CBAM(FY),

where [ denotes the index of layer, F' is the feature map of
the [-th layer, A’ is the attention map of the I-th layer.
Hierarchical Feature Distillation: In feature distillation, we
distill feature maps and attention maps as the primary targets.
We use the global backbone W/**+1 of the current round

as the student model and the final local backbone Wf b of
the previous round as the teacher model. Feature dlstlllatlon
typically relies on same-layer feature alignment techniques,
which directly compare and align features from the same lay-
ers of the student and teacher models.

However, traditional intra-layer feature alignment methods
fail to effectively leverage the advantages of shallow features
in small object detection and fully integrate the semantic in-
formation captured by high-level features due to the lack of
interlayer feature reuse. This limitation results in poor distil-
lation performance, especially when dealing with visual tasks
that involve complex semantic structures.
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W/~ Feature Distillation

Figure 3: Framework of Feature Distillation. The global back-
bone is used as the student model, and the local backbone from the
previous round acts as the teacher model. Cross-layer connections
enable feature fusion across layers. We introduce three convolution
layers: one for unifying channels (1x1), one for smoothing fusion
(3x3), and one for enhancing low-level features (3x3). MSE loss is
used for alignment after multi-layer fusion.

Thus, motivated by the cross-layer feature alignment meth-
ods [Chen et al., 2021], we constructed cross-layer connec-
tion pathways amongst student networks, depicted in Figure
3. Employing a cross-layer feature fusion approach allows
us to effectively merge student features from various layers.
This strategy not only boosts the target detection abilities of
shallow features but also amplifies the semantic expression
of higher-level features, thereby facilitating a more thorough
transfer of the teacher model’s knowledge.

Firstly, we design three types of convolutional layers
Cvy, Cvg, Cvg for each input feature layer. Cv; is a trans-
verse convolution that unifies the channel counts of input fea-
ture maps of different scales to a fixed output channel count,
C'vy is used for secondary smoothing after feature fusion, and
C'vs is used to enhance low-level features. The feature fusion
steps can be represented as follows.

Ab* = Cvg(upsamp(Cvl(Al+1)) + Cuy (Al) + C’vg(Al)),

where upsamp represents upscaling using bilinear interpo-
lation, and Ab* represents the final fusion result. We used
the highest-layer feature map for the first transverse convolu-
tion, performed feature fusion from the bottom up, and before
fusion, further processed each layer’s original input feature
map through an enhanced low-level convolution layer to en-
hance low-level features. Combining the high-level upsam-
pled features, transverse convolution features, and enhanced
low-level features, we then apply C'vo to smooth. The final
feature alignment process can be represented as follows.

Lya =AY = A3 + | Fo™ = F3,

where s denotes the student, ¢ denotes the teacher, and we use
MSE loss for feature alignment.

3.4 Prototype Contrast and Alignment

To effectively improve the generalizability of the model, as
mentioned in Section 3.2, we adopted the method of proto-
type contrast and alignment. The core objective of this ap-
proach is to enhance the model’s generalization ability while
reducing the decline in personalized performance caused by
data heterogeneity. Specifically, we dynamically adjust the

relationship between global prototypes and local prototypes,
ensuring the retention of personalized features while improv-
ing the model’s generalization ability.

Prototype Alignment. Initially, we generate feature em-
beddings on the local datasets D; = (z, 7)™ of client i us-
ing the backbone network TW7/*+1 distributed by the server as

follows.
N; )
Zi—{f([[iﬁt 15Di)} GRKXN17

where N, indicates the number of images at client . Next,
based on the global prototypes P! received from the server,
we align the output embeddings z; according to

5221771,1'(2i’j7 Pct) N E(:Ei,j7yi,j)~DZ.‘+1 ||Z75’j - Pct”g

ie{l,..,N},je{l,..,N;}.

Here, z; ; is labeled c, j serves as an index for the local data,
and P! represents the global prototype for class c. The objec-
tive L4154n aims to minimize the squared Euclidean distance
between features and class prototypes. The loss of prototype
alignment acts as a harmonizing mechanism, reducing feature
representation discrepancies between different models or do-
mains, making feature representations more consistent and
stable when learning class boundaries.

