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Abstract
Testing conditional independence is a critical task,
particularly in causal discovery and learning in
Bayesian networks. However, in many real-world
scenarios, variables are often measured with errors,
such as those introduced by insufficient measure-
ment accuracy, complicating the testing process.
This paper focuses on testing conditional indepen-
dence in the linear non-Gaussian measurement er-
ror model, under the condition that measurement
error noise follows a Gaussian distribution. By
leveraging high-order cumulants, we derive rank
constraints on the cumulant matrix and establish
their role in effectively assessing conditional inde-
pendence, even in the presence of measurement er-
rors. Based on these theoretical results, we lever-
age the rank constraints of the cumulant matrix as a
tool for conditional independence testing and incor-
porate it into the PC algorithm, resulting in the PC-
ME algorithm — a method designed to learn causal
structures from observed data while accounting for
measurement errors. Experimental results demon-
strate that the proposed method outperforms exist-
ing approaches, particularly in cases other methods
encounter difficulties.

1 Introduction
The conditional independence (CI) test aims to assess
whether a correlation relation exists between two variables
when conditioned on a set of other variables. It has been
broadly applied across various fields like statistics, ma-
chine learning, and causal discovery [Zhou et al., 2020;
Watson and Wright, 2021; Bouezmarni and Taamouti, 2014;
Lundborg et al., 2022; Spirtes et al., 2000].

When the data model is presumed to be linear, the partial
correlation test [Baba et al., 2004] is a well-known and ef-
fective tool for examining conditional independence relations
among variables. Specifically, let Xi and Xj be two random
variables and Xp be a vector, if the CI relation between Xi

∗Corresponding author.

and Xj given Xp holds, i.e., Xi ⫫ Xk∣Xp, the partial cor-
relation coefficient would be zero, denoted by ρXiXj .Xp

= 0.
Thus, one can examine whether the partial correlation coef-
ficient is zero to discover the CI relations among observed
variables. Obtaining these CI relations usually can be used to
improve downstream tasks, such as constructing causal struc-
tures over observed variables, where the CI relations corre-
spond to d-separation in the causal graphical model [Spirtes
and Glymour, 1991; Spirtes et al., 2000].

However, due to uncertainties in the real environment, the
variable of interest is often difficult to measure directly and
instead collected under the existence of measurement errors
[Totton and White, 2011; Fuller, 2009; Kelly, 2007]. An ex-
ample of measurement error is depicted in Fig. 1, where Xi,
Xj , and Xk represent hidden variables of interest. When
there exists some disturbing noise that directly causes the ob-
served variable, one can only observe the variables X̃i, X̃j ,
and X̃k (known as measured variables). Since the CI rela-
tions only hold on Xi ⫫ Xj∣Xk, in this case, the partial
correlation coefficient ρX̃iX̃j .X̃k

≠ 0, implying the CI rela-
tions of Xi ⫫ Xj∣Xk can not be tested from X̃i, X̃j , and
X̃k (further details can be found in Example 2). Such a prob-
lem will lead to uninformative relations discovery or incorrect
causal structure learning. Therefore, it is necessary to inves-
tigate how to learn the CI relations among hidden variables
only from their measured variables.

Measurement error has been a topic of increasing interest
in causal discovery. For instance, [Zhang et al., 2018] intro-
duces a method for inferring causal structures in the presence
of measurement error by leveraging non-Gaussianity, show-
ing that the causal structure can be identified up to an an-
cestral ordered grouping (AOG) equivalence class. Similarly,
[Yang et al., 2022] exploits the sparsity of the mixing ma-
trix to propose a method for identifying linear latent variable
models affected by measurement error. These identifiability
results mainly rely on overcomplete independent component
analysis (ICA), which, despite its theoretical appeal, often
encounters computational challenges and risks convergence
to local optima. Recently, [Dai et al., 2022] introduced the
TIN condition to capture causal structure patterns in linear
non-Gaussian models, proving that the partially causal or-
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der can be identified even in the presence of measurement
error. While this approach effectively verifies d-separation
relations (i.e., conditional independence) among hidden vari-
ables, it imposes structural constraints, such as the require-
ment that each hidden variable must have at least two ob-
served variables as children. This assumption significantly
restricts the applicability of the TIN condition in scenarios in-
volving measurement error. Overall, existing methods strug-
gle to efficiently identify conditional independence (CI) re-
lations among latent variables solely from the observed vari-
ables without imposing additional assumptions. As shown
in Fig. 1, for instance, existing methods may fail to effec-
tively test the Xi ⫫ Xj∣Xk by only using measured variables
X̃i, X̃j and X̃k.

In this paper, we address the problem of testing condi-
tional independence (CI) relations among hidden variables
only from their measured variables, under the linear non-
Gaussian measurement error model. We find out a suffi-
cient condition—namely, the partial Gaussian noise assump-
tion, where the noise term of the observed variables follows
a Gaussian distribution—that enables the identification of d-
separation relations from the high-order statistics of the hid-
den variables. Specifically, we first establish an equivalence
between partial correlation and the rank deficiency of the cor-
relation coefficient matrix. We then prove that rank con-
straints on the covariance matrix can be generalized to the
higher-order cumulant matrix, enabling the identification of
d-separation relations among latent variables. Based on this
theoretical result, we propose a structure learning algorithm,
the PC-ME algorithm, to infer causal structures among la-
tent variables from their measured variables. Furthermore,
we show that the PC-ME algorithm can identify the causal
structure up to a Markov equivalence class.

