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Abstract
With the rapid urbanization in the modern era,
smart traffic profiling based on multimodal sources
of data has been playing a significant role in en-
suring safe travel, reducing traffic congestion and
optimizing urban mobility. Most existing methods
for traffic profiling on the road level usually utilize
single-modality data, i.e., they mainly focus on im-
age processing with deep vision models or auxil-
iary analysis on the textual data. However, the joint
modeling and multimodal fusion of the textual and
visual modalities have been rarely studied in road
traffic profiling, which largely hinders the accurate
prediction or classification of traffic conditions. To
address this issue, we propose a novel multimodal
learning and fusion framework for road traffic pro-
filing, named TraffiCFUS. Specifically, given the
traffic images, our TraffiCFUS framework first in-
troduces Vision Language Models (VLMs) to gen-
erate text and then creates tailored prompt instruc-
tions for refining this text according to the specific
scene requirements of road traffic profiling. Next,
we apply the discrete Fourier transform to convert
multimodal data from the spatial domain to the fre-
quency domain and perform a cross-modal spec-
trum transform to filter out irrelevant information
for traffic profiling. Furthermore, the processed
spatial multimodal data is combined to generate fu-
sion loss and interaction loss with contrastive learn-
ing. Finally, extensive experiments on four real-
world datasets illustrate superior performance com-
pared with the state-of-the-art approaches.

1 Introduction
The rapid development of smart cities facilitates the digital-
ization of road traffic applications, i.e., the importance of un-
derstanding and accurately analyzing road traffic conditions
cannot be overstated [Xu et al., 2023b]. Efficient transporta-
tion management and profiling are essential for the smooth

functioning of economies, ensuring the timely delivery of
goods and services, and facilitating the daily commute of peo-
ple [Chen et al., 2023; Fan et al., 2022]. Urban planning
also heavily relies on a comprehensive understanding of traf-
fic conditions to design sustainable and livable cities [Yan et
al., 2024]. Moreover, public safety is closely intertwined with
traffic prediction, as accidents and congestion can pose signif-
icant risks to the well-being of individuals. Thus, road traf-
fic profiling equips decision-makers with essential insights by
means of traffic prediction, transportation management, and
classification of road traffic conditions [Liu et al., 2024].

Traditional methods of road traffic profiling apply basic
machine-learning techniques to analyze road traffic condi-
tions, which fails to handle complex and dynamic modern
traffic systems [Sommer et al., 2010]. Besides, web-sourced
data with large volumes presents greater challenges to the ac-
curacy of these traditional methods. Web sources can provide
multimodal information, including real-time traffic updates,
images captured by satellite or surveillance cameras, social
media posts related to traffic incidents, and textual descrip-
tions of traffic conditions [Xu et al., 2023a]. How to effec-
tively utilize these multimodal data for road traffic profiling
is highly challenging.

According to task-specific learning, we can divide the road
traffic profiling problems into four categories: traffic flow
analysis, accident detection and analysis, fire detection and
analysis, and travel time estimation [Liu et al., 2023]. Deep
learning techniques, like convolutional neural networks based
methods [He et al., 2016; Alam et al., 2023], recurrent neural
networks based methods [Jin et al., 2017; Zheng et al., 2020],
graph neural networks based methods [Zhang et al., 2023;
Deng et al., 2024], and transformer-based methods [Lin et
al., 2022a; Xu et al., 2024], have been widely used to ana-
lyze these traffic conditions, which helps to accurately iden-
tify images or text descriptions of road traffic and make driv-
ing decisions. However, as the current road traffic scenario
is complex and ever-changing with multimodal data sources,
merely analyzing the information in images or text is insuf-
ficient to capture the comprehensive road traffic conditions,
thereby affecting traffic decision-making and travel safety.
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Large language models (LLMs) possess a strong capacity
for handling multimodal data, particularly in the understand-
ing and generalization of textual data [Khattar et al., 2019;
Feng et al., 2024], and offer more comprehensive informa-
tion understanding via the complementarity of modalities to
address information loss [Chen et al., 2022]. As an example,
Qian et al. [Qian et al., 2021] proposed a multimodal frame-
work that jointly captures multimodal context information
and the hierarchical semantics of text by BERT and ResNet,
which enhances detection accuracy by fusing inter-modality
and intra-modality relationships. To optimize multi-vehicle
dispatching and navigation in smart cities, Chen et al.[Chen
et al., 2024] proposed an LLM-driven framework for efficient
task allocation and an RL-based module for cooperative navi-
gation and handling heterogeneous vehicles. Recently, Yan et
al. [Yan et al., 2024] utilized LLMs to enhance the textual in-
formation and adopted contrastive learning for image and text
fusion, which produces multimodal representations for urban
region profiling. These methods analyze multimodal data by
using the powerful information extraction ability of LLMs,
but the task-specific applications hinder the exploration of
road traffic profiling. Currently, it is still a challenging task
to analyze complex road traffic conditions with web-sourced
images and a powerful complement of textual data.