Prototype Contrast. With the help of prototype alignment
loss, contrastive loss optimizes the relative relations in the
feature space without conflicting with supervised loss. It en-
hances the model’s learning of robust feature representations,
intra-class compactness, and inter-class separability. Specif-
ically, we learn representations through contrasting positive
and negative pairs [Huang et al., 2024], which helps in per-
sonalization by leveraging positives and negatives between
local and global representations.

For each feature representation z; ; with class label ¢, we
consider the global prototype P! of class c as the positive
sample, while prototypes from other classes are considered
negative samples. Therefore, for each feature representation,
one positive sample pair p’§+1’+ and |C| — 1 negative sample

3
. t41.—
pairs p:t~ can be constructed.

Pt = (205, PP T = {(21, Ph)e ~ C \ e},

where j serves as an index for the local data, and P} repre-
sents the remaining prototypes that differ from the category
of the output embedding z; ;.

To rectify the knowledge from local training in each client
using global prototypes, we introduce Global Prototype Con-
trastive Loss L,¢ ;. This loss encourages each client’s sam-
ple to approach its class’s global prototype while distancing
itself from the other class’s prototypes. We define the Global
Prototype Contrastive Loss as follows.

t+1 __
’CPCl»i o E(zi,jsyi,j)ND:+1
exp(s(pi it /7)
1, 1,— )
exp(s(pyy )/7) + Lecreexp(s(piy)/7)
zij- P!
S(Zi,‘ypct) - ") “c
! 1zi3ll2 - [1PEll2

—log

€[-1,1],
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where 7 is a temperature hyperparameter that adjusts the fo-
cus on positive and negative samples, and s(-) is the cosine
similarity. This multi-constraint learning mechanism com-
bines supervised loss, alignment loss, and contrastive loss,
enhancing the model’s ability to distinguish different cate-
gories, ensuring consistency in feature representations, and
optimizing the structure of the feature space, thereby improv-
ing generalization and performance.

4 Convergence Bounds Analysis

In this subsection, we present the convergence analysis for
FedCPD and outline the assumptions necessary to prove its
convergence, following a framework similar to FedProto [Tan
et al., 2022b], FedHKD [Chen et al., 2023] and FedCRL
[Huang et al., 2024]. Detailed assumptions and proofs are
provided in Appendix B.

Theorem 1. (One-Round Deviation). Let Assumptions 1 to
3 hold (see Appendix B). For an arbitrary client, between the
iteration t and the iteration t + 1, we have

E-1
Lan e
BLTH2) < L2 — (e = =55) D7 (VL (3+
e=1/2
LiEn? L 2
! : M52 4 BreG? + 71E277§G2 +2aL, E22G2 + B=.
T
Theorem 1 shows that for any client, adjusting the appro-
priate hyperparameters can bound the deviation in expected
loss for the ¢-th client from iteration ¢ to t + 1, thereby ensur-
ing convergence.

Theorem 2. (Non-Convex FedCPD Convergence). Any <
Ne < Mo, € € {%, 1,2,...,E}, where X represents the de-
cay factor for the learning rate. If the learning rate for each
epoch satisfies the following condition, the loss function de-
creases monotonically, leading to convergence

Ao < me < (B+ v B2 —4AC)/2A,

where S = U5 |VLII3B B = S — BEG*A =
(Li(Eo? + E%*G? + S)/2 + 2aL, E?G?),C = 23/ 7.

Theorem 2 indicates that, under the specified learning rate
conditions, the loss function for any client decreases consis-
tently between successive communication rounds, guarantee-
ing algorithm convergence.

5 Experiments and Discussion

5.1 Experiment Setup

We evaluated FedCPD using three popular image classifica-
tion datasets (CIFAR-10, FMNIST, and CIFAR-100). We
compare it with isolated local training and eight popular fed-
erated learning methods, including these state-of-the-art algo-
rithms FedProto [Tan et al., 2022b], FedGH [Yi et al., 20231,
FedALA [Zhang et al., 2023], and FedPA [Jiang et al., 2024].
The experiments run for 200 communication rounds, each
round involving 1 epoch of local training and a batch size
of 10. All models are trained using the SGD optimizer with
a learning rate of 0.01. The model consists of two convo-
lutional layers and two fully connected layers. To simulate
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Figure 4: Test accuracy curves across CIFAR-10 and CIFAR-100
datasets under two levels of data heterogeneity (8 = 0.1 and pat).

data heterogeneity, we use two settings: the “practical set-
ting” based on the Dirichlet distribution and the “pathological
setting” with varied class samples from the datasets.