Our contributions are summarised as follows:
• We generalize partial correlation to the case of measure-

ment error and study the properties of rank deficiency of
the higher-order cumulant matrix, under the linear non-
Gaussian measurement model and the partial Gaussian
noise assumption.

• We propose an efficient algorithm to infer causal struc-
tures among hidden variables up to a Markov equiva-
lence class by leveraging the properties of rank defi-
ciency in the higher-order cumulant matrix.

• We empirically demonstrate that the proposed algorithm
can asymptotically recover the correct causal structure
under mild assumptions.

2 Linear Non-Gaussian Measurement Error
Model

In this paper, we focus on the problem of testing conditional
independence in the presence of measurement error, specif-
ically within the framework of linear non-Gaussian models.
Our theoretical results are built upon causal graphical mod-
els. In a causal graph, we use Pa(Vi) = {Vj∣Vj → Vi},
Ch(Vi) = {Vj∣Vi → Vj} to denote the set of parents and
children of Vi, respectively. Due to space limitation, some
graphical notations, such as d-separation and V-structure, are

X𝑖 X𝑗X𝑘

෩X𝑘
෩X𝑖 ෩X𝑗

Figure 1: An example of the linear non-Gaussian measurement error
model, where Xi,Xj and Xk are hidden variables, X̃i, X̃j and X̃k

are observed variables. This paper aims to test the conditional inde-
pendent relations, e.g., Xi ⫫ Xj∣Xk, by only using the observed
variables X̃i, X̃j and X̃k.

used here without explicit definitions, which can be found in
the standard literature [Spirtes et al., 2000].

We start with the definition of the linear non-Gaussian
model. Let X = {X1,⋯, Xn} denote the variable set of in-
terest, in the linear non-Gaussian model, the data generation
process for Xi ∈ X is given by the following equation:

Xi = ∑
Xj∈PaXi

bijXj + ni, (1)

where PaXi
is the parent set of Xi, bij is the causal effect

from Xj to Xi, and ni represents noise terms of Xi that fol-
lows non-Gaussian distribution. Without loss of generality,
we assume all noise terms are independent of each other and
the mean of noise is zero.

In real-world scenarios, variables of interest are often diffi-
cult to observe directly (commonly referred to as unobserved
or hidden variables) and are instead measured with additive
measurement error. To formalize the existence of measure-
ment error, we present the linear non-Gaussian Measurement
error Model (LiNGMME) as follows.
Definition 1 (LiNGMME). Let X be the hidden variable of
interest that follows the linear non-Gaussian model, and X̃ be
the measured variable set of X, we say X̃ follows the LiNG-
MME model if for X̃i, X̃i ∈ X̃, it is generated by:

X̃i = βXi→X̃i
Xi + ei, (2)

where Xi ∈ X is hidden variable, βXi→X̃i
is disturbing

strength from Xi to X̃i, and ei are measurement error term.
Recently, the linear non-Gaussian model with measure-

ment error has been extensively studied, such as [Yang et al.,
2022; Zhang et al., 2018; Dai et al., 2022]. These works
usually assume that all noise term, including those associ-
ated with hidden variables and measured variables, follow a
non-Gaussian distribution. Under this assumption, the causal
structure can be identified up to an Ancestral Ordered Group-
ing (AOG) equivalence class [Zhang et al., 2018]. In this pa-
per, we explore a different condition where the noise term of
the measured variables follows a Gaussian distribution, which
enables the identifiability of conditional independence rela-
tions among hidden variables.
Condition 1 (Partial Gaussian Condition). In LiNGMME, the
noise term of the measured variable ei follows a Gaussian
distribution.
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In general, Condition 1 is reasonable and holds in most
cases, as the Gaussian distribution is ubiquitous and com-
monly observed in many real-world scenarios, as discussed
in [Totton and White, 2011; Fuller, 2009; Kelly, 2007].
Objective. In this paper, assuming Condition 1 holds, our
goal is to investigate how to identify the conditional indepen-
dence (CI) relations among hidden variables X only using
their measured variables X̃, under the LiNGAMME.

3 Conditional Independence Test Under
Measurement Error

To achieve our goal, in this section, we provide an algebraic
solution for identifying the conditional independence (CI) re-
lations among hidden variables. First, we revisit partial cor-
relation testing, a well-known method for testing CI, and ex-
plain why it fails in the presence of measurement error (Sec.
3.1). Next, we derive an equivalent expression for partial cor-
relation from an algebraic perspective, specifically through
the rank deficiency of the covariance matrix, and demonstrate
how this can be extended to rank constraints on the higher-
order cumulant matrix. By exploring these properties, we
prove that the CI relations among latent variables can be iden-
tified (Sec. 3.2).