To address the above issues, we propose the first-ever mul-
timodal fusion framework (TraffiCFUS) in road traffic pro-
filing, which refines the text with the prompt design of Vi-
sion Language Models (VLMs) and optimizes the multimodal
representations with frequency spectrum learning. The main
contributions of our work are three-fold:

• TraffiCFUS is a very early attempt for multimodal learn-
ing and fusion framework for road traffic profiling,
which introduces VLMs to generate text and then cre-
ates tailored prompt instructions for refining this text.

• We convert the multimodal data from the spatial domain
to frequency domain and perform a cross-modal spec-
trum transform to filter out irrelevant information. Four
losses with different aspects are designed to construct
the objective loss for downstream task optimization.

• Extensive experiments on four public traffic datasets il-
lustrate the effectiveness of our framework. We also
conduct a series of ablation studies to show the influence
of different components in our framework. Our source
code is available at https://anonymous.4open.science/r/
TraffiCFUS-87EF.

2 Related Work
2.1 Deep Learning for Road Traffic Profiling
Deep learning techniques have been widely applied in traffic
and driver profiling, demonstrating significant advancements
in understanding and predicting complex behaviors within
these domains [Dui et al., 2024]. For example, Cura et al.
[Cura et al., 2020] utilized data from the CAN Bus system to
train LSTM and 1D-CNN models, finding that CNNs are par-
ticularly effective at distinguishing aggressive driving styles.
This research underscores the importance of deep learning in

driver profiling, with applications extending to fields like in-
surance and fleet management. Additionally, Abdelrahman
et al. [Abdelrahman et al., 2020] presented a robust data-
driven framework leveraging supervised machine learning to
evaluate drivers’ risk profiles. Using the SHRP2 dataset, they
identified key risk factors through Random Forest and Deep
Neural Network models, enabling real-time risk assessment
via cloud-based applications. Sekula et al. [Sekuła et al.,
2018] introduced a machine-learning framework trained on
vehicle probe data for traffic volume estimation. Conducted
in Maryland, this study showed that neural networks inte-
grated with profiling methods can improve volume estima-
tions by 24% over traditional techniques. These approaches
demonstrate the power of deep learning models in addressing
the challenges of road traffic profiling, but they fail to utilize
multimodal data of text and image simultaneously to train the
real-world applicable models.

2.2 LLMs for Road Traffic Profiling
Recent advances in traffic analysis have leveraged Large lan-
guage models (LLMs) for road traffic profiling [Cao et al.,
2024], particularly in traffic condition classification where
LLMs, such as GPT-2 and GPT-3, are exploited. Chen et
al. [Chen et al., 2024] proposed LiMeDa, which combined
an LLM for efficient task allocation and an RL-based mod-
ule for cooperative navigation and handling heterogeneous
vehicles. However, LiMeDa has not fully addressed the ex-
traction and integration of multi-modal information, which is
crucial for effectively handling complex tasks across both vi-
sual and textual data. Hu et al. [Hu et al., 2024] extended a
multimodal LLM (BLIVA) that combined visual and textual
information, by leveraging learned query embedding and en-
coded patch embedding, to address complex visual question-
answering (VQA) tasks. Yang et al. [Yang et al., 2024] in-
troduced EMMA, which trained VLM agents through cross-
modal imitation learning to adapt better to visual world dy-
namics. Besides, Li et al. [Li et al., 2024] designed Omni-
Actions, which introduced a novel pipeline to process multi-
modal sensory inputs and form explicit reasoning. OmniAc-
tions made it possible to predict context-aware digital actions
based on an integrated design space.

However, these approaches did not fully combine the mul-
timodal data to generate powerful representations for road
traffic profiling. In this paper, we aim to leverage LLMs to
fuse multimodal data, which enables a more comprehensive
understanding of road traffic conditions and provides a mul-
timodal framework for accurate road traffic profiling.

