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Abstract

Video Large Language Models (VideoLLMs) of-
ten require thousands of visual tokens to process
long videos, leading to substantial computational
costs, further exacerbated by visual token ineffi-
ciency. Existing token reduction and alternative
video representation methods improve efficiency
but often compromise comprehension abilities. In
this work, we analyze the reasoning processes of
VideoLLMs in multi-choice VideoQA task, identi-
fying three reasoning stages—shallow, intermedi-
ate, and deep stages—that closely mimic human
cognitive processing. Our analysis reveals spe-
cific inefficiencies at each stage: in shallow lay-
ers, VideoLLMs attempt to memorize all video de-
tails without prioritizing relevant content; in in-
termediate layers, models fail to re-examine un-
certain content dynamically; and in deep layers,
they continue processing video even when suffi-
ciently confident. To bridge this gap, we propose
DToMA, a training-free Dynamic Token MAnipu-
lation method inspired by human adjustment mech-
anisms in three aspects: 1) Text-guided keyframe-
aware reorganization to prioritize keyframes and
reduce redundancy, 2) Uncertainty-based visual in-
jection to revisit content dynamically, and 3) Early-
exit pruning to halt visual tokens when confi-
dent. Experiments on 6 long video understanding
benchmarks show that DToMA enhances both ef-
ficiency and comprehension, outperforming state-
of-the-art methods and generalizing well across 3
VideoLLM architectures and sizes. Code is avail-
able at https://github.com/yuanrr/DToMA.

1 Introduction
Long video understanding requires models to process and
reason over video content spanning several minutes to hours.
Large language models (LLMs) [Yang et al., 2024] have
shown exceptional comprehension of textual information.
Multimodal LLMs (MLLMs) [Li et al., 2024; Wang et al.,

∗Corresponding author

Figure 1: Comparison of the accuracy and FLOPs on VideoMME
based on LLaVA-Video between DToMA and existing methods, in-
cluding token reduction methods at various compression ratios (0.3,
0.5, 0.7) for a 64-frame input, and other efficient video representa-
tions at a fixed 0.5 compression ratio with a 128-frame input.

2024] further equip LLMs with multimodal perception abil-
ity, greatly extending their comprehension of images and
short videos. Those advances motivate researchers to investi-
gate methods for effectively understanding long videos.

Existing VideoLLMs typically process videos by convert-
ing each frame into hundreds of visual tokens, leading to a
rapid token increase as video length grows. For instance,
LLaVA-Video [Zhang et al., 2024d] generates over 11k to-
kens for merely 64 frames. However, these visual tokens of-
ten have heavy redundancy [Chen et al., 2025], exacerbating
the computational challenges. To address this, prior works
focus on token reduction and alternative video representa-
tion strategies. The former includes pruning visual content
outside LLMs [Shang et al., 2024; Shen et al., 2024] and
compression mechanisms within LLMs [Chen et al., 2025;
Ye et al., 2024]. The latter methods, such as image grids [Kim
et al., 2024], slow-fast processing [Xu et al., 2024], or query-
based methods [Li et al., 2025], design alternative ways to ef-
fectively represent videos. While improving efficiency, they
are often at the expense of visual details or temporal depen-
dencies, limiting their comprehension ability. Effective visual
token processing remains to be explored for simultaneously
improving efficiency and video comprehension.

To enhance both efficiency and comprehension abilities,
we explore the internal reasoning mechanisms of Vide-
oLLMs, inspired by human reasoning processes. Human
reasoning consists of two key aspects: a general reason-
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ing process and intuitive adjustment mechanisms [Dundas
and Chik, 2011]. Humans generally approach video under-
standing tasks by first perceiving video content, then analyz-
ing based on questions, and finally inferring based on prior
knowledge. For quicker and better comprehension, they em-
ploy strategies such as conducting an initial coarse scan to ad-
just focus, rewatching video to clarify uncertainties or refine
their understanding, and ceasing examining visual content
once confident in their conclusions. We delve into the inter-
nal reasoning mechanisms of VideoLLMs to analyze whether
they exhibit reasoning processes similar to humans. Inspired
by recent studies [Fang et al., 2024] and [Chen et al., 2025],
we analyze reasoning patterns in multi-choice VideoQA tasks
through entropy dynamics and cross-attention. Specifically,
we identify three distinct reasoning stages in VideoLLMs: 1)
Shallow Layers: Text strongly attends to visual tokens, facil-
itating rapid multimodal information exchange. Entropy re-
mains high, suggesting an information-gathering phase [Chen
et al., 2025], akin to human initial perception of video con-
tent. 2) Intermediate Layers: Attention declines and nar-
rows its focus, and entropy fluctuates as the model explores
and analyzes visual content, similar to humans refining and
analyzing visual content given questions. 3) Deep Layers:
The model greatly reduces attention on visual tokens and
entropy steadily declines, indicating a shift to knowledge-
driven reasoning, resembling how humans draw conclusions
after gathering sufficient information. Our analysis reveals
an important insight: while VideoLLMs align with the gen-
eral reasoning process observed in humans, they overlook the
intuitive adjustment mechanisms crucial for human cogni-
tion. Unlike humans, VideoLLMs do not prioritize question-
relevant content but instead attempt to memorize all video
details. They cannot re-examine the visual content when un-
certain and cease processing visual content once sufficiently
confident in their conclusions. This limits leads to suboptimal
efficiency and comprehension abilities in VideoLLMs.