3.1 Partial Correlation Test
In a linear model, such as the linear Gaussian model (i.e.,
noise term follow Gaussian distribution in Eq. (1)), partial
correlation is a commonly used tool for testing conditional
independence, and is specifically defined as follows:
Definition 2 (Partial Correlation). The partial correlation
coefficient of random variables Xi and Xj given Xp, is de-
noted as

ρXiXj ⋅Xp
=

ρXiXj
− ρXiXp

⋅ ρXjXp√
(1 − ρXiXp

) ⋅ (1 − ρXjXp
)
, (3)

where ρXiXj
, ρXiXp

, and ρXjXp
represent the correlation

coefficients of Xi and Xj , Xi and Xp, Xj and Xp, respec-
tively

Specifically, CI relations can be examined by checking
whether the partial correlation coefficient is zero. For in-
stance, consider the structure in Fig. 1, where the CI relation
Xi ⫫ Xj∣Xk holds. This can be tested by checking whether
the partial correlation coefficient ρXiXj ⋅Xk

is zero. However,
in the presence of measurement error, only X̃i, X̃j and X̃k

are observed. In this case, the partial correlation test cannot
reliably identify the CI relations among the latent variables
Xi and Xj . Next, we give an example to illustrate this.

Illustrative Example
Consider the graph in Fig. 1, where Xi, Xj and Xk are hid-
den variables and X̃i, X̃j , and X̃k are observed variables that
are measured with measurement error. According to the defi-
nition of LiNGAMME, the data generation processes are

X̃k = βXk→X̃k
nk + ek,

X̃i = βXi→X̃i
(biknk + ni) + ei,

X̃j = βXj→X̃j
(bjknk + nj) + ej .

(4)

To construct the CI test using partial correlation, it is suf-
ficient to check whether the numerator is zero. Specifically,
each term of the numerator of the partial correlation coeffi-
cient between X̃i and X̃j given X̃k is as follows.

ρX̃i,X̃j
= βXi→X̃i

βXj→X̃j
⋅

bikbjkV ar(nk)
V ar(X̃i)V ar(X̃j)

,

ρX̃i,X̃k
ρX̃j ,X̃k

= βXi→X̃i
βXj→X̃j

β
2
Xk→X̃k

⋅

bikbjkV ar
2(nk)

V ar(X̃i)V ar(X̃j)V ar2(X̃k)
.

(5)

Without loss of generality, assume that all observed vari-
ables are standardized, i.e., have unit variance. If the numer-
ator of the partial correlation coefficient is zero, then we have

1 − β
2
Xk→X̃k

V ar(nk) = 0, (6)
which does not hold in most cases. Note that if the above
holds, it implies that either no measurement error exists or
the measurement error can be ignored. There are two factors
that prevent the partial correlation test from working: one is
the disturbing strength from Xk to X̃k, and the other is the
measurement error noise ek (or, X̃k). Generally speaking,
without further constraints, the partial correlation test cannot
be used in the presence of measurement error.

3.2 Rank Deficiency of High-order Cumulants
Matrix

The above example illustrates why partial correlation does
not work in the presence of measurement error: there exists
disturbing strength βXk→X̃k

and an additional noise term ek,
which causes the vanishing test to fail. To tackle this issue,
fortunately, we have found that these unexpected influences
can be mitigated under Condition 1, by appropriately utilizing
the properties of higher-order cross-cumulants.

Before introducing the main result, we first provide an
equivalent representation of partial correlation from the alge-
braic perspective, used as the building block for later results.
We begin with the following example.
Example 1 (Equivalent representation of partial correlation).
Consider the graph in Fig. 1, where the CI relationship
Xi ⫫ Xj∣Xk holds. This CI relation can be tested by check-
ing whether the partial correlation coefficient ρXiXj ⋅Xk

is
zero, i.e., ρXiXj

− ρXiXk
⋅ ρXkXj

= 0 holds. Without loss
generality, assume Xi, Xj and Xk are all standardized, so
that ρXkXk

= 1. The vanishing of the partial correlation can
then be rewritten as:

ρXiXj
ρXkXk

− ρXiXk
⋅ ρXkXj

= 0. (7)

Such an equality can be transferred to the determinant
of the correlation coefficient matrix between {Xi, Xk} and
{Xj , Xk}, as shown below:

»»»»»»»»
ρXiXj

ρXiXk

ρXjXk
ρXkXk

»»»»»»»»
= ρXiXj

ρXkXk
−ρXiXk

⋅ρXkXj
= 0, (8)

which means that the correlation coefficient matrix is not full
rank, i.e., rank deficiency.
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In our work, we refer to this algebraic property as a ”rank
constraint,” following the terminology used in the original lit-
erature [Sullivant et al., 2010; Huang et al., 2022]. We fur-
ther present the following lemma to establish the connection
between the CI relation and the rank constraints of the coeffi-
cient matrix. In other words, the relationship between partial
correlation and the rank deficiency of the coefficient matrix.
Lemma 1 (Rank constraints of covariance matrix [Sullivant
et al., 2010]). Assume Xi, Xj and Xp follow the linear Gaus-
sian model, and let Y = (Xi,Xp) and Z = (Xj ,Xp) repre-
sent two vectors, then Xi ⫫ Xj∣Xp if and only if the rank of
correlation coefficient matrix between Y and Z is ∣Xp∣.