5.2 Performance Comparisons

By default, local clients are configured with 5 = 0.1 and
N = 20.

Test Accuracy. To evaluate FedCPD, we benchmarked it
against leading federated learning methods on three datasets,
each subjected to two highly heterogeneous partitions (see
Table 1). Accuracy is reported for every client’s own test
set, so the metric directly reflects the personalization per-
formance. Figure 4 trace the evolution of the test accuracy
during training. Across both realistic and pathological splits,
FedCPD consistently delivers the highest accuracy, outper-
forming all baselines, and confirming its superior effective-
ness.

Results Analysis. FedCPD converges significantly faster
than other algorithms, especially in the early stages (e.g., the
first 50 rounds), where the improvement in test accuracy is
most notable.Moreover, as the number of label categories
increases in both heterogeneous settings, FedCPD shows
more significant improvements over the second-best method:
CIFAR-100 (4.90%/4.58%), CIFAR-10 (0.76%/0.10%), and
FMNIST (0.04%/0.15%). This shows that FedCPD can cap-
ture category differences more effectively, leading to a signif-
icant improvement in classification accuracy.

Generalization. To evaluate the performance of FedCPD
under different levels of heterogeneity, we adjusted the value
of /3 of the Dirichlet distribution in the CIFAR-10 data set to
control actual heterogeneity and modified the number of la-
bel categories held by each client in the CIFAR-100 data set
to control pathological heterogeneity (see Table 2). The re-
sults show that FedCPD performed best in both heterogeneity
settings.
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Practical heterogeneous (8 = 0.1, N = 20) Pathological heterogeneous (N = 20)

Method FMNIST CIFAR10 CIFAR100 FMNIST CIFAR10 CIFAR100
Acc. [ Std. Acc. [ Std. Acc. [ Std. | Acc. [ Std. | Acc. [ Std. Acc. [ Std.
Local 9721 557 | 8891 11.39 | 47.77 493 | 93.78 3.02 | 88.74 552 | 64.13 5.96
FedAvg | 8586 11.87 | 57.24 1248 | 32.35 3.72 | 87.19 325 | 57.34 11.39 | 27.10 4.72
FedProx | 85.81 11.87 | 57.17 1272 | 32.58 3.80 | 87.34 3.41 | 57.36 1227 | 27.23 4.80
FedPer 97.64 511 | 9048 945 | 4945 445 | 9527 230 | 9093 482 | 65.68 4.24
FedRep | 97.65 442 | 90.56 9.51 | 51.01 4.15 | 9531 2.04 | 91.27 423 | 6827 4.25
FedGH | 96.32 11.46 | 83.06 20.89 | 49.08 5.06 | 93.74 3.10 | 88.80 545 | 6549 5.71
FedPA 9720 5.60 | 90.23 9.89 | 52.36 4.73 | 93.76 3.87 | 90.73 523 | 67.59 547
FedProto | 97.43 577 | 89.99 10.29 | 51.63 4.80 | 93.94 334 | 89.65 578 | 6741 5.51
FedALA | 97.79 430 | 91.02 9.04 | 5533 4.03 | 9558 2.14 | 91.57 4.17 | 67.31 3.66
FedCPD | 97.83 483 | 91.78 7.87 | 60.23 399 | 95.73 2.19 | 91.67 3.89 | 72.85 2.78

Table 1: The average test accuracy of the 3 datasets in the real-world environment and the 3 datasets in the pathological heterogeneous
environment, as well as the average standard deviation of the accuracy across all clients.

Results Analysis. As shown in Table 2, in moderate and
low heterogeneity environments, FedCPD still outperforms
other personalized federated learning methods: CIFAR-10
(1.68%/2.11%), CIFAR-100 (7.55%/10.40%), which demon-
strates its strong generalizability. Unlike other algorithms that
rely on local data, FedCPD effectively integrates both global
and local information, significantly improving model perfor-
mance in scenarios with many label categories and uneven
data distributions, thus improving its adaptability across dif-
ferent data distribution scenarios.

Fairness. We evaluated FedCPD’s fairness using the stan-
dard deviations in Tables 1 and 2. In all experiments, FedCPD
was ranked in the top three, showing minimal performance
disparities between client groups and achieving high fairness.