Based on these observations, we propose DToMA, a
training-free Dynamic Token MAipulation method to im-
prove efficiency and comprehension abilities of VideoLLMs
in three aspects: text-guided keyframe-aware reorganization,
uncertainty-based visual injection, and early-exit pruning.
Firstly, text-guided keyframe-aware reorganization imitates
humans to selectively focus after an initial scan. It uses cross-
attention scores from shallow layers to identify keyframes,
allocating more tokens to keyframes while reducing non-
keyframe tokens. Secondly, uncertainty-based visual injec-
tion emulates humans to revisit related content when uncer-
tainty arises. For samples with high entropy, this process
dynamically reintroduces visual tokens in the model’s feed-
forward layers, enhancing alignment with visual content and
reducing uncertainty. Thirdly, early-exit pruning mirrors hu-
mans to stop examining visual content once they are con-
fident about their conclusions. This process prunes visual
tokens before the model reaches its deep layers, reducing
redundant computations without sacrificing reasoning accu-
racy. As shown in Fig.1, by systematically emulating these
human-inspired cognitive strategies, DToMA achieves gains
in both efficiency and comprehension capability.

Our contributions are summarized as follows:

• We analyze VideoLLMs’ reasoning processes through
entropy and attention dynamics, revealing that while
these models partially emulate human general reasoning
processes, they lack key intuitive adjustments critical for
efficiency and comprehension capability.

• We propose DToMA, a training-free dynamic visual to-
ken manipulation method that improves efficiency and
reasoning capability by imitating human intuitive ad-
justment mechanisms, including text-guided keyframe-
aware reorganization, uncertainty-based visual injection,
and early-exit pruning.

• Experiments on 6 long video understanding benchmarks
demonstrate that DToMA outperforms state-of-the-art
methods and generalizes across diverse LLM architec-
tures and sizes.

2 Related Works
2.1 Video Large Language Models
The demand for enhanced understanding capabilities in
MLLMs has led to a substantial increase in visual tokens.
Early works like LLaVA [Liu et al., 2024a] encode a 336px
image into 576 tokens, while further efforts [Li et al., 2024;
Liu et al., 2024b] splitting higher resolution images into mul-
tiple sub-images, leading to more extended tokens, e.g., 2,306
tokens for a 672px image. Video understanding tasks exacer-
bate this challenge due to sequential frames, e.g., up to 4k to-
kens for a 16-frame video, straining LLM context limits [Liu
et al., 2024b]. To process longer videos, efforts like Gemini-
1.5 [Team et al., 2024] and LongVA [Zhang et al., 2024b]
extend context windows but suffer from prohibitive computa-
tional costs, with Gemini-1.5 encoding one-hour videos into
920k tokens. Compression strategies, such as LLaMA-VID
[Li et al., 2025] and Vid-Compress [Lan et al., 2024], re-
duce the token numbers but often sacrifice visual detail. Al-
ternative approaches like image grids [Kim et al., 2024] and
slow-fast processing [Xu et al., 2024] improve efficiency but
struggle with long videos.

The key challenge remains in the excessive number of to-
kens to represent video content. To address this, we propose
DToMA, a training-free dynamic token manipulation method
that enhances efficiency and understanding of VideoLLMs.