Lemma 1 provides an equivalent formalization of the par-
tial correlation test, where the rank constraint of the covari-
ance matrix between two vectors holds, with the intersection
set of the two vectors serving as the conditional set in the
CI relation. It is important to note that, when all variables are
standardized, the rank constraints of the coefficient matrix are
equivalent to those of the covariance matrix.

Recall the illustrative example in Sec 3.1. Let Y =

{X̃i, X̃k} and Z = {X̃j , X̃k}, assuming all variables are stan-
dardized. In most cases, the correlation coefficient (covari-
ance) matrix between Y and Z has full rank due to the in-
fluence of measurement error. Under Condition 1, the key
idea to address this issue is the fact that the higher-order
cross-cumulants of Gaussian noise are zero. Based on this
observation, one may wonder whether the rank constraints
of the covariance matrix can be extended to a higher-order
cross-cumulants matrix, thereby removing the influence of
the Gaussian noise term of the measured variables. Before
delving into this fact, we first revisit the definition of cumu-
lants and some fundamental properties.
Definition 3 (k-th order joint cumulant tensor). The k-
th order joint cumulant tensor of a random vector X =

[X1, ..., Xn]T is the k-way tensor T (k)
X in R

n×⋯×n
≡ (Rn)k

whose entry in (i1, ..., ik) is the joint cumulant:

T (k)
X i1,...,ik

= cum(Xi1 , . . . , Xik) ∶=

∑
(B1,...,BL)

(−1)L−1(L − 1)!E[∏
j∈B1

Xj]⋯E[ ∏
j∈BL

Xj],

(9)
where the sum is taken over all partitions (B1, . . . , BL) of
the multiset {i1, ..., ik}.
Remark 1. Consider k = 4, one can see that the
four-order cumulant cum(Xi1 , Xi2 , Xi3 , Xi4) is defined as

E[Xi1Xi2Xi3Xi4] − E[Xi1Xi2]E[Xi3Xi4]
− E[Xi1Xi3]E[Xi2Xi4]
− E[Xi1Xi4]E[Xi2Xi3].

That is, the fourth-order cumulant is not equal to the
fourth-order moment. Specifically, all non-fourth-order in-
teraction terms are absent in the fourth-order cumulant.

One can see that the second-order cumulant is the covari-
ance, and higher-order cumulants can be viewed as an exten-
sion of covariance, where certain properties, such as additiv-
ity, are preserved. This motivates us to further investigate the

matrix of cross-cumulants, which corresponds to the 2D slice
of the joint cumulant tensor.
Definition 4 (2D slice of joint cumulant tensor). For a ran-
dom vector X with k-th order joint cumulant tensor T (k)

X
where k ≥ 2 and k is any even, denote its 2D matrix slice
of k-th order joint cumulant tensor as C(k), where

C(k)
i,j ∶= cum(Xi,⋯, XjÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

k
2

times

, Xj ,⋯, XjÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
k
2

times

) (10)

In particular, when k = 2, for a random vector X, C(2)
X

is the covariance matrix ΣX. Similar to Lemma 1, one can
construct the cumulant matrix between two vectors Y and Z,
as shown in the following example.
Example 2 (K-order cumulant matrix). For two vertices sets
Z = {X1, X2,⋯, Xn},Y = {Xn+1, Xn+2,⋯, X2n}, let
k ≥ 2, the k-order cumulant matrix between Z and Y is

C(k)
Y;Z ∶=

⎛
⎜⎜⎜⎜⎜
⎝

C(k)
X1,Xn+1

⋯ C(k)
X1,X2n

⋮ C(k)
Xi,Xn+j

⋮

C(k)
Xn,Xn+1

⋯ C(k)
Xn,X2n

⎞
⎟⎟⎟⎟⎟
⎠
. (11)

Next, we will show that in the LiNGAMME, the CI rela-
tions among hidden variables can be tested by checking the
rank constraints over the cumulant matrix of observed vari-
ables, as shown in Theorem 1.
Theorem 1 (Rank constraints of cumulant matrix). For hid-
den variables Xi, Xj , and a vector Xp, assume that their
observed variables X̃i, X̃j , X̃p follow the LiNGMME and
any k-order cumulant among them exists. Let Y = {X̃i, X̃p}
and Z = {X̃j , X̃p}. Then, under Condition 1, Xi ⊥⊥ Xj∣Xp

generic hold if and only if the rank of k-order cumulant matrix
between Z and Y is ∣Xp∣, i.e., Rank(Ck

Y;Z) = ∣Xp∣.
Remark 2. One can see that Lemma 1 is a special case (when
k = 2) of Theorem 1. The key difference is that, while CI
relations cannot be identified using the rank of the covariance
matrix, they can be tested by Theorem 1 under Condition 1.

