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Abstract

Concept prerequisite relations determine the learn-
ing order of knowledge concepts in one domain,
which has an important impact on teachers’ course
design and students’ personalized learning. Cur-
rent research usually predicts concept prerequisite
relations from the perspective of knowledge, and
rarely pays attention to the role of learners’ learn-
ing behavior. We propose a Dual Graph Dis-
tillation Method for Concept Prerequisite Rela-
tion Learning (DGCPL). Specifically, DGCPL con-
structs a dual graph structure from both the knowl-
edge and learning behavior perspectives, and cap-
tures the high-order knowledge features and learn-
ing behavior features through the concept-resource
hypergraph and the learning behavior graph respec-
tively. In addition, we introduce a gated knowl-
edge distillation to fuse the structural information
of concept nodes in the two graphs, so as to obtain a
more comprehensive concept embedding represen-
tation and achieve accurate prediction of prerequi-
site relations. On three public benchmark datasets,
we compare DGCPL with eight graph-based base-
line methods and five traditional classification base-
line methods. The experimental results show that
DGCPL achieves state-of-the-art performance in
learning concept prerequisite relations. Our code
is available at https://github.com/wisejw/DGCPL.

1 Introduction

As the increasing of learners number on online learning
platforms, the learning resources also become more abun-
dant [O’Dea and Stern, 2022]. However, the diversity of
resources often leads to difficulties in choice for learners.
The main reason for this is that the dependency between the
core concepts in different learning resources is unclear. Con-
cept prerequisite relations are the type of knowledge depen-
dency, which indicates that the learning order of core con-
cepts in a domain determines the learning order of knowl-
edge. For example, in mathematics, understanding the con-
cept of “Markov chain” requires prior knowledge of “Proba-
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Figure 1: Learning concept prerequisite relations from the perspec-
tive of knowledge and the perspective of learning behavior.

bility” and “Stochastic process”. Thus, Concept prerequisite
relations play an indispensable role in various educational
scenarios, such as learning path planning [Yu e al., 2024,
Wang and Liu, 20161, knowledge tracing [Huang et al., 2024;
Yin et al., 2023], cognitive diagnosis [Song et al., 2023; Gao
et al., 2023], and learning resource recommendation [Dong
et al., 2024; Wang et al., 2022al.

Early research with machine learning for concept prereq-
uisite relations [Talukdar and Cohen, 2012; Liang et al.,
2015] primarily rely on manual feature extraction of con-
cept pairs for concept modeling. This involves designing a
set of metrics to capture the semantic and structural infor-
mation between concepts, but the process is both tedious
and time-consuming. With the rise of graph neural net-
works, researchers begin to explore the intrinsic relations
between knowledge concepts in graphs [Sun er al., 2022;
Zhang et al., 2022al. However, previous research mostly in-
fer prerequisite relations between knowledge concepts from
the knowledge perspective [Zhang et al., 2025]. Few research
approach the problem from the perspective of learning behav-
ior. In fact, if many learners, after studying concept B, imme-
diately look up the definition of concept A, there is likely a
prerequisite relation between these two concepts. Existing re-
search on learning behaviors [Sayyadiharikandeh et al., 2019;
Hu er al., 2021] predominantly adopts traditional machine
learning methods. While these studies recognize the impor-
tance of learning behaviors, they have yet to explore advanced
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deep learning methods for deeper insights.

However, current graph-based methods usually only fo-
cus on pairwise relations of concept-concept or concept-
resource. They do not address the set-level relations be-
tween a learning resource and multiple knowledge concepts,
which may lead to the omission of key information. On the
other hand, few research [Sayyadiharikandeh et al., 2019;
Hu et al., 2021] use learning behavior features to predict pre-
requisite relations, but these still rely on traditional machine
learning methods. How to combine advanced deep learn-
ing methods and predict prerequisite relations from both the
knowledge and learning behavior perspectives is an urgent re-
search question, as shown in Figure 1.