2.2 Visual Token Reduction
Extensive research has focused on reducing visual tokens to
enhance efficiency without obviously compromising visual
understanding. Methods like LLaVA-PruMerge [Shang et al.,
2024], FasterVLM [Zhang et al., 2024c], and FoPru [Jiang et
al., 2024a] drop redundant tokens using attention guidance
in visual encoder but lack textual adaptability. Methods like
TRIM [Song et al., 2024] and [Chen et al., 2024b] employ
paired text encoders, i.e., CLIP, to assist token filtering but are
incompatible with fine-tuned image encoders. Recent works
consider compression within LLMs, such as FastV [Chen et
al., 2025] and Feather [Endo et al., 2024], retaining tokens
with high visual-text attention scores. FitPrune [Ye et al.,
2024] and G-Search [Zhao et al., 2024] further progressively
prune tokens within LLM layers, thereby enhancing compu-
tational efficiency.
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Figure 2: Visualization of entropy dynamics in Video-MME. Ac-
cording to whether the final convergence is distinguished, we di-
vided all the samples into converged (left) and unconverged (right)
samples. It illustrates the uncertain reasoning processes in interme-
diate layers, which also propagate to deeper layers.

Existing methods do not adequately balance efficiency
with performance, often compromising video understanding.
To address this gap, DToMA 1) mitigates inefficiency by
pruning non-keyframe tokens and exiting all visual tokens in
LLM deep layers, and 2) improves comprehension by exert-
ing emphasis on keyframes and reintroducing visual informa-
tion when uncertainty arises. Thus, DToMA improves both
efficiency and comprehension without additional training.

2.3 Interpreting MLLM Internal Mechanism
Understanding the inner workings of MLLMs can gain in-
sights into their reasoning processes, identify inefficiencies,
and develop targeted strategies for improvement. Recent in-
terpretability studies using attention scores [Chen et al., 2025;
Li et al., 2022], intermediate representations [Jiang et al.,
2024b], and activation patterns [Chen et al., 2024a] mitigate
token redundancy and image hallucination issues. For in-
stance, analyzing attention scores provides insight into the
model’s focus at each layer. Recent studies leverage this
method to reveal that LLMs often emphasize textual informa-
tion over visual content [Liu et al., 2025; Fu et al., 2024b]. By
better balancing the emphasis on visual tokens, these methods
effectively mitigate image hallucinations.

Building on these insights, we analyze VideoLLMs
through the lenses of attention and entropy dynamics to com-
pare their reasoning processes to human cognition. We find
that while VideoLLMs can imitate general human reasoning
phases, they lack key intuitive strategies for efficient and ac-
curate reasoning. DToMA bridges this gap by incorporat-
ing human-inspired strategies to enhance reasoning efficiency
and comprehension.

3 Method
3.1 Preliminary
VideoLLMs generate text responses based on input video and
text queries. The core components include a visual encoder
E(·), a projector for modality alignment, an LLM with L lay-
ers, and an LM head Vocab(·) which predicts the vocabulary
distribution of the next token. Given a video with N frames,
the visual encoder extracts N frame embeddings. The projec-
tor maps frame embeddings as visual tokens Tv ∈ RN×P×d

to enable processing by the LLM, where P, d are the number
of patches and model dimension. Then, visual tokens Tv and

System Prompt (14)

Video Tokens (11648)

User Queries (359)

Output Option (1)

Layer 1 Layer 6

Layer 12 Layer 17

Layer 22 Layer 27

Causal Attention Map 𝐴𝐴𝑥𝑥𝑡𝑡
(𝑙𝑙)

𝐶𝐶𝑥𝑥𝑡𝑡
(𝑙𝑙)

Cross-Attention

Figure 3: Visualization of cross-attention C
(l)
xt across LLM layers,

where C(l)
xt are derived from the causal attention maps A(l)

xt . It shows
how cross-attention evolves through LLM layers: in shallow layers,
there is extensive interaction between text and visual tokens; in inter-
mediate layers, the model narrows its focus with reduced attention
weights; in deep layers, cross-attention diminishes almost entirely.

text query tokens Tt ∈ RNt×d are concatenated as the input
sequence, i.e., {xi}t1, t = N × P + Nt, and are processed
through L LLM layers. The LLM final layer output h(L)

xt is
used by Vocab(·) to predict the next token xt+1 as:

P (xt+1|x1:t) = Softmax(Vocab(h(L)
xt

)) (1)

With greedy decoding, the most probable word for output
would be selected.

3.2 Observations of LLM Internal Behaviors
In this section, we aim to explore the inefficiencies in the rea-
soning processes of VideoLLMs by analyzing their internal
behaviors. Through this analysis, we identify key areas where
the models struggle and propose potential improvements.