We further provide an example to show how CI relations
can be tested using the rank constraints of the cumulant ma-
trix, even when the partial correlation test fails.
Example 3 (Testing CI relations using Theorem 1). Contin-
uous the illustrative example in Sec. 3.1. Let Y = {X̃i, X̃k}
and Z = {X̃j , X̃k}, assuming the 4-order cross-cumulant ex-
ists. Then the cumulants matrix between Y and Z is

C(4)
Y;Z ∶= (

C(4)
Xi,Xj

C(4)
Xi,Xk

C(4)
Xj ,Xk

C(4)
Xk,Xk

) , (12)

where

C(4)
Xi,Xj

= β
2
Xi→X̃i

β
2
Xj→X̃j

b
2
ikb

2
jkE(n4

k),

C(4)
Xi,Xk

= β
2
Xi→X̃i

β
2
Xk→X̃k

b
2
ikE(n4

k),

C(4)
Xj ,Xk

= β
2
Xj→X̃j

β
2
Xk→X̃k

b
2
jkE(n4

k),

C(4)
Xk,Xk

= β
4
Xk→X̃k

E(n4
k).

(13)
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One can see that C(4)
Xi,Xj

C(4)
Xk,Xk

− C(4)
Xi,Xk

C(4)
Xj ,Xk

= 0,

which implies that the cumulant matrix C(4)
Y;Z is rank defi-

ciency, i.e., Rank(C(4)
Y;Z) = 1. By Theorem 1, we can infer

that Xi ⫫ Xj∣Xk.
Intuitively, the reason why CI relations can be tested by

checking the rank constraints of the cumulant matrix is that
the cumulant matrix excludes any information from Gaussian
measurement error noise due to the property that higher-order
cumulants of Gaussian distributions are zero, e.g., E(e4k) = 0

in C(4)
Xk,Xk

. This result can be directly applied to the linear
non-Gaussian causal model, providing an alternative method
for CI testing.
Corollary 1 (Rank constraints in linear non-Gaussian
model). Let Xi, Xj be two random variables and Xp be a
vector in the linear non-Gaussian model. Suppose any k-
order cross-cumulant exists. Then, Xi ⊥⊥ Xj∣Xp generic
holds if and only if the rank of any k-order cumulant matrix
between vectors Y = (Xi,Xp) and vectors Z = (Xj ,Xp) is
∣Xp∣, i.e., Rank(Ck

Y;Z) = ∣Xp∣, where ∣Xp∣ are the dimen-
sion size of the vector.

In other words, Corollary 1 shows that if there is no mea-
surement error, Lemma 1 generally holds and can be viewed
as a special case of the rank constraints of the cumulant ma-
trix, so that Rank(C2

Y,Z) = Rank(Ck
Y,Z) with k ≥ 2. Practi-

cally, in the linear non-Gaussian model, one can enhance the
statistical robustness of the CI test by summarizing the results
across multiple k-order cumulants matrices.

Example 4. Let k = {4, 6, 8}, Y = {X̃i, X̃k} and
Z = {X̃j , X̃k}. If we obtain results from observational

data such that Rank(C(4)
Y,Z) = 1, Rank(C(6)

Y,Z) = 1, and

Rank(C(8)
Y,Z) = 2, we can infer that Xi ⫫ Xj∣Xk, because

most of the results tend to support the rank deficiency of the
cumulant matrix.

Moreover, in practice, an important problem is how to test
the rank constraints of the cumulant matrix using empirical
data. To address this, we propose the following hypothesis
test.
Test the rank of Cumulant Matrix We test the rank of cu-
mulant by leveraging CR statistic [Schkoda and Drton, 2023;
Robin and Smith, 2000], which is formed to test the null hy-
pothesis

H0 ∶ Rank(C) = r vs. H1 ∶ Rank(C) ≠ r,

where Ĉ be an asymptotically normal estimator of C and the
null distribution of the CR statistic may be asymptotically
approximated by a weighted sum of independent χ2

1 random
variables, the weights being determined by the asymptotic co-
variance matrix of Ĉ.

4 Application to Causal Structure Learning
Conditional independence (CI) tests are widely used in causal
discovery, where that the true causal structure of n ran-
dom variables can be represented by a directed acyclic graph

(DAG) G. In this section, we apply the proposed CI testing
tool to the causal discovery task, presenting an algorithm that
can infer causal structures from observational data in the pres-
ence of measurement error. To ensure the asymptotic correct-
ness of the causal discovery methods, some necessary causal
assumptions are required.

Assumption 1 (Causal Markov condition). The joint distri-
bution P satisfies all CIs that are imposed by the true causal
graph (generating process of the data).

Assumption 2 (Rank Faithfulness [Spirtes, 2013]). Let a dis-
tribution P be (linearly) rank-faithful to a directed acyclic
graph G if every rank-constraint on a sub-cumulants matrix
that holds in P is entailed by every free-parameter linear
structural model with path diagram equal to G.

Note that the causal Markov condition and faithfulness as-
sumption are commonly used in the constraint-based causal
discovery algorithm, such as PC algorithm [Spirtes et al.,
2000]. Traditionally, the PC algorithm recovers the graph
structure by leveraging the (conditional) independence rela-
tions identified in the data. However, it is well known that
small mistakes early in the algorithm (e.g., failing to detect
an independence relation) can propagate and lead to signif-
icant errors in the resulting DAG. Consequently, the perfor-
mance of such methods heavily depends on the accuracy of
the (conditional) independence testing procedures.

