
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Optimal Distributed Training With Co-Adaptive Data Parallelism in
Heterogeneous Environments

Lifang Chen , Zhichao Chen , Liqi Yan∗ , Yanyu Cheng ,
Fangli Guan and Pan Li∗

Hangzhou Dianzi University
246050120@hdu.edu.cn, chenzhichao ai@163.com,

lqyan18@fudan.edu.cn, yycheng@hdu.edu.cn, fangli.guan@hdu.edu.cn, lipan@ieee.org

Abstract
The computational power required for training deep
learning models has been skyrocketing in the past
decade as they scale with big data, and has become
a very expensive and scarce resource. Therefore,
distributed training, which can leverage distributed
available computational power, is vital for efficient
large-scale model training. However, most previ-
ous distributed training frameworks like DDP and
DeepSpeed are primarily designed for co-located
clusters under homogeneous computing and com-
munication conditions, and hence cannot account
for geo-distributed clusters with both computing
and communication heterogeneity. To address this
challenge, we develop a new data parallel based
distributed training framework called Co-Adaptive
Data Parallelism (C-ADP). First, we consider a data
owner and parameter server that distributes data to
and coordinates the collaborative learning across
all the computing devices. We employ local train-
ing and delayed parameter synchronization to re-
duce communication costs. Second, we formulate
a data parallel scheduling optimization problem to
minimize the training time by optimizing data dis-
tribution. Third, we devise an efficient algorithm to
solve this scheduling problem, and formally prove
that the obtained solution is optimal in the asymp-
totic sense. Experiments on the ImageNet100
dataset demonstrate that C-ADP achieves fast con-
vergence in heterogeneous distributed training en-
vironments. Compared to Distributed Data Paral-
lel (DDP) and DeepSpeed, C-ADP achieves 21.6
times and 26.3 times improvements in FLOPS, re-
spectively, and a reduction in training time of about
72% and 47%, respectively.

1 Introduction
The rapid expansion of Internet applications has led to an
exponential increase in global data, with recent data gener-
ation surpassing that of the entire previous history [Yi et al.,
2020]. The surge of big data stimulates the rapid expansion of

∗Corresponding authors: Pan Li, Liqi Yan.

deep learning models, ranging from simple neural networks
to Large Language Models (LLMs) containing hundreds of
billions of parameters, such as the GPT family [Brown et al.,
2020] and Transformer [Wang et al., 2022], thereby placing
an increasingly urgent demand on efficient training of large-
scale learning models.

In order to cope with this challenge, distributed training
has emerged. Its core concept is to leverage distributed nodes
to decompose and distribute computational tasks for collabo-
rative completion, effectively overcoming the limitations of
single-machine processing power. Data parallelism, a key
form of distributed computing, is widely used in training
large-scale learning models [Li et al., 2020; Verbraeken et al.,
2020]. It efficiently trains complex models by splitting train-
ing data and distributing it across computing nodes. In Com-
puter Vision (CV), data parallelism enables efficient training
for tasks such as image classification and object detection,
and improves model accuracy by extracting rich visual fea-
tures. In Natural Language Processing (NLP), data paral-
lelism ensures the processing of large-scale text data, helping
models capture intricate semantic and syntactic relationships,
which drives continuous advancements in NLP technologies.

Despite the considerable benefits of data parallelism in en-
hancing computational efficiency, its practical implementa-
tion encounters numerous challenges. First, distributed com-
puting could introduce large communication overhead. In the
data distribution phase, the transmission of large volumes of
training data is limited by network bandwidth and latency,
while in the training process, frequent synchronization of
gradients or parameters further increases the communication
cost. Second, computing device heterogeneity can lead to
ineffective data distribution and uneven loading due to uni-
form data distribution assumed by popular distributed train-
ing mechanisms like Distributed Data Parallelism (DDP) [Li
et al., 2020]. Although frameworks such as DeepSpeed [Ren
et al., 2021; Rasley et al., 2020] have improved memory man-
agement, they are still deficient in balanced data allocation.
Third, most distributed training frameworks such as DDP
and DeepSpeed are primarily designed for co-located clus-
ters with homogeneous network conditions, and hence can-
not account for geo-distributed clusters with heterogeneous
network environment over the Interne.

To address these challenges, we develop a new Co-
Adaptive Data Parallelism (C-ADP) framework by optimiz-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ing data parallel scheduling while taking into account com-
puting and communication heterogeneity in a geo-distributed
cluster. Specifically, C-ADP enables more efficient and ro-
bust distributed training through the following designs. (1)
Delayed parameter synchronization. By employing local
training and delayed parameter synchronization at the con-
clusion of each epoch instead of each batch, we substantially
reduce communication overhead. (2) Data parallel schedul-
ing formulation. We formulate a data parallel scheduling op-
timization problem to minimize the training time by optimiz-
ing data distribution. (3) An efficient algorithm. We develop
a very efficient algorithm to solve the optimization problem,
and formally prove that the obtained solution is optimal in
the asymptotic sense. Through strategic data distribution, we
ensure balanced loading across computing devices with het-
erogeneous capabilities and significantly reduced communi-
cation overhead, thus accelerating the training process and
enhancing overall efficiency.