To this end, we propose a Dual Graph Distillation method
for Concept Prerequisite Relation Learning (DGCPL), which
aims to construct a dual graph model from both the knowl-
edge and learning behavior perspectives to capture concept
prerequisite relations. Specifically, the Concept-Resource
Hypergraph represents the higher-order knowledge relations
between concepts and resources. The Learning Behavior
Graph describes the learner’s behavior on knowledge con-
cepts. To effectively integrate information from different per-
spectives, we design gated knowledge distillation to combine
the knowledge structure features of concepts and dynamic be-
havior features of learners, and adaptively adjust and optimize
two types of information to identify prerequisite relations.

The main contributions of this paper are as follows:

* We propose a Dual Graph Distillation method for con-
cept prerequisite relation learning, which predicts con-
cept prerequisite relations by constructing a dual graph
from the knowledge and learning behavior perspectives.

We introduce gated knowledge distillation that adap-
tively integrates higher-order knowledge relations and
learning behavior features information in the dual graph
through a gating mechanism, resulting in more compre-
hensive representations of concept embeddings.

On three publicly available benchmark datasets, we
compare DGCPL with eight graph-based baseline meth-
ods and five traditional classification baseline meth-
ods. The experimental results demonstrate that DGCPL
achieves state-of-the-art performance.

2 Related Work

2.1 Concept Prerequisite Relation Learning

Talukdar and William pioneer the task of extracting concept
prerequisite relations from Wikipedia [Talukdar and Cohen,
20121, laying the foundation for subsequent research. Early
machine learning methods, such as RefD [Liang e al., 2015],
propose a metric based on citation distance; Sayyadiharikan-
deh et al. are the first to analyze learning behavior using
Wikipedia Clickstream data [Sayyadiharikandeh ez al., 2019];
and PREREQ [Roy et al., 2019] employs siamese networks
to identify prerequisite relations between concepts. These re-
search further advance the domain. In the context of graph
neural networks, research gradually shifts to graph modeling.
ConLearn [Sun et al., 2022] combines concept graphs with
self-attention mechanisms to learn prerequisite relations in a

context-aware manner. MHAVGAE [Zhang et al., 2022al,
HGAPNet [Mazumder et al., 2023], and LCPRE [Sun ef al.,
2024] extract prerequisite relations by constructing hetero-
geneous concept-resource graphs, offering new insights for
modeling complex concept relations.

2.2 Knowledge Distillation

Knowledge Distillation [Hinton er al., 2015] is a model com-
pression technique, which aims to transfer the knowledge of a
complex teacher model to a lightweight student model. To in-
tegrate diverse data more effectively, the DGEKT model [Cui
et al., 2024] in the knowledge tracing research field incor-
porates a gating mechanism into online knowledge distilla-
tion to dynamically adjust the knowledge transferred from
the teacher model to the student model. Traditional knowl-
edge distillation achieves knowledge transfer by minimizing
the difference between the outputs of the teacher and stu-
dent models. However, many subsequent studies [Romero
et al., 2015; Zagoruyko and Komodakis, 2017; Pechac et al.,
2024] have found that extracting representation features from
the intermediate layers of the teacher model can further im-
prove the effectiveness of distillation. Additionally, the intro-
duction of online knowledge distillation [Yang et al., 2023;
Gong ef al., 2023] and self-distillation [Zhang et al., 2022b;
Li et al., 2024] has opened new directions for the develop-
ment of knowledge distillation.

Remarks. We construct a dual graph structure from the per-
spectives of knowledge and learning behavior, using hyper-
graph and directed graph to model the concept-resource hy-
pergraph and the learning behavior graph, respectively. Then
we use gated knowledge distillation to integrate high-order
knowledge relations between concepts and resources with
learning behavior features.

3 Problem Statement

In this section, we present the key terms and research defini-
tion used in this paper. Let C = {¢1, ¢2, ¢, ..., ¢ } TEpresent
the set of knowledge concepts, and R = {ry,72,73,...,Tn}
represent the set of learning resources, where m and n de-
note the total number of knowledge concepts and learning
resources, respectively. A knowledge concept refers to a core
knowledge unit in a specific domain. And a learning resource
refers to an independent learning object, typically a chapter
in a textbook or the subtitles of a course video.