In the LiNGAMME framework, as shown in the illustrative
example in Sec. 3.1, the conditional independence test be-
comes unreliable in the presence of measurement error, which
can lead to incorrect results produced by the PC algorithm. To
address this issue, by replacing the conditional independence
test in the PC algorithm with our proposed tool, we present
the PC algorithm with measurement error (abbreviated as PC-
ME), as shown in Algorithm 1.

As shown in Algorithm 1, we adopt the standard frame-
work of the PC algorithm to learn the causal structure from
observed variables in the LiNGAMME framework. Specifi-
cally, we initialize the complete undirected graph G on the set
of hidden variables X. Then, we iteratively check whether
each pair of hidden variables, Xi and Xj , are condition-
ally independent given a set of hidden variables Xp. This
is achieved by testing the rank constraint of the cumulant ma-
trix among the observed variables. Formally, Xi ⫫ Xj ∣ Xp

holds if and only if Rank(Ck
Y;Z) = ∣Xp∣, where Y =

{X̃i, X̃p} and Z = {X̃j , X̃p}. If Xi and Xj are condition-
ally independent given a conditional set, the edge between
Xi and Xj in G is removed. By repeating this procedure,
we obtain the skeleton of the hidden variables. Simultane-
ously, we record the corresponding CI test results, includ-
ing the conditional set of Xi and Xj in the d-separated set
Sepset(Xi, Xj), which is useful for inferring causal direc-
tions and reducing redundant tests in subsequent steps. Next,
we orient the causal directions by detecting V-structures, i.e.,
checking whether a local structure Xi − Xk − Xj forms a
V-structure. If it does, we orient it as Xi → Xk ← Xj . Fi-
nally, we apply Meek’s rules [Meek, 1995] to infer additional
causal directions and output a partial DAG (PDAG) of the
hidden variables with respect to the observational data.
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Algorithm 1 PC algorithm with measurement error (PC-ME)

Require: Observational dataset X̃ = {X̃1, . . . , X̃m}
Ensure: A partial DAG G.

Let X̃i denote as its corresponding hidden variable Xi,
Xi ∈ X;
Initialize the complete undirected graph G over the hidden
variable set X;
for ∀Xi, Xj ∈ X and adjacent in G do

if ∃Xp ⊆ X \ {Xi, X)j} and (∣Xp∣ < k) such that
Rank(Ck

Y;Z) = ∣Xp∣ with Y = {X̃i, X̃p}, Z = {X̃j , X̃p}
then

delete edge Xi −Xj from G;
record Xp in Sepset(Xi, Xj);
record Xp in Sepset(Xj , Xi);

end if
end for
for ∀Xi, Xj , Xk ∈ X such that the pair Xi, Xk and the
pair Xj , X)k are adjacent in G but the pair Xi, Xj are not
adjacent in G do

if Xk /∈ Sepset(Xi, Xj) ∪ Sepset(Xj , Xi) then
orient Xi −Xk −Xj as Xi → Xk ← Xj ;

end if
end for
while at least one edge can be oriented do

if ∃Xi → Xj , Xj and Xk are adjacent, Xi and Xk are
not adjacent and there is no arrowhead at Xj then

orient Xj −Xk as Xj → Xk

end if
if ∃Xi and Xj , there is a directed path from Xi to Xj

and an edge between Xi and Xj then
orient Xi −Xj as Xi → Xj

end if
end while
Return a partial DAG of hidden variables;

Complexity analysis. The complexity of the PC-ME al-
gorithm for a hidden variable causal structure graph G is
bounded by the largest degree in G. Let k be the maximal de-
gree of any vertex and let n be the number of vertices. Then in
the worst case, the number of conditional independence tests
among hidden variables required by the algorithm is bounded
by

n
2(n − 1)k−1
(k − 1)! (14)

Since the PC-ME algorithm relies only on the constraints
of conditional independence (CI), it generally identifies the
causal structure only up to Markov equivalence classes,
which are sets of graphs that represent exactly the same in-
dependences and CIs. Thus, we next give the identifiability
results of the PC-ME algorithm.

Theorem 2 (The correctness of algorithm). Suppose the data
generation process follows the LiNGAMME, and the causal
Markov condition, rank faithfulness assumption, and Con-
dition 1 hold. Given a sufficiently large sample size, the
PC-ME algorithm asymptotically outputs the Markov equiv-
alence classes of the hidden variables.
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Figure 2: The average of Type I and Type II errors occurred in sim-
ulated case of Xi ⫫ Xj∣Xp.

5 Simulation Experiments
In this section, we evaluate the practical performance of the
proposed algorithm using synthetic data. First, we examine
the performance in the CI test based on the rank constraints
of cumulant matrices. Then, we verify the correctness of the
PC-ME algorithm in the task of causal structure learning.

5.1 Performance of Conditional Independence Test
We conducted an experiment to verify the performance of the
conditional independence test under the LiNGAMME. We
consider the case whether Xi and Xj are conditional inde-
pendence given by Xp, i.e., Xi ⫫ Xj∣Xp, where Xp =

{X1, ..., Xm}. We adjust the dimension m of Xp to show that
the proposed method is able to deal with the complexity case
of conditional independent, ranging from 1 to 7. Specifically,
we first generated the independent vector Xp, then Xi and
Xi were generated as β⊺

Xp + ε , where β is causal strength
vector, which is generated uniformly in [−2,−0.5]∪[0.5, 2],
ε is the noise term that follow the uniform distribution with
U(−1, 1). Finally, we generate the observed variable accord-
ing to the definition of LiNGAMME.