Results Analysis. FedCPD achieves excellent fairness by
effectively balancing global and local models, reducing per-
formance disparities among clients. This improves the accu-
racy of classification and ensures consistency between differ-
ent clients.

5.3 Discussion

Experimental findings and theoretical insights confirm that
feature distillation efficiently reduces the forgetting of his-
torical data by conveying knowledge throughout training it-

CIFAR10 CIFAR100

Method | 5=0.5 | =1 | cls./clt.=20 | cls./clt.=50
Acc. Acc. Acc. Acc.
Local 88.91 61.23 48.04 31.06
FedAvg 57.24 70.61 30.17 32.05
FedProx 57.17 70.60 30.13 31.62
FedPer 90.48 69.13 51.62 35.59
FedRep 90.56 70.62 53.65 36.77
FedGH 83.06 62.46 48.04 32.16
FedPA 84.90 72.16 52.74 36.19
FedProto 90.40 63.36 50.78 32.88
FedALA 81.15 77.03 54.99 38.27
FedCPD 92.24 79.14 62.54 48.67

Table 2: The test accuracy with changes to the 8 of CIFAR-10 for
the real-world heterogeneity evaluation and the label classes for each
client (cls./clt.) in CIFAR-100 for the pathological heterogeneity
evaluation.

erations, leading to smoother optimization and faster early-
stage convergence (see Figure 4). Retaining historical data
significantly improves the global model’s learning perfor-
mance, raising classification accuracy by 4.66% under typical
conditions (refer to Appendix A) and outperforming leading
parameter decoupling techniques by approximately 4.90%
across different label distributions (refer to Table 1). More-
over, feature distillation enhances client equity, promoting
balanced model training and consistently securing a position
among the top three for global fairness.

The global prototype enhances the connection between
global and local models via prototype alignment and con-
trastive learning, leading to improved class separation, faster
convergence and a 7.23% boost in classification accuracy in
default settings (see Appendix A), especially with numerous
labels and imbalanced data (refer to Table 1). These strategies
help the model capture global insights and encourage cross-
label knowledge sharing. For generalization, the global pro-
totype combines global knowledge, reducing overfitting due
to limited data, and delivers up to a 10.40% boost over the
best SOTA in varied environments (refer to Table 2). Further-
more, the global prototype improves fairness by diminishing
performance variance among different clients, promoting a
balanced training process, particularly with uneven data dis-
tributions.

6 Conclusion and Future Work

To address the issue of historical forgetting and enhance gen-
eralization, we introduce FedCPD, a personalized federated
learning framework. This framework integrates hierarchical
feature distillation, cross-layer feature fusion, and attention
mechanisms to effectively balance local and global models
while maximizing the utility of historical knowledge. Ad-
ditionally, shared prototypes are employed to address label
skew and accelerate convergence, facilitating privacy-aware
and equitable adaptation. Experimental results indicate that
FedCPD surpasses leading models, achieving an improve-
ment in generalization by up to 10.40% and personalization
by up to 4.90%, thereby demonstrating its efficacy and supe-
riority. Future research will investigate its capability to man-
age other forms of statistical heterogeneity and evaluate the
algorithm’s impact on representation learning.
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A Ablation Study

To validate the effectiveness of the various components of
FedCPD, we performed ablation experiments on the CIFAR-
100 data set with 5 = 0.1. The experiments aimed to ver-
ify the contributions of feature distillation, prototype align-
ment, and prototype contrast. Accuracy comparisons can be
observed in Table 3, which demonstrates the effectiveness of
the different components of FedCPD.

Results Analysis. In the absence of these three compo-
nents, the algorithm is equivalent to FedRep, exhibiting the
poorest performance. With the introduction of prototype con-
trast or prototype alignment, performance improved by ap-
proximately 5%, indicating that these strategies effectively
improve the class separability of the model and improve clas-
sification accuracy. Furthermore, by incorporating local fea-
ture distillation, the model can learn more refined local fea-
ture representations, further improving classification accu-
racy. Ultimately, with the combination of all three compo-
nents, FedCPD achieves optimal performance, conclusively
confirming the effectiveness of these components.