3 Problem Definition
Definition 1 (Traffic Area). According to the previous stud-
ies, we can divide the whole transportation of a city into M
traffic scene areas for road traffic profiling.

Definition 2 (Traffic Image). By using cameras or other sen-
sor devices, traffic scene images are captured to depict var-
ious aspects of traffic conditions in a traffic area A, includ-
ing images of vehicles, pedestrians, traffic signs, signals, and
the overall road/weather environment. Each input traffic im-
age can be represented as gA, which satisfies the condition:
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Figure 1: The framework of proposed TraffiCFUS. Our method consists of four main steps: text refinement and feature extraction, uni-modal
spectrum compression, cross-modal spectrum transform, and contrastive learning.

gA ∈ RL·H·3, L and H are length and width.

Definition 3 (Traffic Description). We use text description tA
to show the traffic condition in a traffic scene area A. These
text descriptions can be extracted from traffic scene images
by image captioning tools, i.e., the well-trained VLM models,
such as VL-Plus, Llama-adaptor and InternVL2.

Definition 4 (Traffic Category). Different traffic scene Cat-
egories represent different traffic conditions. Each category
provides distinct insights into the specific characteristics and
challenges of that particular traffic condition, which is cru-
cial for effective traffic profiling. In this paper, we use four
categories Cat = {Cf , Ca, Cc, Cl} to represent fire, acci-
dent, congestion and light traffic, respectively.

The processing of traffic conditions is defined as a multi-
modal classification problem, where multimodal u contains
two parts of image g and text t. Given a traffic dataset D =
{d1, d2, ..., dn}, each data instance is denoted as (xi, yi) and
xi = {xg, xt}, where xg represents the image element and xt

represents the text element. Besides, yi = {1, 2, ...,m}(m ≥
2) and m represent the number of types of traffic conditions,
i.e., yi is the label of data instances. When m = 2, the traffic
scene prediction is a binary classification problem, otherwise,
it is a multi-class classification problem. Then, a mapping
function F is designed to map all the data, including traffic
image, text and other environmental data (e.g., road, pedes-
trian), to a vector vA = F(gA, tA). Finally, this vector can be
used to predict the traffic condition by vA → yi.

4 Methodology
We propose a text-refined road traffic profiling framework
(TraffiCFUS) with multimodal interaction and fusion, which
can effectively identify multimodal traffic conditions from
the web. As shown in Figure 1, our method consists of

four parts: text refinement and feature extraction, uni-modal
spectrum compression, cross-modal spectrum transform, and
contrastive learning. The first step is the feature extraction
of images and text, which applies VLMs to refine text and
generate the initial representations. Then, these features are
transformed into spectral features by discrete Fourier trans-
form (DFT). The second step is to compress the uni-modal
spectrum and use a filter bank to filter out useless informa-
tion. The third step is enhancing the informative spectrum
and suppressing the irrelevant spectrum by the cross-modal
transform. Finally, the spectral features are converted back
into the spatial domain by inverse discrete Fourier transform
(IDFT) and the output features are used for loss calculation
with contrastive learning.

4.1 Text Refinement and Feature Extraction
The first step of TraffiCFUS is to generate texts from im-
ages and enhance these texts by prompt design with VLMs.
As shown in Figure 2, an image-to-text foundation model,
Qwen-VL plus version [Yue et al., 2024], is applied to ana-
lyze images and generate descriptive text. With its ability to
accurately describe images, Qwen-VL can enhance the way
we interact with traffic scenes and improve the accessibility
of information. But the text directly generated by VLMs is
rough and contains a lot of useless information, which will
affect the analysis and classification of traffic conditions. As
demonstrated in Figure 2, an example is presented to illus-
trate that the descriptions of road traffic conditions are highly
redundant and contain irrelevant events.

The process for the above text is to use the Qwen-VL and
design an instruction-based prompt to optimize the generated
text. We have designed three instructions to optimize the de-
scription of traffic conditions. One is to get a detailed descrip-
tion of all traffic conditions, including vehicles, pedestrians,
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Text Generation

Generated Text: The image shows a busy highway 
with heavy traffic congestion. The road is filled with 
numerous vehicles, moving slowly or at a standstill 
due to the high volume of traffic. There are multiple 
lanes visible, but they appear to be congested. The 
presence of various signs overhead suggests that this 
might be an urban area with well-defined routes and 
directions. The overall scene indicates a typical day 
during rush hour or a peak travel period when traffic 
tends to be heavier.