In this paper, our main contributions are threefold:

• We propose a new data parallel based distributed training
framework, named Co-Adaptive Data Parallelism (C-
ADP), for a geo-distributed cluster with heterogeneous
computing and communication environments.

• We formulate data parallel scheduling as an optimization
problem and develop an efficient algorithm that is able
to efficiently and optimally determine the amount of data
samples to be allocated to different computing devices.

• Experiments on the ImageNet100 dataset show that,
compared with DDP and DeepSpeed, our C-ADP frame-
work achieves 21.6 times and 26.3 times improvements
in FLOPS, respectively, and a reduction in trainning time
of about 72% and 47%, respectively.

2 Related Work
Distributed Training Architectures: There have been a
few distributed training frameworks such as DDP [Li et
al., 2020], DeepSpeed [Rasley et al., 2020], Megatron-LM
[Shoeybi et al., 2020]. Data parallelism [Zhao et al., 2023],
pipeline parallelism [Narayanan et al., 2019], tensor paral-
lelism [Shazeer et al., 2018] are key methods for parallelizing
operations during the training process. In data parallelism, a
global model is replicated across a cluster of computing de-
vices, each of which is allocated a subset of data, and is col-
laboratively trained by them. Synchronous and asynchronous
Stochastic Gradient Descent (SGD) are commonly used for
convergence and scalability, leveraging parameter server or
ring-allreduce [Yu et al., 2022] architectures. The param-
eter server architecture uses a centralized server for global
parameters, while ring-allreduce employs a decentralized ap-
proach. Pipeline parallelism divides the model layers into
stages and distributes them across different computing de-
vices [Narayanan et al., 2019]. Tensor parallelism shards
the model’s parameters and computations along tensor di-
mensions and distributes the computations of a single layer,
e.g., matrix multiplications across devices. Frameworks like
DDP [Li et al., 2020], Horovod [Sergeev and Balso, 2018]
use pure data parallelism. Those like DAPPLE [Fan et al.,

Symbol Definition
N The number of computing devices
D The total amount of data samples (the

entire dataset)
Di The total amount of data sample as-

signed to device i (i ∈ [1, N])
b The size of each sample
Gi The total memory size of device i
Bj,i The transmission bandwidth from de-

vice j to device i
batchsize(i) The batch size used by device i in each

iteration
Sm The size of occupied memory samples
∆Si Activation memory consumption in-

creased due to adding one more data
sample

αj,i Communication latency
Mm The size of model parameters
num The number of epochs at all devices

Table 1: Key notations in this paper.

2021], PipeDream [Narayanan et al., 2019] combines data
and pipeline parallelism. and Megatron-LM [Shoeybi et al.,
2020], AMP [Li et al., 2022] integrate all three types of par-
allelism. In this paper, we focus on data parallelism since
it has excellent scalability and usually moderate communica-
tion cost compared with pipeline and tensor parallelism.
Scheduling Optimization in Heterogeneous Environ-
ments: A few mechanisms [Jayaram Subramanya et al.,
2023; Mo et al., 2024; Unger et al., 2022] have been de-
veloped to optimize cluster-level scheduling. In particular,
[Jayaram Subramanya et al., 2023; Chen et al., 2022] op-
timize the scheduling of multiple jobs, e.g., by increasing
data parallelism, on heterogeneous GPU clusters. [Yang et
al., 2024] intelligently assigns different computational tasks
in model training within heterogeneous environments based
on the characteristics of the NICs to which the GPU devices
are connected. [Yuan et al., 2022] minimizes communica-
tion costs in heterogeneous environments. [Liu et al., 2023]
designs a reinforcement learning-based scheduling method
to assign each layer to an appropriate type of computing
resource, minimizing cost while ensuring throughput limits
based on a provisioning method. Previous scheduling opti-
mization mechanisms mostly only considers either comput-
ing or communication heterogeneity. In this paper, we ad-
dress both computing and communication heterogeneity in
data parallelism.

3 System Model and Problem Formulation
We consider a geo-distributed system with a data owner and
parameter server (PS) and N computing devices as shown in
Figure 1. After finding the optimal distributed training sched-
ule, with will be delated later, the PS sends the data subsetDi

(1 ≤ i ≤ N) to each participating computing devices i. Each
device i performs local training on the received data subset
Di using stochastic gradient descent (SGD), and then uploads
the locally updated model parameters wt+1

i based on the cur-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The workflow of the proposed C-ADP framework.

rent global model wt to the central server. The PS performs
weighted averaging based on the local model parameters of
all devices to update the global model wt+1 distributes it to
all devices, i.e.,

wt+1 =
N∑
i=1

Di

D
wt+1

i ,

where D is the total amount of data samples. Then, we
have

N∑
i=1

Di = D, (1)

where Di ∈ N0, we assume that all data samples have the
same size of b bits.