Specifically, to gain insights into these behaviors, we em-
ploy two critical metrics: entropy and cross-attention dynam-
ics. These metrics are chosen because they provide a com-
prehensive view of the model’s confidence levels and its pri-
oritization of multimodal information, respectively. Entropy
helps track uncertainty and confidence across layers [Fang et
al., 2024], while cross-attention reveals how the model in-
tegrates information from different modalities [Chen et al.,
2025]. Detailed observation implementations are as follows:

• Entropy dynamics are observed by tracking the evo-
lution of answer probabilities across layers, inspired
by recent interpretability research [nostalgebraist, 2020]
which finds intermediate outputs h

(l)
xt in each l-th layer

can be interpreted by Vocab(·). By prompting the model
to answer directly with the letter option from given
choices, we can decode the first token output at each
layer l to track answer probabilities P (x = o|x1:t) fol-
lowing Eq. (1), denoted as Po, where o ∈ {A,B,C,D}.
Then, the normalized entropy is computed as H =∑

−PologPo/logm, where m = 4 is the number of op-
tions. H is the model’s uncertainty at each layer.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

V
is

ua
l E

nc
od

er

Pr
oj

ec
to

r
E

m
be

dd
in

g

Instruction, 
Question, 
Options

𝒓𝒓 𝟏𝟏
 L

L
M

 S
ha

llo
w

 L
ay

er
s

Po
ol

in
g

Aggregation

Cross-attention scores

To
ke

n 
Im

po
rt

an
ce

[K
ey

fr
am

e]
Fr

am
e 

Im
po

rt
an

ce

Aggregation

L
L

M
 L

ay
er

s ~
 𝒓𝒓
𝟐𝟐 

-1

L
L

M
 M

id
 L

ay
er

 𝒓𝒓
𝟐𝟐 

 
L

M
 h

ea
d

A
  B

  C
  D

U
nc

er
ta

in
ty

𝓗𝓗 >  G

A
tt

en
tio

n

𝐅𝐅𝐅𝐅
𝐅𝐅
𝑽𝑽𝑽𝑽
𝑽𝑽𝑽𝑽
𝑽𝑽𝑽𝑽

L
L

M
 M

id
 L

ay
er

 𝒓𝒓
𝟐𝟐+

1 
 

L
L

M
 L

ay
er

s ~
 𝒓𝒓
𝟑𝟑
−
𝟏𝟏 

 

L
L

M
 L

ay
er

s  
𝒓𝒓 𝟑𝟑

~
𝑳𝑳 

 

A
ns

w
er

Text-Guided Keyframe-Aware Reorganization Uncertainty-Based Visual Injection
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Figure 4: We propose DToMA, a training-free Dynamic visual Token MAnipulation method for efficient long video understanding.

• Cross-attention dynamics are analyzed through attention
maps from each layer. Specifically, for attention maps
A

(l)
xt ∈ Rn×t×t in each layer, where n is the number of

heads, we extract the cross-attention scores between text
query Tt and visual tokens Tv , i.e., C(l)

xt ∈ Rn×Nt×NP ,
from A

(l)
xt . Aggregating C

(l)
xt across all attention heads

yields: C
(l)

xt
=

∑n
C

(l)
xt . Measuring C

(l)

xt
allows us to

analyze how text token aggregates visual information.

Our analysis reveals distinct stages in VideoLLMs’ rea-
soning process, as in Fig.2, 3. In shallow layers, entropy is
high and Po is nearly random, yet text tokens strongly attend
to visual tokens, indicating an initial information-gathering
phase [Chen et al., 2025]. In intermediate layers, entropy
exhibits dynamic fluctuations. For simple questions, it de-
creases steadily as the model converges on the correct an-
swer. However, for complex ones, prolonged fluctuations
suggest ongoing uncertainty. Attention declines and narrows
its focus, reflecting information refinement. In deep layers,
entropy rapidly converges for simple questions but remains
higher and fluctuates for complex ones. Attention to visual
tokens diminishes, indicating internal textual reasoning.

The above observations highlight several inefficiencies: in
shallow layers, models attempt to perceive all visual content.
Methods like FastV [Chen et al., 2025] reduce the influence
of redundancy but do not adequately emphasize key infor-
mation, leading to unnecessary computational overhead and
suboptimal performance. Though uncertainty occurs in inter-
mediate layers, the diminishing cross-attention from text to-
kens makes it challenging for the model to independently and
adequately reassess necessary visual evidence. In deep lay-
ers, reduced attention to visual tokens suggests inefficiency
in continuously computing visual context for final reasoning.