Traffic Image

⚫ Generate a detailed description of 
the traffic conditions in the image.

⚫ Remove redundant or non-traffic
content, retaining information
about traffic density or anomalies.

⚫ Give precise descriptions and
optimize sentences.

Refined Text: The image depicts a 
heavily congested highway with 
numerous vehicles, moving slowly or 
at a standstill due to high traffic 
volume. Multiple lanes are visible, but 
they are congested, indicating a 
typical day during rush hour or a peak 
travel period. The presence of various 
signs overhead suggests well-defined 
routes and directions in an urban area.

Text Refinement

Text Generation and Refinement

Prompt: instructions

Delete

Optimize

Figure 2: The process of text generation and refinement. Prompt
instructions are designed to refine the text by a VLM.

traffic signs, signals, etc. Another is to remove redundant or
non-traffic content. The other is to simplify the text descrip-
tion and retain the most crucial information. As a result, the
text is enhanced with a concise and high-quality summary for
traffic condition judgment, shown in Figure 2.

Given a traffic area A with its satellite image gA, we divide
it into a sequence of patches gp with dimensions h×w (height
× width). Then, a patch embedding is used to embed the
image into a dense vector as:

egp = Wpg
T
p + bp, (1)

where Wp and bp are random variables, which need to be
trained by models. The final embedding of a image con-
sists of a patch embedding and a positional embedding egpo.
Then, the final embedding of an image can be calculated by
eg

′

p = egp + egpo. To produce a meaningful representation, a
pre-trained CNN, such as VGGNet, ResNet, or Inception, is
typically used to calculate the patch features:

Pt = CNN(eg
′

p ). (2)

An image consists of several patches with the features repre-
sented as xg = {Pt1,Pt2, ...,Ptn}.

For textual feature extraction, LLMs like BERT (Bidirec-
tional Encoder Representations from Transformers) is used
to generate a latent textual representation. BERT takes a se-
quence of words as input and outputs a context-aware embed-
ding for each word. To obtain a text embedding from BERT,
one can take the average or sum of the output embeddings for
all the words in the text, or use the embedding of a special
token (like [CLS]) that represents the entire text. Given a text
sequence xt = {Se1,Se2, ...,Sem} (m is the number of
words), we can obtain the word embedding etw and the posi-
tional embedding etpo to encode each word. Then, the feature
representation of one word can be calculated by:

Se1 = etw + etpo. (3)

A text consists of a sequence of words that has m feature
representations.

4.2 Uni-modal Spectrum Compression
The spectrum of an image can reveal the distribution of differ-
ent frequency spectrum components in the traffic image. The

low-frequency part usually corresponds to the overall outline
of the image and slowly changing areas, such as the back-
ground of a large area of traffic roads, vehicle conditions,
pedestrian conditions, etc. The high-frequency part repre-
sents the details, edges, and texture information in the im-
age. By analyzing the spectrum, features within a specific
frequency range can be extracted in a targeted manner and
used for tasks such as the analysis of traffic images and the
classification of target categories. As shown in Figure 1, Dis-
crete Fourier transform (DFT) is applied to transform the spa-
tial features into spectrum features. Given the spatial signal
xg , the Fourier transform of the image embedding is defined
as:

Xg[k] =
n−1∑
i=0

xg[i]e−j 2π
n ki, (4)

where Xg ∈ Cn×d is a complex tensor, k is the frequency
index, and j is the imaginary unit. Thus, we can get the image
spectrum Xg[k] at the frequency 2πk

n .
Besides, we can obtain the Fourier transform of the text

embedding in a similar way, defined as:

Xt[k] =

m−1∑
i=0

xt[i]e−j 2π
m ki, (5)

where Xt ∈ Cm×d is a complex tensor. Different text in
an image has distinct spectral characteristics. For example,
smooth text has less high-frequency content than rough text.
Analyzing the above spectrum can help in road traffic profil-
ing and image classification.