Concept-Resource Hypergraph. In the hypergraph Gy =
(V, Eg), nodes represent concepts, and hyperedges represent
resources. Here, V' = {v1,vs,...,v,,} denotes the set of
nodes, and Eyy = {hy, ha, ..., h,} denotes the set of hyper-
edges. The relation between hyperedges and nodes represents
the containment relation between resources and concepts.

Learning Behavior Graph. In the directed graph G =
(V, E'1,), nodes represent concepts, and edges represent the
navigation behavior of learners between concepts. Ep de-
notes the set of edges in the graph, where /;; € Iy, represents
the number of times learners navigate from the definition doc-
ument of concept ¢; to the definition document of concept ¢;
within a certain time range.
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Figure 2: The overall structure of the proposed DGCPL.

Here, the concept definition documents are not the same
as the learning resources mentioned above. It is often chal-
lenging to directly obtain clickstream data from learning re-
sources. Therefore, We uses the Wikipedia page articles cor-
responding to concepts as their definition documents to col-
lect learning behavior data and construct the learning behav-
ior graph. Clickstream data only includes concept pairs with
more than 10 navigation instances in Wikipedia. Clearly, this
clickstream data represents learning learning behavior with
distinct group characteristics, which better indicates the po-
tential relation between two concepts. Such dynamic learning
behaviors can reflect the concept dependency relations.

Research Definition. Given a set of knowledge concepts C
and a set of learning resources R within a specific domain,
our goal is to learn a function Fp : C x C — {0, 1} that can
predict whether any pair of concepts < ¢;, ¢; > in the domain
has a prerequisite relation.

4 Methodology

In this paper, we introduce an innovative model designed to
learn concept prerequisite relations using a dual graph dis-
tillation strategy. The structure of DGCPL consists of three
main modules: dual graph construction, gated knowledge dis-
tillation, and ensemble prediction network. Figure 2 illus-
trates the overall architecture of our proposed DGCPL.

4.1 Dual Graph Construction

Concept-Resource Hypergraph

We adopt a hypergraph to capture the high-order knowl-
edge relations between knowledge concepts and learning re-
sources, thereby learning concept embeddings within the hy-

as

pergraph. Specifically, we first construct hypergraph G g
(V,Eg). The hypergraph adjacency matrix is denoted
H e R™*™_If a node v; belongs to a hyperedge h;, H; p,
1; otherwise, H;j, = 0. Additionally, each hyperedge is
assigned a weight wy,, and all these weights are stored in a
diagonal matrix W € R™*™. For simplicity, we set the
weights of all hyperedges to 1. We update the embeddings
of concept nodes using a Hypergraph Convolutional Network
(HGCN) [Feng er al., 2019],

x " (D V?PHWB'HTD /2" """ ¢
—&—Linear(xy) ). (1)
Here, xgl) € R represents the embedding of the i-th node at

the [-th layer. D € R™*" is the degree matrix of nodes, where
the degree of node v; is D; ; = Zyil wh, Hi p,. B € R™*™
is the degree matrix of hyperedges, where the degree of hy-
peredge h; is By, n, = o5y Hip,. OUFY € ROXCua g
the learnable welght matrix at the (l + 1)-th layer. ¢ denotes
the ReLU activation function, and (- ) denotes the transpose
operation. To retain the original critical information, we add
x( as a residual and apply a linear transformation linear ().

The initial embedding X(O) € R of each concept is gener-
ated by inputting the concept definition document into a pre-
trained language model.

Finally, we obtain the concept embedding x € R? from
the concept-resource hypergraph, where d represents the di-
mension of the concept embeddings.