In the realm of distributed training, we focus solely on data
parallelism, where our primary objective is to minimize the
total time consumed by the entire training process encom-
passing multiple epochs. This total time is composed of three
crucial components: data allocation time, computation time
and communication time. Some important notations are sum-
marized in Table 1.

3.1 Data Allocation Time
Denote by B0,i the bandwidth between device 0 and device i.
The communication time for device i to receive its allocated
Di data samples, denoted by Tsend,i, is

Tsend,i =
bDi

B0,i
, (2)

3.2 Computation Time
During distributed training, the computational time of each
device is related to the amount of data allocated to it, i.e.,
the larger the dataset, the longer the computation time. De-
note the maximum parallelism of device i as Pmax(i), i.e., the
maximum number of samples that a device can process con-
currently. Then, we can get

Pmax(i) =
Gi − Sm

∆Si
, (3)

which needs to be no less than the batchsize at device i, de-
noted by batchsize(i), i.e.,

Pmax(i) ≥ batchsize(i), (4)

Then, the computation time at device i during one epoch, de-
noted by Tcomp,i, can be obtained by

Tcomp,i =

⌈
Di

batchsize(i)

⌉
× Tibatch, (5)

where Tibatch denotes the time required by device i to process
a single batch of data, including both forward propagation
and backward propagation computations.

3.3 Communication Time
Each computing device i receives the current global model
parameters from the PS, updates its local model using its al-
located training data, and sends the updated model parame-
ters to the PS at the end of each epoch. We denote by Mm is
the size of the model parameters. Thus, the communication
cost of device i for data parallelism in one epoch, denoted by
Tcomm,i can be calculated as follows:

Tcomm,i = 2

(
α0,i +

Mm

B0,i

)
. (6)

3.4 Data Parallel Scheduling Optimization
To minimize the total time for the above data parallel training
process, we aim to optimize the data allocation Di (1 ≤ i ≤
N). Consequently, the data parallel scheduling optimization
problem can be formulated as:

min
D1,··· ,DN

(
max
i∈[1,N]

Tsend,i +
num∑

epoch=1

max
i∈[1,N]

(Tcomp,i + Tcomm,i)

)
,

subject to (1)(4),
(7)

4 An Efficient Data Parallel Scheduling
4.1 Optimality Analysis
To simplify notations, we let x = {D1, D2, ..., DN}. We
rewrite the optimization problem formulated in equation (7)
into the following:

F(x) = max f(x) + num ·max(g(x) +C),

min
x

F(x), (8)

where

f(x) = b× (V−1 × x), V =


B0,1 0 · · · 0
0 B0,2 · · · 0
...

...
. . .

...
0 0 · · · B0,N

 ,

g(x) = T× ⌈B−1 × x⌉+C,

T =


T batch
1 0 · · · 0
0 T batch

2 · · · 0
...

...
. . .

...
0 0 · · · T batch

N

 ,B =


batchsize1 0 · · · 0

0 batchsize2 · · · 0
...

...
. . .

...
0 0 · · · batchsizeN

 ,

C = 2(α+ B−1 ·M), α =

α0,1

α0,2

...
α0,N

 ,

M =

Mm

Mm

...
Mm


N×1

n∑
i=1

xi = D,

xi ∈ N0.

Note that is C independent of the variable x. It dependents on
communication bandwidth B and model size Mm, and hence
it is a constant.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Lemma 1. x ≥ 0, we have lim
p→∞

∥x∥p = max x.

Proof. Let x̂ = max x. Then, we have

lim
p→∞

(
N∑

k=1

xpk)
1
p ≤ lim

p→∞
(Nx̂p)

1
p = lim

p→∞
N

1
p x̂ = x̂,

lim
p→∞

(
N∑

k=1

xpk)
1
p ≥ lim

p→∞
(x̂p)

1
p = x̂.

Therefore, we can find lim
p→∞

∥x∥p = lim
p→∞

(
N∑

k=1

xpk)
1
p =

max x.

In fact, when p = 100, the error between ∥x∥p and max x
is already sufficiently small, as shown in Figure 2.

Figure 2: Error between ∥x∥p and max x for different values of p.

Moreover, we can also prove that ∥x∥p has the same sub-
additivity and homogeneity as max x.

Lemma 2. For any x,y ∈ {(x1, x2, ..., xN)|
∑N

i=1 xi =
D,xi ≥ 0}, and λ ∈ R, we have ∥x+ y∥p ≤ ∥x∥p + ∥y∥p,
and ||λx||p = |λ| · ||x||p.

Proof. According to the Minkowski inequality, we get

(
N∑

k=1

|xk + yk|p)
1
p ≤ (

N∑
k=1

|xk|p)
1
p + (

N∑
k=1

|yk|p)
1
p .