Then, we use uni-modal spectrum compression to process
spectral characteristics, achieving a greater degree of feature
compression while retaining more important information. We
introduce a filter bank for each modality Xa (a ∈ {g, t}),
which can divide the input frequency spectrum into multiple
sub-bands. For uni-modal spectrum compression, the filter
bank can be designed to target the specific frequency range
where the uni-modal spectrum is located. For an FIR filter
bank, the impulse response Ha = [ha

1 ,h
a
2 , ...,h

a
k] of k filter

can be designed using windowing techniques. For example,
we can use a Hamming window to obtain the following filter:

ha
i = w[i]ha

ideal, (6)

where w[i] is the Hamming window function and hideal
a is

the ideal impulse response for the filter. The Hamming win-
dow function is given by: w[i] = 0.54 − 0.46cos( 2πi

k−1 ), and
k is the length of the filter. Through the uni-modal spectrum
compression, we can get the spectrum as:

Xa′
=

k∑
i=1

1

l
|Xa|2 ⊙ ha

i , (7)

where a ∈ {g, t}, l represents the length of each modality,
and ⊙ represents the element-wise multiplication. the de-
sign of |Xa|2 smooths the spectrum and highlights the main
components, which helps with the subsequent learning of uni-
modal compression. Besides, the Hamming window function
helps to aggregate the main information in the traffic features,
realizing efficient frequency domain feature compression.
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4.3 Cross-modal Spectrum Transform
Fixed spectrum compression has limited contributions in pro-
cessing traffic images and cannot remove the higher noise in
the frequency spectrum. Therefore, we introduce the average
pooling scheme to enhance informative components. Average
pooling smoothes the spectrum by reducing high-frequency
noise and random fluctuations. By preserving overall trends
and making the spectrum more regular, it enhances the effi-
ciency of compression algorithms and identifies traffic image
features more effectively.

Then, we also make a cross-modal spectrum transform for
the uni-modal spectrum of image and text. This process offers
an enhanced representation by capturing more complex rela-
tionships and features, improves understanding of the con-
nections between visual and semantic aspects, enables mul-
timodal analysis for complex road traffic, and provides ro-
bustness by being less affected by noise and variations in ei-
ther modality. The enhanced spectrum Xa

e with cross-modal
transform can be calculated by:

Xg
e = Xg′

⊙Avg(Xt′ ⊙ Φt′), (8)

Xt
e = Xt′ ⊙Avg(Xg′

⊙ Φg′
), (9)

where ⊙ represents the element-wise multiplication, Ave(·)
represents the average pooling function, and Φa′

represents a
matrix that has the same dimension with Xa′

.
After obtaining the enhanced frequency spectrum, we em-

ploy the inverse discrete Fourier transform (IDFT) to convert
them back to the spatial representations for loss construction.
The calculation of IDFT in image and text is:

xg[i] =
1

n

n−1∑
i=0

Xg[k]ej
2π
n ki, (10)

xt[i] =
1

m

m−1∑
i=0

Xt[k]ej
2π
m ki. (11)

Through the processing of the DFT and cross-model trans-
form, we can fuse the multimodal features of images and texts
and filter out unimportant information, thus providing more
reliable features for road traffic profiling.

4.4 Multimodal Interaction and Fusion with
Contrastive Learning

Contrastive Loss. To train the parameters of the proposed
multimodal method, we apply a dual contrastive learning
scheme. The first is a supervised loss Lsup that optimizes
the model by maximizing the similarity of samples within the
same class and minimizing the similarity of samples from dif-
ferent classes. Given a mini-batch M that contains |M| data
instances, we can divide samples into l types {L1, L2, ...Ll}
according to the traffic types of datasets. For an instance
sj ∈ Li, we can produce a pairwise (sj , sp) to calculate the
loss, where sp ∈ Li, p ̸= j. Then, we can define the pairwise
objective function with each instance and different types of
samples Li(x

a,xa), a ∈ (g, t) [Lin et al., 2022b]. The whole
supervised contrastive learning loss is calculated by:

Lsup =
∑
M

∑
N

(
∑

sj∈Li

1

|Li|
∑

sp∈Li,p̸=j

Li(x
a
j ,x

a
p)), (12)

where N = {L1, L2, ...Ll}, |Li| represents the number of
instances in Li.