Learning Behavior Graph
In addition to the high-order knowledge relations between
learning resources and knowledge concepts, learners’ behav-
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iors also have a significant impact on predicting concept pre-
requisite relations. This has been demonstrated in previous
studies [Sayyadiharikandeh et al., 2019; Hu er al., 2021].
Therefore, we construct a learning behavior graph based on
learning behaviors to predict concept prerequisite relations.
Specifically, for a node v; in the learning behavior graph
Gr = (V,Epr), we let n;; represent the number of times
learners navigate from node v; to node v;. The in-degree of
node v; with respect to node v; is defined as:
A(zn) [ kanejvl N’ if (Uja Ui) € EL (2)
R 0, otherwise
where V represents the set of all knowledge concepts in the
domain. Similarly, let n; ; represent the number of times
learners navigate from node v; to node v;. The out-degree
of node v; with respect to node v; is defined as:

Alout) _ %’ if (vi, v;) € Bl 3)
d 0. otherwise

In addition, we set A( = 1 and A(O"t) = 1. Then, we
define the in-degree and out- degree of node v; as follows:

deg!™ = 3" A degl™ = 3" ALY @)
v EV v EV l
In the learning behavior graph, each edge has a direction,
which makes information propagation more complex. In-
spired by previous research [Cui ef al., 2024], we utilize a
Directed Graph Convolutional Network (DGCN) [Tong et al.,
2020; Zhang et al., 2021] to learn concept embeddings from
the learning behavior graph. Nodes can not only propagate
information to other nodes but also receive information from
other nodes. This parallel bidirectional information propa-
gation mechanism enables more accurate capture of concept
dependency relations based on learners’ dynamic behaviors.
For the in-degree directed graph (denoted as “—) of the
learning behavior graph, we use DGCN to propagate infor-
mation along the in-degree edges. The embedding of node at
the (I + 1)-th layer is calculated as follows:

AW)
(in) . de gJ(out)

K g o<
v;EN(i)~ 1/ deg;

&)

where N (i)~ represents the in-degree neighbor set of node
v; (including node v; itself). (—)5@*”’* is the learnable weight
matrix at the (I 4+ 1)-th layer in the in-degree directed graph.

( ) represents the embedding of node j at the [-th layer. Sim-

11arly, the initial embedding of each concept, xg ) € RO is
generated by inputting the concept definition document into a
pretrained language model.

Similarly, to achieve information propagation along the
out-degree edges, we also apply DGCN to the out-degree di-
rected graph (denoted as “+”). The embedding of node v; at
the (I + 1)-th layer is calculated as follows:

Alout)
X(l+1),+ ) d)( .5

@(l+1),+x('l))
‘ (out) (in) ’
deg; deg;

J

v EN(i)+

(6)

where N (i)™ represents the out-degree nelghbor set of node

v; (including node v; itself), and @g\l,ﬂ is the learnable
weight matrix at the (I + 1)-th layer in the out-degree di-
rected graph. Then, for the entire learning behavior graph,
we fuse the updated concept embeddings obtained from the
in-degree directed graph and the out-degree directed graph.
The embedding of node v; at the ({+ 1)-th layer is defined as:

x(l+1):¢(Llnear( (e ) + Linear(x; x{ 0 ) (D

1

Here, we apply a linear transformation to both embed-
dings separately and then add them element-wise. Ad-
ditionally, there are various options for embedding fusion
methods. Besides element-wise addition, common methods
include embedding concatenation, element-wise maximum,
and element-wise average. We provide a detailed experimen-
tal analysis of these embedding fusion methods in Appendix
A. Finally, we obtain the concept embedding x* € R? from
the learning behavior graph.