Therefore, we get

∥x+ y∥p = (
N∑

k=1

(xk + yk)
p)

1
p

≤ (

N∑
k=1

xpk)
1
p + (

N∑
k=1

ypk)
1
p

= ∥x∥p + ∥y∥p .
and

||λx||p = (
N∑

k=1

|λxk|p)
1
p = |λ|(

N∑
k=1

(xk)
p)

1
p = |λ| · ||x||p.

Consequently, according to Lemma 1, when p is large, the
objective function in equation (8) can be rewritten into

Φ(x) = ∥f(x)∥p + num · ∥g(x) + C∥p
=
∥∥b · V−1x

∥∥
p
+ num ·

∥∥T⌈B−1x⌉+ C
∥∥
p
,

(9)

whose feasible domain is

χ = {(x1, x2, ..., xN)|
N∑
i=1

xi = D,xi ∈ N0}.

We then define a relaxed function

Φ̃(x) =
∥∥b · V−1x

∥∥
p
+ num ·

∥∥TB−1x+ C
∥∥
p

(10)

whose feasible domain is

χ′ = {(x1, x2, ..., xN)|
N∑
i=1

xi = D,xi ≥ 0}.

We arrive at the following theorem, the proofs of which can
be found in the appendices.
Theorem 1. The relaxed function equation (10) is a convex
function on its feasible domain.

Lemma 3. For any x ∈ RN and x ≥ 0, we have
∥⌈x⌉ − x∥p < N

1
p .

Proof. For any element xk ∈ x, we have |⌈xk⌉ − xk| < 1.
Thus, we can obtain

∥⌈x⌉ − x∥p = (
N∑

k=1

(⌈xk⌉ − xk)p)
1
p

≤ N
1
p .

Theorem 2. Given x ∈ χ′, for any x̂ ∈ χ that satisfies

∥x̂− x̃∥p ≤ γ,

where γ ≥ N
1
p , we have

|Φ(x̂)− Φ̃(x̃)| ≤Mγ

where Mγ = bγ ·
∥∥V−1

∥∥
p
+ num · ∥T∥p (N

1
p + γ

∥∥B−1
∥∥
p
).

According to Theorem 2, we first find the optimal solution
x̃∗ to the relaxed equation (10). Then, we can find x̂ ∈ χ, in
the neighborhood of x̃∗, i.e., U(x̃∗, γ), γ ≥ N

1
p , such that

|Φ(x̂) − Φ̃(x̃∗)| ≤ Mγ . Note that Mγ is independent of the
total amount of data samples D. Therefore, for the optimal
solution x̂∗ to the original equation (9), we have Φ̃(x̃∗) ≤
Φ(x̂∗) ≤ Φ(x̂), and hence, Φ(x̂) − Φ(x̂∗) ≤ Mγ . Since
Φ(x̂∗) is positively correlated to D, we can have

lim
D→∞

Φ(x̂)− Φ(x̂∗)

Φ(x̂∗)
= 0,

i.e., we can find a solution that is optimal in the asymptotic
sense when there are a sufficiently large number of training
data samples.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 Our Data Parallel Scheduling Algorithm

Input: S, n, ρ, µ(0), µdecay, λ(0), ε, η(0), ηdecay, ψ, ζ
Output: x̂

1: Let x← S
n1 , k ← 0 ,µ← µ(0) ,λ← λ(0) , η ← η(0) .

2: while k < ψ do
3: i← 0
4: while i < ζ do
5: Compute gradients∇xLρ(x

(k,i), λ(k), µ(k))
6: Update

x(k,i+1) = x(k,i) − η(k) · ∇xLρ(x
(k,i), λ(k), µ(k))

7: if ∥∇L∥2 ≤ ε then
8: break
9: end if

10: i← i+ 1
11: end while

Update

λ(k+1) ← λ(k) + ρ

∑
j

x
(k+1,0)
j − S


Update

µ(k+1) ← µdecay · µ(k)

12: if ∥∇L∥2 ≤ ε then
13: break
14: end if
15: k ← k + 1
16: end while
17: x̃∗ ← x
18: x̂← Round (x̃∗)
19: return x̂

4.2 Algorithm Design
Based on the analysis in Section 4.1, we design an algorithm
that first solves for the optimal solution x̃∗ to equation (10),
and then finds the solution to the original equation (9), i.e.,
x̂∗ by rounding each element of x̃∗ to an integer. According
to Theorem 1, we are able to find a globally optimal solution
to the relaxed equation (10). So we construct an augmented
Lagrangian function as follows:

Lρ(x, λ, µ) = Φ̃(x) + λ

(
N∑

k=1

xk −D

)
+
ρ

2

(
N∑

k=1

xk −D

)2

− µ
n∑

k=1

ln(xk)

Where λ is the Lagrange multiplier for the reciprocal con-
straint, ρ > 0 is the coefficient of the quadratic penalty term,
and µ > 0 is the coefficient of the logarithmic barrier used
to ensure that xi ≥ 0. We detail our data parallel scheduling
algorithm in Algorithm 1.