B Convergence Theory Derivation

Additional Notation. The introduction of additional vari-
ables here is to better represent the local model update pro-
cess. The embedding function corresponding to the i-th client
is denoted by f;(W/) : RP — RX, g;(W¢) : RX — RC
is the decision function for all clients. Here, D, K, and
C denote the sizes of the input, feature, and label spaces,
respectively. Thus, the labeling function can be written as
E;(WH W) = gi(W9) o fy(W/), and W; can be used as
(W], W¥). Therefore, the local loss function for client 7 is
given by

4

| B
LW, Wiz, y) = 2 Lop(F; (W] Wiz, ur)
T k=1

5,
1 - 41 t+12

+ag MW ) — P
b k=1

B,
1 L tt1 Lt )2 L, t41 1,62
+yg DoNATRTT = AT+ IFELTT - Fi)
k=1
B,
1 d S
B Z log exp(S1/7) _ )
B; =1 exp(S1/7) + ZeeC\a exp(S1)/T)

where S, = s(f; (W' zy), PP, Sy = s(fo (W ay), PETY).
Let (g, yr) ~ D; represent the local data points, where

D; denotes the private dataset of client ¢, and B; is the train-

ing batch size. The loss function £ remains fixed within each

Accuracy
51.01
55.67
56.20
56.83
58.24
60.23

d ﬁalign chl

Module

\XXX\X&IP

NN X X X
NAX A X X

Table 3: The impact of various components of FedCPD.

communication round, but varies between rounds, adding
complexity to the convergence analysis.

For notation, ¢ indicates the communication round and e €
1/2,1,2,..., E refers to the local iterations, where E is the
total number of local updates. Thus, tE + e represents the
e-th local iteration in the (¢ + 1)-th round. Furthermore, tE
is the time step just before aggregation on the server, while
tE + 1/2 marks the step between aggregation and the start of
the first local update.

Assumption 1. We assume that each loss function L(W') sat-
isfies L1-Lipschitz smoothness, indicating that its gradient is
L1-Lipschitz continuous, and that the embedding function of
the feature extractor f(-) is Lo-Lipschitz continuous.
IVLW™) = VLW 2)|l2 < Ly [ W' — W*2]|5,
W) = W)z < LW — w2,
Vi1, ta > 0,i € {1,2,..., N},
which implies the following quadratic bound,

LW') = LW'2) <(ViLiy, (W = W2))4

L

SHIW = W25, Ve, b2 > 0,6 € {1,2, ., N},
Assumption 2. The stochastic gradient gt = VL(W}, &L is
an unbiased estimator of the local gradient for each client.
We assume that its expectation satisfies

Ez;~p,;l9i] = VL(W]), Vi € {1,2,..., N},
the variance is bounded by o as follows.
t t 2 2 .
Efllg; — VLW )2l < o”, Vi€ {1,2,...,N}.

Assumption 3. The expected value of Euclidean norm of the
stochastic gradient is bounded by G,

Elllgill2] < G, Vi € {1,2,..., N}.

Lemma 1. In the t-th communication round, the loss function
for any client i, after conducting E local training rounds, is
bounded as
Lin? = L1 En?
BICL P - £8P < —(ne = =5) 30 VLR + TR
e=1/2

Proof.

BLC)H) <BL? 4 (vt 2, (wi

i

_ Wt,l/2)>
L
+ o Wt W
L
=E[L] Y —ne(VLT 2 g0 Shlinegi 23]
_ at,1/2 t,1/2  t,1/2 Llylg t,1/22
*L"i - UEEKVL"I’ y9; >] + TE[Hgl H2]

t,1/2

L 2
\1/2 17m \1/2
e 7l ER el P

Lin? Lin? .
,1/2 17 ,1/22 1Me 2
<Lt = (ne = SEVEN 2 + S

Then, by telescoping of E steps and setting the learning step
at the beginning of local training to 1, /2 = 10, we have,

Lin? = L1 En?
- T5E) X VLI + e
e=1/2

ELL5F] < £% — (ne
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Lemma 2. After completing E local training rounds in the
t-th communication round and before starting local training
in the (t + 1)-th communication round, the loss function for
any client i remains bounded.

L 2
B2 < £ 4 EneGR (1 + %Eng +2aL>Eno) + 5.

Proof.

£2+1.1/2 _ EZE :‘C(Wif,t#»l,l/Z’Pt-{.z) B ﬁ(Wif"t’E’PHz)

+£(Wif,t,E7Pt+2) _ ‘C(Wif,t,E’PtJrl)
S<V£§,E’ Wf,t+1,1/2 _ WL]‘tE>

L, fit41,1/2 B2
+7||Wi / _Wif' 12

+ LWt E Pty _ cw b E Pt

Applying expectations to both sides of the inequalities
E[£§+1,1/2] -~ Lf_,,E

EI\ZP; winF

+ sz 2G? + EL(W/ b E, ptt?)