4.2 Gated Knowledge Distillation

To effectively integrate features from the knowledge per-
spective and the learning behavior perspective, we apply
gated knowledge distillation to adaptively integrate informa-
tion from the dual graph, getting more comprehensive con-
cept embedding representations. Specifically, we treat the
concept-resource hypergraph and the learning behavior graph
as two independent student models. Subsequently, we regard
these two graph modules as equivalent student models and
employ a gating mechanism to achieve their effective inte-
gration, thereby constructing a stronger teacher model. The
gating mechanism [Hochreiter and Schmidhuber, 1997] is a
method for controlling information flow. It adaptively adjusts
the information flow weights between the concept-resource
hypergraph and the learning behavior graph based on the fi-
nal node embeddings generated by the two student models,
optimizing the model’s decision process

The concept node embeddings X and x , generated from
the concept-resource hypergraph and the learmng behavior
graph, respectively, contain both the textual semantic features
and the graph topological structure features of the node. To
construct the teacher model, we use a gating mechanism to
integrate these two embeddings:

x; =gOx; +(1-9)Ox;, ®)
here,

g=0(W;x,x{]+by). ©)
When g is close to 1, xf{ contributes more to the fused em-
bedding; while when g is close to 0, XZL contributes more. o
represents the sigmoid activation function, and © denotes the
hadamard product. Wy and b are the learnable weight ma-
trix and bias vector, respectively. Finally, we obtain the final
embedding x!' € R? of the teacher model.

The teacher model is constructed from the student models
through online knowledge distillation, where both models are
updated during training. The teacher model generates pre-
dictions based on the student model’s output and feeds them
back as supervision signals. This enables the teacher model
to integrate complex concept structures and dynamic learning
behavior, helping the student models learn richer features.
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4.3 Ensemble Prediction Network

Learning concept prerequisite relations is essentially a binary
classification task. After obtaining the final concept represen-
tations, a Siamese network [Bromley et al., 1993] is used to
predict whether concept ¢; is a prerequisite for concept c;.
The embeddings of the two concepts are separately fed into
two feedforward networks with shared weights:
X; = ReLU(W1 - X; + b1)7 )~(j = ReLU(W1 © X+ bl)
(10)
Here, x; can be any of x”, xF, or xI'. W, and b, are the
weight matrix and bias vector, respectively. The two out-
puts are then concatenated for classification, which can be
expressed as follows:
logit;; = W), - [%[|%;[|(%: — %;)[[(%; ©%;)] + by, (11)
p(ci, cj)=0o(logit,;), (12)
where || represents embedding concatenation, and W, and
b, are the parameterized weight matrix and bias vector, re-
spectively. Through three Siamese networks with the same
structure but different parameters, we can obtain the predicted
probabilities of the two student models and the teacher model,
denoted as p (¢;, ¢;), p¥(ci, ¢;), and pT (c;, ¢;), respectively.
For these three models, we use the binary cross-entropy loss
function(BCE) to calculate the prediction loss:

1
I Z BCE(p(ciacj)uyciCj)> (13)

E =
~ Dl (ci,cj)ED

where D represents the training dataset for concept prerequi-
site relations, and |D| is the size of the training set. y.,.;, €
{0, 1} indicates ground truth. We denote the prediction losses
of the three models as L"[I;Ireq’ Elfm 4 and Lgmq, respectively.
Additionally, we set the classification prediction threshold ~
to 0.50. When the predicted probability is greater than or
equal to v, the concept pair < ¢;,c¢; > is considered to have
a prerequisite relation; otherwise, it does not.

Next, to distill the knowledge of the integrated teacher
model back to the student models, we first calculate the soft
version of the predicted probabilities as temperature 7:

plei, cj)=o(logit,; /7), (14)
where the temperature coefficient 7 is set to 0.5. We obtain
the soft versions of the predicted probabilities for the two stu-
dent models and the teacher model, denoted as p*(c;, )
pL(ci,ci), and pT (c;, c;), respectively. Then, we calculate
the distillation loss to encourage each student model to align
its predictions with the teacher model’s predictions:

1 R ~
Lia = D] Z 167 (ciy¢5) = B (i )|, +
(Ci7c.7)€D

+ 18" (cirei) — " (i), (15)
where ||-||; represents the L1 norm. In this case, we use the L1
norm instead of KL divergence. Studies [Wang et al., 2022b]
have shown that using the L1 norm as part of the loss function
can more effectively constrain the model’s prediction error,
thereby improving the model’s classification performance.