4.3 Computational Complexity Analysis
The inner loop of Algorithm 1 involves computing the gra-
dients and diagonal matrix multiplication. Since the inner

Figure 3: Changes in test accuracy and loss under the conditions of
C-ADP and single-card training.

Figure 4: Training loss curves of Wide-ResNet101 on heterogeneous
devices.

loop is executed at most ζ times, the computational complex-
ity is O(ζN). The outer loop is executed at most ψ times.
Therefore, the computational complexity of our data parallel
scheduling algorithm is O(ψζN), where N is the number of
computing devices in the system.

5 Experiment Results
5.1 Dataset and Learning Model
Dataset: The experiments were carried out using the Im-
ageNet100 dataset, a subset of the ImageNet dataset. Ima-
geNet100 consists of 100 classes, particularly 100,000 train-
ing samples and 10,000 test samples, making it a balanced
and diverse dataset for evaluating model performance.

Models: To evaluate C-ADP, Wide - ResNet101 was cho-
sen and validated on ImageNet100. Wide-ResNet101, engi-
neered to process intricate image features, incurs a computa-
tional cost of 22.8 GFLOPs.

5.2 Experimental Environment and Metrics
Computing Devices: To account for heterogeneous envi-
ronments, the hardware setup is as follows. In the Zhong-
wei area, rank 0 as a data owner and parameter server han-
dles data transfer and parameter synchronization. Ranks 1 -
4 use RTX3090 GPUs with 24GB VRAM. Ranks 5 - 6 are
4 core CPUs with 8GB memory. Rank7 is a 16 core CPU
with 32GB VRAM, and rank8 is an 8 core CPU with 16GB
VRAM. To emulate real-world constraints, we simulate net-
work heterogeneity among these devices by controlling the
available bandwidth between devices.

Hyperparameter Configuration: For all GPUs, the batch
size is set to 64 due to its high computational complexity, to
ensure stable training within the GPU’s memory capacity. For
all CPUs, the batch size is set to 4, considering their limited

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acc/% F1/% Precision/% Recall/% Test loss
Epoch C-ADP Single-card C-ADP Single-card C-ADP Single-card C-ADP Single-card C-ADP Single-card

1 1.00 19.53 0.02 17.13 0.01 22.71 1.00 19.53 4.606 3.3924
10 39.81 61.08 38.67 60.61 43.43 64.95 39.81 61.00 2.328 1.6175
20 62.04 70.17 61.7 69.89 62 70.31 64.62 70.17 1.400 1.1625
30 70.56 69.46 70.22 68.81 71.53 69.2 70.55 69.12 1.074 1.2012
40 70.49 70.16 70.23 69.99 71.78 70.55 70.49 70.13 1.159 1.1947
50 73.67 71.02 73.46 70.97 73.75 71.21 73.66 71.05 1.018 1.2039

Table 2: Accuracy metrics and validation loss results of our method and single-card training under the condition of interval epochs.

Figure 5: Results of accuracy and loss of different training frame-
works in the time dimension.

Method Epoch Acc/% Tsend/ s Ttrain/ s Ttotal/ s

DDP 7 27.44 1411.68 47214.33 48626.02
Deepspeed 4 16.94 1398.46 23882.89 25281.35

C-ADP 50 74.36 431.82 12915.28 13347.11

Table 3: Training results of different training frameworks.

computing power. All settings are designed to keep opera-
tions within the device’s memory and computational limits.
The maximum number of epochs is set to 50. The initial
learning rate is 0.01. To improve convergence, we reduce the
learning rate by half after every 10 epochs.

Baselines: To ensure comprehensive performance compar-
ison, two widely-used and efficient frameworks are selected
as baselines, as they represent state-of-the-art solutions to dis-
tributed deep learning training:

• Deepspeed: an open source library developed by Mi-
crosoft to accelerate the training of deep learning mod-
els. It provides an efficient training framework that sup-
ports distributed training, model parallelism, and data
parallelism.

• DDP (Distributed Data Parallel): a widely-adopted
feature in PyTorch. DDP provides robust support for
distributed training by replicating models across multi-
ple devices and synchronizing gradients.

Metrics: The following metrics are adopted to evaluate the
performance of C-ADP and the baselines comprehensively:

• Accuracy Metrics: standard metrics including Accuracy

(Acc), F1-Score (F1), and Precision to assess the quality
of the trained model.

• Tsend: the data transmission time required for computing
devices to receive datasets from the rank 0 data owner
and parameter server.

• Ttraining: the end-to-end training time, which includes the
forward propagation, backward propagation, and param-
eter synchronization.

• Ttotal: The total time for completing a fixed number of
epochs on a device, calculated as Ttotal = Tsend+Ttraining.