We compare our method with the partial correlation [Baba
et al., 2004]- the well-known CI test method in linear mod-
els. We use Type I and Type II errors as evaluation metrics
(for more details, refer to the appendix) to investigate how the
size of the conditional set impacts performance. To see the
performance of Type II, not all elements in Xp are the condi-
tional set of Xi and Xj . We randomly select the independent
variable into Xp with ranging 1 to 3. In our simulations, the
sample size is fixed at [1000, 5000], and the significance level
is set to [0.05, 0.01] for all methods.

The results are shown in Fig. 2, one can see that the proba-
bilities of Type I errors closely align with the significance lev-
els for our method, and meanwhile, the Type I error is close
to significance level. These results show that our CI test tool
can tackle the CI test under the existence of measurement er-
ror. Although with the increase in the dimensionality of Xp,
the performance of our method noticeably decreases. This
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Precision ↑ F1 ↑

Algorithm Ours PC LPC Ours PC LPC
3k 0.95 0.39 0.52 0.95 0.54 0.67

D=5 5k 0.96 0.45 0.50 0.96 0.61 0.66
10k 0.96 0.43 0.51 0.97 0.59 0.66
3k 0.92 0.42 0.51 0.93 0.58 0.66

D=10 5k 0.95 0.43 0.46 0.95 0.59 0.62
10k 0.95 0.45 0.52 0.96 0.61 0.67
3k 0.90 0.41 0.48 0.91 0.57 0.64

D=15 5k 0.92 0.42 0.48 0.93 0.58 0.64
10k 0.93 0.47 0.51 0.94 0.63 0.67

Table 1: Performance on structure learning (uniform distribution).

decrease is reasonable because the accuracy of the rank test
decreases with the higher dimension matrix [Schkoda and Dr-
ton, 2023]. Furthermore, all of baseline methods exhibit poor
performance in terms of Type I&II error, indicating the ex-
isting methods are not capable of handling the CI test in the
presence of measurement error.

5.2 Performance of Causal Structure Learning
To evaluate the effectiveness of the proposed algorithm in
causal structure learning, we employ the PC-ME algorithm
on the random graph under the LiNGAMME model. We
then compare its performance with that of the original PC
algorithm, where CI relations are tested by partial correlation
[Spirtes et al., 2000], and latent PC algorithm (abbreviated as
LPC) [Chen et al., 2024], which allow to test the CI relations
among hidden variables form measured variables.

Firstly, we construct the latent structure by randomly
generating a Directed Acyclic Graph (DAG) [Kalisch and
Bühlman, 2007], which can be represented as an n × n ad-
jacency matrix, where n denotes the dimensionality of the
latent variables. This matrix encodes the causal relationships
among the hidden variables, with each element representing
the causal strength between them. The hidden variable data
is then generated from this DAG, with causal strength con-
strained to the interval [−2,−0.5] ∪ [0.5, 2], while the error
term ni of each hidden variable Xi is sampled from either (i)
a uniform distribution ni ∼ U(0.2, 1) (here four-order cumu-
lant matrix is used in our method), or (ii) a standard exponen-
tial distribution. Subsequently, we generate observed vari-
ables corresponding to each hidden variable based on the defi-
nition of the LiNGAMEE. For instance, X̃i = βXi→X̃i

Xi+ei,
where X̃i is the observed variable of hidden variable Xi,
βXi→X̃i

is disturbing strength, and ei is the corresponding
noise term that follows the Gaussian distribution.

We simulate observational data under different settings and
apply our algorithm along with baseline methods to these
datasets. This allows us to assess how the performance
varies across different scenarios. We control the follow-
ing parameters: (1) varying the number of latent variables
D = {5, 10, 15}, (2) adjusting the sample sizes {3k, 5k, 10k}.
Additionally, we set the sparseness parameter when generat-
ing the DAG to s = 2/(k−1), where k represents the number
of hidden variables, ensuring an average of two neighbors for

Precision ↑ F1 ↑

Algorithm Ours PC LPC Ours PC LPC
3k 0.95 0.48 0.49 0.95 0.65 0.65

D=5 5k 0.96 0.59 0.52 0.96 0.65 0.67
10k 0.97 0.55 0.54 0.97 0.70 0.68
3k 0.93 0.50 0.51 0.94 0.66 0.66

D=10 5k 0.95 0.48 0.47 0.95 0.65 0.63
10k 0.96 0.49 0.52 0.96 0.65 0.67
3k 0.92 0.47 0.51 0.92 0.63 0.66

D=15 5k 0.94 0.49 0.45 0.94 0.65 0.61
10k 0.95 0.52 0.53 0.95 0.67 0.68

Table 2: Performance on structure learning (standard exponential).

each hidden variable [Cui et al., 2018]. Moreover, since the
output of the PC algorithm is a partial DAG, we utilize pre-
cision, recall, and F1 score as metrics. In our analysis, the
significance level of all methods is set to α = 0.01.