SEnoG® + - (W/TE — w3

o El)(Wif’t’E, Pt+1)

<EnoG® 4+ L1 E*n2G? + Ec(W/ 0 E P2y —Eo(w/bF prthy.

It should be noted that when the model parameters remain
unchanged, the first two terms of the loss function are the
same. Therefore, we are left only with the terms related to the
prototype representations.

£ (W0 E ) — PUY2IS — 1 fs (WP ) — PR
t+2 t+1)2
<[P — P
N NJ
1,E JE 2
<> ZL [WithE — whP|3
=1 7, k=1
N
=L > pil WP —wh P
1=1
Taking expectation of both sides,
B[l f; (W 0E 2y — PR — (| f (WD E 2y — P
N
t+1,1/2 t+1,1/2 N
<Ly S pi(EIWHEE — w22 L g w Y w2
=1
N
<Ly > pi(E*niG? -HEHZWtE Wil w2 —whE 3

Jj=1

N
<L Y pi B GR + E|WPF — w23

N
=Ly ) pi(E*n3G° +E| Z negill3) < 2La B3 G2
i=1 e=1/2

The proof of the other term is as follows.
log exp((S2)/T) _
exp((52)/7) + Zocone exp((S2)/7)
log exp((51)/7) _
exp((51)/7) + Leeccne exp((S1)/7)
exp(—1/7)
exp(=1/7) + Xacone exp(1/7)
exp(l/7)
exp(1/7) + Xicone xp(=1/7)

< —log

+ log

-1 1
=—(— — loth+1’1/2) + (7 — logD'h)
.

2 2
=Z 4 (logD**t11/2 _jogDtt)y < 2
T T

where
t4+1,1/2

logD - loth+1

=log(ezp(~1/7) + > ewp(1/7))

éeC\e
—log(exp(1/7) + > exp(—1/7))
éeC\e
~log((C — 1)exp(1l/T)) —
=log(C - 1),
where D¥1:1/2 = exp(—1/T)+ Y econ, exp(l/T), D =
exp(1/7) + 3 secn . €xp(—1/T). Since log(C — 1) is a con-
stant, and when T is very small, % is numch greater than
log(C — 1),we can omit log(C — 1).
Summarizing the above derivations, we obtain an upper
bound for the loss function.

logexp(1l/T)

L1 -
Elc; VR <ot + BaoGR 4 S EPGR
2
+2aL E*n2G? + ,6;.

Theorem 1. (One-round deviation). Assume that Assump-

tions 1 to 3 are satisfied. For any client, after each communi-

cation round, we obtain
E[£t+1,1/2] SLt,l/Z Ll’fle Z ”vﬁtel‘z
e=1/2

L\E
LiBng 0% + EnoG + &

EWG +2aL2 E*naG? + /3%
Theorem 2. (Non-convex FedCPD convergence). Ang <
Ne < Mo, € € {%, 1,2,...,E}, where X represents the de-
cay factor for the learning rate. If the learning rate for each
epoch satisfies the following condition, the loss function de-
creases monotonically, leading to convergence:

B+ +v/B?2 — 4AC

A
o < Ne < oA

where s = PO IVLIC3, B = S - EG?A
(LI(E02+E2G2
2

19 4 2aL, E2G?),C = 2.
Proof.

L1E77e

2
22 le 6% 4 EneG? + E*n2G® 4+ 2aL:E*n’G? + 8=
-

1775 tﬁ
— (e — ) Z IvLy;

e=1/2
_LiEnZ I E2n€G2 +2aL2E*n2G? + 5%
- (NN lenf )S
:(L112502 %26‘2 +2aL.E2G? + Lls)ni
+ (EG® — S)ne + Tﬁ <o.

Since A > 0, the quadratic function opens upwards. The
inequality An? + Bn. + C < 0 holds between the roots of
the quadratic equation. Therefore, the acceptable range for
Ne is between the two roots. However, we are interested in
the maximum allowable 1. that satisfies the inequality, so we
focus on the larger root:

B+ VBZ —4AC TB?

WC<T»5< 3A
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