5.3 Model Convergence in Heterogeneous
Environments

Verification of Accuracy Metrics: We trains the computa-
tionally intensive WideResNet101 on ImageNet100. To ad-
dress the frequent out-of-memory issues when using a single
3090 card, we employ a more powerful A800 card for single-
card training and compare its performance with the proposed
C-ADP framework. Training accuracy, validation loss, and
final metrics are shown in Figure 3 and Table 2.
Loss Convergence Validation: To validate the conver-
gence properties of C-ADP in a heterogeneous environment,
we show the training loss curves of all computing devices in
Figure 4. As can be clearly observed, C-ADP achieves suc-
cessful convergence across all 8 devices, with the loss func-
tion steadily decreasing and low loss values reached. Addi-
tionally, a detailed examination reveals that the scheduling
method employed effectively allocates data based on the per-
formance disparities among devices, enabling efficient han-
dling of data processing tasks across devices with varying ca-
pabilities, without requiring the same number of iterations.
Result Analysis: Early in training, single-card training out-
performs C-ADP. But as the number of training rounds grows,
C-ADP takes the lead. At the 30th round, C-ADP accu-
racy reached 70.56%, exceeding the single-card’s accuracy of
69.46%, and increases to 73.67% at the 50th round. F1-score,
precision, and recall follows similar trends. The test loss is
lower in the case of single-card training initially, but lower
for C-ADP later, suggesting better late-stage performance.
Despite slow convergence due to low-frequency parameter
synchronization, C-ADP achieves convergence across all de-
vices. It also outperforms single-card training in key met-
rics like accuracy and F1-score later on, proving effective-
ness for improving model accuracy. Its data-parallel strat-
egy can leverage distributed nodes, compensating for single-
device limitations, which is crucial for large-scale training.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 6: Comparison results of FLOPS of different frameworks
during the training process.

5.4 Comparison with Other Data Parallel
Frameworks

Training Time: Figure 5 compares the training processes
of the three frameworks, measured in time. C-ADP optimizes
data allocation, improves the throughput of large-scale mod-
els, and completes the training in the shortest time. DDP fails
to converge for a long time, and its accuracy decreases in the
later stage. Deepspeed, due to frequent parameter updates,
incurs high communication costs during the training of large-
scale models, which slows down the training speed. Through
comprehensive comparison, C-ADP outperforms the data-
parallel frameworks DDP and Deepspeed in terms of training
speed. It can converge smoothly and quickly and complete
the model training.

Comparison of FLOPS: As illustrated in Figure 6, dur-
ing the evaluation, the device FLOPS under the C-ADP train-
ing method consistently stabilizes at 8.95 TFLOPS, achieving
21.6 times improvement over DDP and 26.3 times improve-
ment over DeepSpeed. In contrast, other methods exhibites
significant performance fluctuations due to the impact of het-
erogeneous computing and communication capabilities of all
computing devices, leading to reduced resource utilization ef-
ficiency. By optimizing the data allocation strategy and re-
ducing the parameter synchronization frequency, C-ADP ef-
fectively mitigates the impact of communication bottlenecks
on training performance. This approach not only significantly
improves computational efficiency but also ensures system
robustness and resource utilization, demonstrating its advan-
tages in large-scale distributed training.

Quantization Result Comparison: Table 3 compares the
performance of the three distributed training frameworks, in-
cluding DDP, Deepspeed, and C-ADP. C-ADP exhibits dis-
tinct advantages. Due to its adaptive data allocation strategy,
C-ADP only requires a data transfer time of 431.82s, much
less than the 1411.68s by DDP and 1398.46s by Deepspeed.
The C-ADP framework achieves even loading across all de-
vices by fully addressing heterogeneous computing and com-
munication constraints in the system.

Result Analysis: Our C-ADP framework focuses on find-
ing the optimal data distribution to all the computing devices
in distributed training. As shown in Table 3, C-ADP con-
verges after 12915.28s and acheives an accuracy of 74.36%,
while other two frameworks. As a result, C-ADP can achieve
convergence more rapidly during the training process. In
summary, C-ADP significantly reduces the total time for dis-
tributed training and achieves a reduction in trainning time of
about 72% and 47%, respectively, compared with DDP and
DeepSpeed, making it a more efficient and reliable option for
large-scale deep learning model training.

6 Conclusion

In this paper, we explore the opportunity to train deep learn-
ing models in a distributed manner with computing devices
connected in a heterogeneous environment. We have de-
signed an efficient and effective data parallel training frame-
work called C-ADP that can find optimal data distribution
in the asymptotic sense. Experiments on Wide-ResNet101
with the ImageNet100 dataset show that C-ADP achieves ex-
cellent convergence performance in heterogeneous environ-
ments, reaching 73.67% accuracy at the 50th round of train-
ing and outperforming single-device training in key metrics
such as F1- score. Compared with DDP and DeepSpeed,
C-ADP achieves 21.6 times and 26.3 times improvements in
FLOPS, respectively, and a reduction in training time of about
72% and 47%, respectively.