Finally, the overall loss function of the model is defined as:

L=r2 4L + 27 4N L, (16)

preq preq preq
where ) is a hyperparameter that balances the distillation loss.

Dataset ICl IRl [Clreql  |Cored]
UCD 407 654 1,007 1,007
LectureBank 246 277 601 601

MOOC 406 381 1,003 1,003

Table 1: Datasets statistics. |C| represents the number of concepts,
and |R| represents the number of resources. |C;;eq| and |Cp’,«€q
denote the number of positive and negative examples, respectively.

5 Experiment

5.1 Experimental Setup

Datasets. To evaluate the effectiveness of our proposed
model, we select three public benchmark datasets.

+ University Course Dataset (UCD)': This dataset com-
piles course information [Liang ef al., 2017] from the
computer science domain across 11 universities in the
United States, covering various topics such as algorithm
design, computer graphics, and neural networks.

* LectureBank?: This dataset [Li ez al., 2019] originates
from online education platforms, covering five domains:
natural language processing, machine learning, artificial
intelligence, deep learning, and information retrieval.

» MOOC?: This dataset [Liang et al., 2017] is derived
from video playlists in the MOOC corpus and includes
the subtitle texts of videos from 38 playlists in the com-
puter science department.

Data Preprocessing. Since our model will utilize the user
clickstream data from Wikipedia in 2019 as the learning be-
havior data for the learning behavior graph. In LectureBank,
74 concepts could not be matched to Wikipedia page names
and were merged with others of the same meaning, so we
removed them without affecting domain coverage. Addition-
ally, we follow the method in previous research [Sun et al.,
2024] to generate negative samples equal in number to the
positive samples, enhancing the model’s robustness. Specif-
ically, half of the negative samples were created through un-
related random sampling, while the other half are reversed
pairs of the original positive samples. The final statistics of
the three experimental datasets are shown in Table 1.
Baseline Methods. We compare our DGCPL with eight
graph-based methods for predicting concept prerequisite re-
lations: LCPRE [Sun et al., 2024], HGAPNet [Mazumder et
al., 2023], MHAVGAE [Zhang et al., 2022a], ConLearn [Sun
etal.,2022], R-VGAE(T) [Li et al., 2020], R-VGAE(P) [Li et
al., 2020], VGAE [Kipf and Welling, 2016], and GAE [Kipf
and Welling, 2016]. Additionally, we considered five tradi-
tional classification baseline methods: PREREQ [Roy et al.,
2019], RefD [Liang et al., 2015], Random Forest (RF), Sup-
port Vector Machine (SVM), and Naive Bayes (NB). Please
refer to Appendix B for detailed descriptions.

Evaluation Metrics. For the fair and extensive evaluation,
we select three common evaluation metrics to assess the per-

"https://github.com/suderoy/PREREQ-IAAI-19
Zhttps://github.com/Yale-LILY/LectureBank
*https://github.com/suderoy/PREREQ-IAAI-19
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M UucCD LectureBank MOOC
ethod
ACC F1 AUC ACC F1 AUC ACC F1 AUC

NB 0.5495 0.5845 0.5369 0.5207 0.5323 0.5262 0.5124 0.5288 0.5357
SVM 0.5743 0.6161 0.5601 0.5455 0.5669 0.5361 0.5821 0.6000 0.5923
RF 0.6683 0.6455 0.7419 0.6777 0.6723 0.8245 0.7363 0.7135 0.8084
RefD 0.7620 0.7110 0.7520 0.3900 0.5570 0.4760 0.5870 0.4140 0.4900
PREREQ 0.5433 0.5866 0.6702 0.4975 0.5130 0.5557 0.5429 0.5746 0.6248