The second is an unsupervised loss that optimizes the
model by maximizing the similarity of positive sample pairs
and minimizing the similarity of negative sample pairs.
Specifically, InfoNCE loss [He et al., 2020] is applied in
our scheme by a pairwise contrastive loss Ls(x

g,xt) and
Ls(x

t,xg). The whole unsupervised contrastive loss con-
sisted of two InfoNCE losses, defined as follows:

Luns =
1

2|M|

M∑
i=1

[Ls(x
g
i ,x

t
i) + Ls(x

t
i,x

g
i )], (13)

where |M| represents the number of instances in a selected
batch.
Multimodal Interaction Loss. Previous multimodal inter-
action is very shallow and fails to learn the multimodal rep-
resentations well. Thus, we design a multimodal interaction
loss based on the work [Yu et al., 2020] and a multimodal fu-
sion loss with distribution similarity learning. The decoder
architecture based on the Transformer is utilized to merge
unimodal visual and textual representations into multimodal
ones. Specifically, the multimodal cross-attention uses image
modality as the query and text modality as the keys and val-
ues. After the interaction, we can generate the textual descrip-
tion for the road traffic profiling by optimising the language
modelling loss Lmim. This interaction loss can be learned
through minimizing the conditional likelihood of the text de-
scription tA in traffic area A, which can be calculated by:

Lmim =
A∑

i=1

logPθ(ti|t<l, g). (14)

Multimodal Fusion Loss. Except for the multimodal inter-
action, we also design a multimodal fusion scheme by mea-
suring the distribution similarity between image and text rep-
resentations. Specifically, Jensen-Shannon (JS) divergence
between two types of representations is measured to calculate
the distribution similarity and then outputs the classification
of traffic conditions. To generate the posterior probability of
the training instances, we need to produce an approximation
of sample distribution I. Then the posterior probability of the
image and text can be represented as I(ug|xg) and I(ut|xt),
separately. The JS divergence of fusion modal in xa can be
calculated as:

ζ = JS(I(ug|xg)||I(ut|xt)), (15)

where ζ represents the similarity measured by JS divergence,
and JS(·) represents the JS divergence function. Then, we
can use the distribution similarity to calculate the representa-
tions after multimodal fusion as follows:

ra = (1− ζ)(W gxg +W txt) + ζxg + ζxt, (16)

where W g and W t represents the training parameters of im-
age and text. Through a fully connected layer, we can obtain
the labels of data instances ŷ.

In road traffic profiling, the classification of traffic condi-
tions is an important application, which helps to predict future
congestion on roads and ensure safe travel. Because traffic
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Tasks Sparse (1) & Accident (0) Sparse (1) & Fire (0)

Methods Acc F1 class 1 class 0 Acc F1 class 1 class 0
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Resnet-18 0.851 0.850 0.936 0.764 0.842 0.791 0.942 0.860 0.921 0.921 0.943 0.889 0.915 0.900 0.951 0.924
att-RNN 0.873 0.871 0.901 0.891 0.896 0.882 0.915 0.898 0.873 0.871 0.920 0.891 0.905 0.882 0.935 0.908
EANN 0.892 0.892 0.933 0.951 0.942 0.924 0.935 0.929 0.906 0.908 0.944 0.925 0.934 0.914 0.907 0.910
MAVE 0.881 0.885 0.922 0.954 0.938 0.872 0.928 0.899 0.931 0.931 0.903 0.862 0.882 0.931 0.956 0.943

HMCAN 0.926 0.924 0.913 0.905 0.909 0.947 0.936 0.941 0.943 0.942 0.951 0.957 0.954 0.945 0.957 0.951
CAFE 0.927 0.926 0.940 0.942 0.941 0.914 0.895 0.904 0.913 0.910 0.943 0.914 0.928 0.951 0.922 0.936

LogicDM 0.931 0.934 0.946 0.911 0.928 0.936 0.947 0.941 0.934 0.933 0.966 0.927 0.946 0.955 0.944 0.949
UrbanCLIP 0.844 0.843 0.896 0.790 0.840 0.799 0.901 0.847 0.943 0.943 0.919 0.973 0.945 0.970 0.912 0.940
TraffiCFUS 0.973 0.973 0.970 0.978 0.974 0.976 0.967 0.972 0.968 0.968 0.973 0.965 0.969 0.963 0.972 0.967

Table 1: Comparison of different methods on binary classification tasks of dataset Traffic-Net 2. Our proposed framework TraffiCFUS
has better accuracy performance and higher robustness compared with other baselines over all datasets. “Acc” represents the accuracy
performance, “Pre” represents the precision performance, and “Rec” represents the recall performance.

classification is a multi-classification problem, we apply the
multi-class cross-entropy loss as the final fusion loss:

Ldsf =
1

l

∑
i

Li = −Ey∼Ŷ

l∑
c=1

yclog(ŷc), (17)

where l represents the number of labels of traffic conditions.
Finally, the objective loss can be calculated by two con-

trastive losses, multimodal interaction loss, and multimodal
fusion Loss, which are denoted as:

L = αLsup + βLuns + γLmim + Ldsf , (18)
where α, β, and γ are three hyperparameters to balance the
influence of different losses.