A Proof of Theorem 1

Proof. Consider an optimization domain DN =

{(x1, x2, ..., xN)|
∑N

i=1 xi ≤ D,xi ≥ 0}. Obviously,
this domain is convex. Thus, according to Lemma 2, for any
x,y ∈ DN , λ ∈ (0, 1), the first component on the right-hand
side of equation (10) is∥∥b · V−1(λx+ (1− λ)y)

∥∥
p

≤
∥∥b · V−1λx

∥∥
p
+
∥∥b · V−1(1− λ)y

∥∥
p

= λ
∥∥b · V−1x

∥∥
p
+ (1− λ)

∥∥b · V−1y
∥∥
p
.

which is a convex function. Similarly, we can easily show
that the second component on the right-hand side of equation
(10) is a convex function as well. Therefore, we can have
that Φ̃(λx + (1 − λ)y) ≤ λΦ̃(x) + (1 − λ)Φ̃(y), and the
function Φ̃(x) is convex on the domain DN . Consequently,
Φ̃(x) is also a convex function on the boundary ∂DN = χ′ =

{(x1, x2, ..., xN)|
∑N

i=1 xi = D,xi ≥ 0} of this domain.

B Proof of Theorem 2

Proof. Let δ = x̂ − x̃, where x̂ ∈ χ, and x̃ ∈ χ′. Then, we
have ∥δ∥p ≤ γ. According to equations (9) and (10), we can

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

get∣∣∣Φ(x̂)− Φ̃(x̃)
∣∣∣ = ∣∣∣∣ ∥∥b · V−1x̂

∥∥
p
−

∥∥b · V−1x̃
∥∥
p

+ num ·
(∥∥T⌈B−1x̂⌉+ C

∥∥
p
−

∥∥TB−1x̃+ C
∥∥
p

) ∣∣∣∣
≤

∣∣∣∥∥b · V−1x̂
∥∥
p
−

∥∥b · V−1x̃
∥∥
p

∣∣∣
+ num ·

∣∣∣∥∥T⌈B−1x̂⌉+ C
∥∥
p
−

∥∥TB−1x̃+ C
∥∥
p

∣∣∣ ,
(11)

For the first component on the right-hand side of the above
inequality, we have∥∥b · V−1x̂

∥∥
p
=
∥∥b · V−1(x̃+ δ)

∥∥
p

≤
∥∥b · V−1x̃

∥∥
p
+
∥∥b · V−1δ

∥∥
p

(a)
≤
∥∥b · V−1x̃

∥∥
p
+ b ·

∥∥V−1
∥∥
p
∥δ∥p

≤
∥∥b · V−1x̃

∥∥
p
+ bγ ·

∥∥V−1
∥∥
p
,

(12)

where (a) is due to the sub-multiplication property [Horn and
Johnson, 2012], and hence∣∣∣∥∥b · V−1x̂

∥∥
p
−
∥∥b · V−1x̃

∥∥
p

∣∣∣ ≤ bγ · ∥∥V−1
∥∥
p

For the second component on the right-hand side of the in-
equality in (11), letting ŷ = B−1x̂, ỹ = B−1x̃, we can have

∥ŷ − ỹ∥p ≤
∥∥B−1

∥∥
p
∥δ∥p ≤ γ

∥∥B−1
∥∥
p
,∣∣∣∥T⌈ŷ⌉+ C∥p − ∥Tỹ + C∥p

∣∣∣ (b)
≤ ∥T⌈ŷ⌉+ C− (Tỹ + C)∥p
≤ ∥T∥p ∥(⌈ŷ⌉ − ŷ) + (ŷ − ỹ)∥p
≤ ∥T∥p (∥⌈ŷ⌉ − ŷ∥p + ∥ŷ − ỹ∥p)

≤ ∥T∥p (N
1
p + γ

∥∥B−1
∥∥
p
).

(13)
where (b) has been proved in [Weisstein, 2023].
Combining equations (12) and (13) and letting Mγ = bγ ·∥∥V−1

∥∥
p
+ num · ∥T∥p (N

1
p + γ

∥∥B−1
∥∥
p
), we have∣∣∣Φ(x̂)− Φ̃(x̃)

∣∣∣ ≤Mγ .

References
[Brown et al., 2020] T Brown, B Mann, N Ryder, M Sub-

biah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam,
G Sastry, and A Askell. Language models are few-shot
learners advances. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Sys-
tems, page 33, 2020.

[Chen et al., 2022] Fahao Chen, Peng Li, Celimuge Wu, and
Song Guo. Hare: Exploiting inter-job and intra-job par-
allelism of distributed machine learning on heterogeneous
gpus. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Comput-
ing, pages 253–264, 2022.

[Fan et al., 2021] Shiqing Fan, Yi Rong, Chen Meng,
Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guop-
ing Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined
data parallel approach for training large models. In Pro-
ceedings of the 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 431–
445, 2021.

[Horn and Johnson, 2012] Roger A Horn and Charles R
Johnson. Matrix Analysis. Cambridge University Press,
2012.