The experiment result of learning the causal skeleton is
shown in Table 1 and Table 2. Our method outperforms all of
the baseline methods, particularly in terms of precision and
F1 score. This implies that the causal structure of the hidden
variable estimated by our method is correct in most cases.
Besides, one can see that all of the baseline methods exhibit
poor F1 scores, indicating that existing methods are not able
to handle scenarios involving measurement errors effectively.
Due to space limitations, additional details on the experimen-
tal results are provided in the appendix.

6 Related Works
Numerous methods exist for conditional independence (CI)
testing and causal discovery with latent variables. For CI test-
ing, there are the residual-based methods [Zhang et al., 2022;
Zhang et al., 2019; Chen et al., 2024] and kernel-based ap-
proaches [Zhang et al., 2011; Doran et al., 2014]. For the task
of causal discovery with latent variables, there are second-
order-based ones [Silva et al., 2006; Chen et al., 2022; Huang
et al., 2022; Xie et al., 2023], higher-order statistics-based ap-
proaches [Xie et al., 2022; Xie et al., 2024; Jin et al., 2024;
Chen et al., 2023]. While effective for CI testing and latent
causal discovery, these methods do not account for measure-
ment error, leaving a key gap in existing approaches.

7 Conclusion
We study the problem of testing conditional independence
among observed variables in the presence of measurement er-
ror. In the LiNGAMEE model, by incorporating the higher-
order cumulant, we present the rank constraint of the cumu-
lant matrix, a novel CI tool capable of accommodating mea-
surement errors. We further apply the proposed tool to the
task of causal structure learning and present a practical al-
gorithm PC-ME. The theoretical tool elegantly extends the
application scope of partial correlation to account for mea-
surement errors, and the proposed algorithm offers a solution
for investigating and addressing measurement errors in the
analysis. How to relax the model assumptions, e.g., allowing
non-linear relations, would be interesting future directions.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
This research was supported in part by the National
Natural Science Foundation of China under grants No.
62476163 and U24A20233, and the Guangdong Basic and
Applied Basic Research Foundation under grant number
2023B1515120020. We appreciate the comments from
anonymous reviewers, which greatly helped to improve the
paper.

References
[Baba et al., 2004] Kunihiro Baba, Ritei Shibata, and

Masaaki Sibuya. Partial correlation and conditional cor-
relation as measures of conditional independence. Aus-
tralian & New Zealand Journal of Statistics, 46(4):657–
664, 2004.

[Bouezmarni and Taamouti, 2014] Taoufik Bouezmarni and
Abderrahim Taamouti. Nonparametric tests for condi-
tional independence using conditional distributions. Jour-
nal of Nonparametric Statistics, 26(4):697–719, 2014.

[Chen et al., 2022] Zhengming Chen, Feng Xie, Jie Qiao,
Zhifeng Hao, Kun Zhang, and Ruichu Cai. Identification
of linear latent variable model with arbitrary distribution.
In Proceedings 36th AAAI Conference on Artificial Intelli-
gence (AAAI), 2022.

[Chen et al., 2023] Zhengming Chen, Feng Xie, Jie Qiao,
Zhifeng Hao, and Ruichu Cai. Some general identification
results for linear latent hierarchical causal structure. In
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, pages 3568–3576, 2023.

[Chen et al., 2024] Zhengming Chen, Jie Qiao, Feng Xie,
Ruichu Cai, Zhifeng Hao, and Keli Zhang. Testing condi-
tional independence between latent variables by indepen-
dence residuals. IEEE Transactions on Neural Networks
and Learning Systems, 2024.

[Cui et al., 2018] Ruifei Cui, Perry Groot, Moritz Schauer,
and Tom Heskes. Learning the causal structure of cop-
ula models with latent variables. In Proceedings of the
Thirty-Fourth Conference on Uncertainty in Artificial In-
telligence, UAI 2018, pages 188–197. AUAI Press, 2018.

[Dai et al., 2022] Haoyue Dai, Peter Spirtes, and Kun Zhang.
Independence testing-based approach to causal discovery
under measurement error and linear non-gaussian mod-
els. Advances in Neural Information Processing Systems,
35:27524–27536, 2022.

[Doran et al., 2014] Gary Doran, Krikamol Muandet, Kun
Zhang, and Bernhard Schölkopf. A permutation-based
kernel conditional independence test. In UAI, pages 132–
141, 2014.

[Fuller, 2009] Wayne A Fuller. Measurement error models.
John Wiley & Sons, 2009.

[Huang et al., 2022] Biwei Huang, Charles Jia Han Low,
Feng Xie, Clark Glymour, and Kun Zhang. Latent hier-
archical causal structure discovery with rank constraints.
In Advances in Neural Information Processing Systems,
2022.

[Jin et al., 2024] Songyao Jin, Feng Xie, Guangyi Chen, Bi-
wei Huang, Zhengming Chen, Xinshuai Dong, and Kun
Zhang. Structural estimation of partially observed linear
non-gaussian acyclic model: A practical approach with
identifiability. In ICLR, 2024.
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