5 Experiments
Comprehensive experiments are conducted on four real-
world road traffic datasets to address the research questions
(RQ) outlined below.

• RQ1: Does TraffiCFUS outperform existing approaches
in road traffic classification tasks?

• RQ2: What is the impact of different components (e.g.,
enhanced text, multimodal interaction) in TraffiCFUS?

• RQ3: How effective is the feature visualization of the
proposed TraffiCFUS framework?

5.1 Experimental Setting
Baselines. Our framework is compared with eight state-of-
the-art baselines: Resnet-18 [He et al., 2016], att-RNN [Jin
et al., 2017], EANN [Wang et al., 2018], MVAE [Khattar
et al., 2019], HMCAN [Qian et al., 2021], CAFE [Chen
et al., 2022], LogicDM [Liu et al., 2023], and UbanCLIP
[Yan et al., 2024]. We evaluate all methods on four real-
world datasets, including “Traffic-Net 2”, “Traffic-Net 4”,
“DAWN”, and “TCN”. We refer the reader to Appendix 1 for
more details of the baselines and datasets.
Metrics. The performance is evaluated by Accuracy, Preci-
sion, Recall, and F1 score metrics[Liu et al., 2023; Yan et al.,
2024]. To ensure a fair comparison, we follow the optimal
parameter settings of the baselines. Please see the Appendix
for more details about the parameter settings. All experiments
are run 15 times and averaged results are reported.

1Please refer to the version of this paper with Appendix in arXiv.

Datasets TrafficNet 4 DAWN TCN
Methods Acc F1 Acc F1 Acc F1
Resnet-18 0.793 0.792 0.736 0.735 0.787 0.787
att-RNN 0.773 0.769 0.725 0.724 0.755 0.756
EANN 0.823 0.822 0.767 0.763 0.751 0.751
MAVE 0.829 0.829 0.771 0.774 0.767 0.762

HMCAN 0.872 0.871 0.776 0.778 0.779 0.780
CAFE 0.862 0.864 0.781 0.779 0.785 0.788

LogicDM 0.846 0.847 0.764 0.764 0.793 0.795
UrbanCLIP 0.842 0.842 0.781 0.780 0.751 0.750
TraffiCFUS 0.894 0.893 0.810 0.808 0.816 0.814

Table 2: Comparison of different methods on complex real-world
datasets. TraffiCFUS outperforms other baselines on both accuracy
and F1 score results.

5.2 RQ1: Performance Comparison

We conduct comparative experiments on four datasets of road
traffic classification, which helps to evaluate the accuracy per-
formance of TraffiCFUS and the baseline methods. Table
1 shows the experimental results for the binary classifica-
tion tasks in sparse vs. accident and sparse vs. fire. Our
framework outperforms other baselines on almost all met-
rics, except for the results of recall and precision on the task
“Sparse and Fire”. But the f1 score of our framework ranks
the top one on this task. Besides, LogicDM performs well on
task “Sparse and Accident”. HMCAN performs well on task
“Sparse and Fire”. Although UrbanCLIP ranks the first result
on the recall and precision of the task “Sparse and Fire”, this
method’s performance is less stable across different datasets.
The classical methods, like att-RNN, EANN and MAVE did
not work well on both tasks.

Table 2 details the experimental results of complex real-
world datasets on different methods. We can conclude that
TraffiCFUS performs the best on all datasets compared with
other baselines. On dataset “TrafficNet 4”, the following
model is HMCAN, which is about 2% worse than our pro-
posed framework. The second ranking method UrbanCLIP
is about 3% worse than our proposed framework on dataset
“DAWN” and LogicDM is about 2% worse than our pro-
posed framework on dataset “TCN”. Besides, Resnet-18 and
att-RNN have poor performance on multi-class classification,
indicating the limitations in multimodal data processing. The
above experimental results and analysis confirm the superi-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Tasks Sparse (1) & Accident (0) Sparse (1) & Fire (0)

Sets Acc F1 class 1 class 0 Acc F1 class 1 class 0
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