[Jayaram Subramanya et al., 2023] Suhas Jayaram Subra-
manya, Daiyaan Arfeen, Shouxu Lin, Aurick Qiao, Zhi-
hao Jia, and Gregory R Ganger. Sia: Heterogeneity-aware,
goodput-optimized ml-cluster scheduling. In Proceedings
of the 29th Symposium on Operating Systems Principles,
pages 642–657, 2023.

[Li et al., 2020] Shen Li, Yanli Zhao, Rohan Varma, Omkar
Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[Li et al., 2022] Dacheng Li, Hongyi Wang, Eric Xing, and
Hao Zhang. Amp: Automatically finding model parallel
strategies with heterogeneity awareness, 2022.

[Liu et al., 2023] Ji Liu, Zhihua Wu, Danlei Feng, Minxu
Zhang, Xinxuan Wu, Xuefeng Yao, Dianhai Yu, Yanjun
Ma, Feng Zhao, and Dejing Dou. Heterps: Distributed
deep learning with reinforcement learning based schedul-
ing in heterogeneous environments. Future Generation
Computer Systems, 148:106–117, 2023.

[Mo et al., 2024] Zizhao Mo, Huanle Xu, and Chengzhong
Xu. Heet: Accelerating elastic training in heterogeneous
deep learning clusters. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2,
pages 499–513, 2024.

[Narayanan et al., 2019] Deepak Narayanan, Aaron Harlap,
Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia.
Pipedream: Generalized pipeline parallelism for dnn train-
ing. In Proceedings of the 27th ACM symposium on oper-
ating systems principles, pages 1–15, 2019.

[Rasley et al., 2020] Jeff Rasley, Samyam Rajbhandari,
Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3505–3506, 2020.

[Ren et al., 2021] Jie Ren, Samyam Rajbhandari, Reza Yaz-
dani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC 21),
pages 551–564, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Sergeev and Balso, 2018] Alexander Sergeev and Mike Del
Balso. Horovod: fast and easy distributed deep learning in
tensorflow, 2018.

[Shazeer et al., 2018] Noam Shazeer, Youlong Cheng, Niki
Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng
Hong, Cliff Young, Ryan Sepassi, and Blake Hecht-
man. Mesh-tensorflow: Deep learning for supercomput-
ers, 2018.

[Shoeybi et al., 2020] Mohammad Shoeybi, Mostofa Pat-
wary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism, 2020.

[Unger et al., 2022] Colin Unger, Zhihao Jia, Wei Wu, Sina
Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez,
Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick,
Jamaludin Mohd-Yusof, et al. Unity: Accelerating {DNN}
training through joint optimization of algebraic transfor-
mations and parallelization. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pages 267–284, 2022.

[Verbraeken et al., 2020] Joost Verbraeken, Matthijs Wolt-
ing, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen,
and Jan S Rellermeyer. A survey on distributed ma-
chine learning. Acm computing surveys (csur), 53(2):1–33,
2020.

[Wang et al., 2022] Qifan Wang, Yi Fang, Anirudh Ravula,
Fuli Feng, Xiaojun Quan, and Dongfang Liu. Webformer:
The web-page transformer for structure information ex-
traction. In Proceedings of the ACM Web Conference
2022, pages 3124–3133, 2022.

[Weisstein, 2023] Eric W. Weisstein. Norm — mathworld,
2023. Accessed: 2023-10-05.

[Yang et al., 2024] Fei Yang, Shuang Peng, Ning Sun,
Fangyu Wang, Yuanyuan Wang, Fu Wu, Jiezhong Qiu, and
Aimin Pan. Holmes: Towards distributed training across
clusters with heterogeneous nic environment. In Proceed-
ings of the 53rd International Conference on Parallel Pro-
cessing, pages 514–523, 2024.

[Yi et al., 2020] Xiaodong Yi, Shiwei Zhang, Ziyue Luo,
Guoping Long, Lansong Diao, Chuan Wu, Zhen Zheng,
Jun Yang, and Wei Lin. Optimizing distributed training de-
ployment in heterogeneous gpu clusters. In Proceedings of
the 16th International Conference on emerging Network-
ing EXperiments and Technologies, pages 93–107, 2020.

[Yu et al., 2022] Menglu Yu, Ye Tian, Bo Ji, Chuan Wu,
Hridesh Rajan, and Jia Liu. Gadget: Online resource
optimization for scheduling ring-all-reduce learning jobs.
In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pages 1569–1578. IEEE, 2022.

[Yuan et al., 2022] Binhang Yuan, Yongjun He, Jared Davis,
Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized train-
ing of foundation models in heterogeneous environments.
Advances in Neural Information Processing Systems,
35:25464–25477, 2022.

[Zhao et al., 2023] Yanli Zhao, Andrew Gu, Rohan Varma,
Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Des-
maison, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li.
Pytorch fsdp: Experiences on scaling fully sharded data
parallel, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