"GAE 0.6642  0.6631 0.6955 0.6877 0.6864 0.7651 = 0.6721 ~ 0.6700  0.6995 ~
VGAE 0.6933 0.6927 0.7552 0.6907 0.6898 0.7534 0.6664 0.6656 0.7144
R-VGAE(T) 0.6849 0.6618 0.7646 0.6660 0.6345 0.7942 0.5926 0.5435 0.6602
R-VGAE(P) 0.7369 0.7220 0.8325 0.5678 0.4714 0.8107 0.5344 0.4108 0.8730
ConLearn 0.7822 0.7684 0.8529 0.8017 0.7931 0.8541 0.7562 0.7200 0.8472
MHAVGAE 0.7875 0.7952 0.8645 0.7263 0.7401 0.8213 0.7475 0.7642 0.8759
HGAPNet 0.8200 0.8043 0.8998 0.8167 0.8136 0.8803 0.8550 0.8497 0.9014
LCPRE 0.8366 0.8216 0.8884 0.8182 0.8000 0.8514 0.8258 0.8223 0.8898
DGCPL (Ours) 0.8564 0.8557 0.9053 0.8347 0.8246 0.8795 0.8756 0.8718 0.9236
Improve rate 1.98% 1 3.41%1 055%71T 1.65%1 1.10%1 0.08% /)] 2.06%1 221%1T 222% 7

Table 2: Performance Comparison. The best performance is highlighted in bold, and the runner-up is underlined. 1%(J) indicates the improve-

ment (decline) of our model compared to the best baseline.

Method UCD  LectureBank MOOC
_Ours DGCPL___ 0.8557 _ 0.8246 _ 0.8718
Ours w/o GKD 0.8374 0.8226 0.8528
Ours w/o CRHG 0.8177 0.8160 0.8168
Ours w/o LBG 0.8235 0.8130 0.8469

Table 3: The ablation study of DGCPL.

formance of all methods: Accuracy (ACC), F1 Score (F1),
and Area Under the ROC Curve (AUC).

Implementation Details. We split each datasets into train-
ing, validation, and test sets with a ratio of 8:1:1. Our pro-
posed model is trained using the Adam optimizer for a total
of 50 epochs. The learning rate Ir, batch size, and classifica-
tion prediction threshold v are set to 1E-4, 16, and 0.50. For
the UCD, LectureBank, and MOOC datasets, the number of
graph neural network layers £ is set to 3, 2, and 2; the weight
decay is set to 1E-4, 1E-2, and 1E-3; and the distillation loss
weight A in the overall loss function is set to 1E-6, 1E-1, and
1E-5, respectively. We use BERT [Devlin et al., 2019] as the
pretrained language model. Detailed analysis of the impact
of the pretrained language model is provided in Appendix C.
All experiments is implemented on the Linux sever with one
RTX 4090D GPU using the PyTorch framework.

5.2 Overall Performance

In Table 2, we present the comparative results of all methods
on the three datasets. Our model generally outperforms ex-
isting baselines across all datasets. Although the AUC metric
shows a slight decline on the LectureBank dataset, this mi-
nor difference may result from the complex concept relations
or the imbalanced sample distribution in the dataset. How-
ever, DGCPL achieves significant improvements in AUC on
the other two datasets, demonstrating its adaptability and ro-
bustness in handling different types of educational data.

In summary, we draw the following conclusions: (1)
DGCPL significantly outperforms existing baseline models

in all evaluation metrics on the three datasets, showcasing
its strong capability in learning concept prerequisite rela-
tions. (2) Graph-based methods perform better than tradi-
tional methods because the relations between concepts, be-
tween concepts and resources, and between resources form a
knowledge network, which provides a significant advantage.
(3) The HGAPNet and LCPRE models perform as the next
best methods. They fully leverage the complex interaction
relations between concepts and resources, but lack the per-
spective of learning behavior.

5.3 Ablation Experiment

In this study, to evaluate the effectiveness of each module in
DGCPL, we designed three variants and compared them with
these variants in terms of F1. The ablation study results in
Table 3 show that: (1) Removing the Gated Knowledge Dis-
tillation (GKD) leads to a slight performance decrease. This
reduction in performance occurs because the model loses its
ability to integrate knowledge across graphs. (2) Remov-
ing the Concept Resource Hypergraph (CRHG) along with
the associated GKD significantly reduces performance on all
datasets, highlighting the importance of concept embeddings
from the knowledge perspective. (3) Removing the Learning
Behavior Graph (LBG) along with the associated GKD re-
sults in a substantial performance drop. This group learning
navigation behavior indeed reflects the prerequisite relations
between concepts and deserves attention.