TraffiCFUS 0.973 0.973 0.970 0.978 0.974 0.976 0.967 0.972 0.968 0.968 0.973 0.965 0.969 0.963 0.972 0.967
-w/o TR 0.953 0.953 0.942 0.966 0.954 0.965 0.941 0.953 0.919 0.919 0.935 0.901 0.917 0.904 0.938 0.921

-w/o MIM 0.951 0.951 0.939 0.964 0.951 0.964 0.939 0.951 0.957 0.957 0.959 0.956 0.957 0.957 0.957 0.957
-w/o FUS 0.951 0.951 0.937 0.966 0.951 0.965 0.936 0.950 0.953 0.953 0.951 0.957 0.954 0.955 0.949 0.952
-w/o CL 0.936 0.936 0.921 0.953 0.937 0.953 0.918 0.935 0.942 0.941 0.951 0.931 0.941 0.934 0.951 0.942

Table 3: Influence of different modules in the TraffiCFUS.

(a) TraffiCFUS (b) -w/o TR (c) -w/o MIM (d) -w/o FUS (e) -w/o CL

Figure 3: T-SNE visualization of the influence of different modules on the feature generation.

ority of our framework, with a detailed feasibility analysis
provided in the Appendix.

5.3 RQ2: Ablation Studies
To investigate the influence of different modules in the pro-
posed framework, we conduct a series of ablation experi-
ments on dataset “TrafficNet 2”. Specifically, we remove the
text refinement module (denoted as -w/o TR), the multimodal
interaction module (denoted as -w/o MIM), the fusion module
(denoted as -w/o FUS), and the contrastive loss (denoted as
-w/o CL) from the TraffiCFUS framework to show the perfor-
mance on accuracy and F1 score. The detailed experimental
results of these components’ influence are shown in Table 3,
which illustrates that the lack of any component will reduce
the accuracy performance of our proposed framework.

Firstly, the absence of text refinement results in the gen-
eration of text containing irrelevant information and signifi-
cant redundancy, which interferes with information extraction
and leads to lower model accuracy. Without the multimodal
interaction module, the multimodal interaction loss can not
be obtained, leading to insufficient integration of visual and
textual representations and inadequate multimodal represen-
tation learning. The absence of the fusion module meant that
the model directly uses the inverse Fourier-transformed text
and image features for prediction, hindering effective mul-
timodal information learning. Without the contrastive loss
module, the model’s performance in classification accuracy,
feature representation separation, and multimodal feature fu-
sion declines, which impairs the overall effectiveness of traf-
fic profiling. In summary, the model achieves optimal perfor-
mance only when all these modules are included.

5.4 RQ3: Feature Visualization
To further investigate the impact of various modules on the
features generated by the model, we utilize T-SNE [van der

Maaten and Hinton, 2008] dimensionality reduction to visu-
alize the features before they enter the final linear layer, as
shown in Figure 3. The dataset used for this analysis is the
sparse traffic & accident sub-dataset. In the visualization,
green points represent samples with sparse traffic, while grey
points denote samples with accidents.

The visualization reveals that TraffiCFUS and its various
ablated versions exhibit different degrees of overlap in feature
representation. Notably, the full TraffiCFUS model shows the
clearest boundaries between the two classes, indicating more
distinct and well-separated feature representations. The ab-
lated models (-w/o TR, -w/o MIM, -w/o FUS, and -w/o CL)
demonstrate varying levels of feature overlap, which corre-
lates with their reduced performance in classification tasks.

6 Conclusion and Future Work

This paper investigates different road traffic scenarios, in-
cluding sparse traffic, congested traffic, accidents, fires, and
weather conditions, to make a full profiling of traffic condi-
tions. To analyze the multimodal data on traffic, we propose
a first-ever multimodal fusion framework (TraffiCFUS) for
road traffic profiling. Powered by VLMs, TraffiCFUS gener-
ates enhanced textual information from web-sourced images
to assist in road traffic profiling. Moreover, TraffiCFUS filters
the irrelevant information and keeps the informative represen-
tations by converting the spatial features to spectrum features.
The design of multimodal feature interaction and fusion fur-
ther enhances the extracted representations. Finally, exten-
sive experiments demonstrate the superiority of our proposed
framework. Ablation studies show how the components influ-
ence the performance of TraffiCFUS. In the future, our stud-
ies aim to design dynamic text-refine schemes for different
textual applications and explore a wider range of application
possibilities in different realistic scenarios.
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