5.4 Quality Analysis

In a knowledge domain, the number of neighboring concepts
(i.e., prerequisite concepts and successor concepts) varies
across different concepts. To evaluate our model’s perfor-
mance under different numbers of neighbors, we conduct
experiments on LectureBank, dividing concepts into low-
degree, medium-degree, and high-degree groups based on
the trichotomies of neighbor count. The pie chart in Fig-
ure 3 shows the proportion of concepts in each group. We
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Figure 3: The quality analysis on the LectureBank.
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Figure 4: The hyperparameter analysis of DGCPL on the UCD.

compare our method with three advanced baselines on the
test set. From the bar chart in Figure 3, we observe: (1)
DGCPL outperforms the baselines in predicting low-degree,
medium-degree, and high-degree concepts, demonstrating ro-
bustness in predicting sparse prerequisite relations. (2) For
each model, the prediction performance for low-degree con-
cepts is consistently the lowest. Current graph-based methods
tend to degrade in performance when knowledge relations are
sparse, highlighting the importance of considering the learn-
ing behavior perspective. However, Our model also excels in
predicting low-degree concepts.

5.5 Hyperparameter Analysis

As illustrated in Figure 4, we evaluate the performance of the
model on UCD under different hyperparameter settings. The
results are summarized as follows: (1) The model performs
best when the graph neural network depth ¢ is 3, as lower
depths fail to capture complex graph structures, and deeper
networks may overfit or excessively smooth information. (2)
The distillation loss weight A has an optimal range, with per-
formance improving as the weight decreases from 1E-3 to
1E-6, but declining when it drops further to 1E-7 due to insuf-
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1800} O
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1400 1400 &=
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1000} 1300 -2
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Figure 5: The training overhead analysis on the MOOC.

ficient learning from the teacher model. (3) The classification
prediction threshold «y of 0.50 achieves optimal performance;
lower thresholds lead to an increase in false positives, while
higher thresholds reduce the model’s ability to correctly iden-
tify positive samples. (4) The optimal learning rate [r is 1E-4,
which ensures fast and stable convergence. The same method
is applied to select the best hyperparameter settings for the
other datasets.

5.6 Training Overhead Analysis

In this study, we compare the model parameter sizes and
training times between DGCPL and three advanced baselines
on MOOC. As illustrated in Figure 5, we draw the following
conclusions: (1) Despite the increased parameter count due to
the dual graph structure, DGCPL achieves faster learning of
better concept embeddings. The dual graph structure captures
concept features from both knowledge structure and learning
behavior perspectives, and gated knowledge distillation ac-
celerates convergence, reducing the number of epochs needed
for training. (2) LCPRE incurs significant overhead due to
depth-first search for exploring concept-resource paths. (3)
HGAPNet updates all node and edge features, slowing con-
vergence, and its small batch size further hinders speed. (4)
MHAVGAE has faster convergence, but the number of atten-
tion heads affects its optimization speed.

6 Conclusion

This paper proposes a dual graph distillation method for
learning concept prerequisite relations. The method aims
to construct a dual graph structure, including the concept-
resource hypergraph and the learning behavior graph, from
the perspective of knowledge and the perspective of learn-
ing behavior. Then we effectively integrate the dual graph
through gated knowledge distillation to construct a more ro-
bust teacher model to predict concept prerequisite relations.
This method not only leverages the high-order knowledge re-
lations between concepts and resources, but also integrates
the learner’s learning behavior features, thereby enhancing
the model’s ability to understand and model concept prerequi-
site relations. Extensive experiments on three publicly bench-
mark datasets demonstrate that DGCPL achieves state-of-the-
art performance for learning concept prerequisite relations.
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