3.3 DToMA
To this end, we propose DToMA, a training-free Dynamic vi-
sual Token MAnipulation method to address those inefficien-
cies and improve reasoning capabilities, as in Fig. 4. DToMA
has 3 token processing strategies: text-guided keyframe-
aware reorganization, uncertainty-based visual injection, and
early-exit pruning, detailed in the following sections.
Text-Guided Keyframe-Aware Reorganization (TKR). To
solve the inefficiency that the model attempts to memorize

all video details in shallow layers, we propose TKR that pri-
oritizes keyframes while reducing non-keyframe tokens for
both efficiency and understanding ability improvement. The
method involves a two-pass process. The first pass is exe-
cuted only in LLM shallow layers to obtain question-related
guidance for keyframe selection and non-keyframe tokens re-
duction. Then, the second pass is executed formally through
all layers with our reorganized visual tokens. Details of TKR
are shown in Algorithm 1. Specifically, the LLM first per-
forms an r1-layer forward pass using coarse representations
T̂v to get cross-attention C

(r)

x̂t
, which is then averaged to ob-

tain frame importance F (r) for keyframe selection. Note that
F (r) would be divided into S non-overlapping segments, i.e.,
F

(r)
1 , ..., F

(r)
S , and the topk frames are selected from each

segment to avoid concentrating keyframes in a local video
clip. For non-keyframes, we drop the lowest attended to-
kens in T̂v , ensuring the pruning ratio respects the token
budget. Finally, keyframes retain their fine representations
and non-keyframes are with reduced coarse representations,
both are reorganized in chronological order for full propa-
gation through the LLM as: LLM1:L(Concat(Tfinal,Tt)).
This method balances computational efficiency with repre-
sentational fidelity, highly adaptable to various computational
budgets and tasks.
Uncertainty-Based Visual Injection (V-Inj). Intermediate
layers often exhibit uncertainty for complex questions. As at-
tention to visual tokens diminishes over layers, it is challeng-
ing for the model to incorporate necessary visual evidence
independently, leading to propagated confusion. To address
this, we propose uncertainty-based visual injection, which
identifies uncertain layers and reintroduces visual evidence to
support more accurate reasoning. Inspired by studies show-
ing that feed-forward networks (FFNs) can act as key-value
memories for factual knowledge retrieval [Geva et al., 2021]
and that visual information can be effectively integrated into
FFNs for hallucination mitigation [Zou et al., 2025], we in-
ject visual tokens into the FFN during uncertain scenarios.

The standard FFN is defined as: FFN(x) = σ(x ·W1)W2,
where W1 ∈ Rd×D, W2 ∈ RD×d, σ is activation func-
tion, D is the intermediate dimension. Furthermore, by
represent weights as W1 = (k1,k2, ...,kD) and W2 =
(v1,v2, ..., vD)T , ki,vi ∈ Rd, the FFN can be rewritten in
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Algorithm 1: Token Reorganization Strategy
Input: visual tokens Tv ∈ {T 1

v , ..., T
N
v }, T i

v ∈ RP×d. Text
tokens Tt, selected shallow layer r1, number of key-
frames m, number of segments S, token budget B.

Output: Reorganized tokens Tfinal

## First Pass: Early Layer Execution
1. Obtain coarse frame representations (e.g., pooling):

T̂v = Pool(Tv), T̂v ∈ RPc×N×d, Pc < P

2. Run r1-layer forward pass to get C
(r)
x̂t

:

C
(r1)
x̂t
← LLM1:r1(Concat(T̂v, Tt))

3. Aggregate C
(r1)
x̂t

to get frame importance:

F (r1) = Mean(C1
(r1)
x̂t

), F (r1) ∈ RN

4. Identify top-k frames in each segment:

Nkey =

S⋃
i=1

Topk id(F (r1)
i ,m/S)

## Second Pass: Token Reorganization
5. Compute pruning ratio:

ratio = min

(
NkeyP + (N −Nkey)Pc

B
, 1

)
6. Reorganize visual tokens Tv:

T i
final =

{
T i
v, i ∈ Nkey

Topk(T̂v
i
, Pc · ratio), i /∈ Nkey

return Tfinal =
⋃N

i=1 T
i
final

key-value form:

FFN(x) =
D∑
i=1

σ(⟨x · ki⟩) · vi (2)

where FFN can be interpreted as using input x as queries to
compute similarity with keys ki and gather values vi.

To inject visual evidence, we convert our reorganized vi-
sual tokens Tfinal ∈ RB×d into keys and values and perform
similar retrieval from the visual key-value memory as:

VisInj(x) =
B∑
i=1

σ(⟨x · K(Ti)⟩) · V(Ti) (3)

where K(Ti),V(Ti) ∈ Rd are key and value corresponding to
visual token Ti ∈ Tfinal. We employ identical mappings for
K(·) and V(·) to maintain its training-free nature. This visual
memory is integrated into FFN as:

FFNvisual(x) = (1− α) · FFN(x) + αβ ·VisInj(x) (4)

where β = Norm(FFN(x))/Norm(VisInj(x)) is a balance
factor and α is injection strength. For modern Gated Linear
Units (GLU) instead of FFN in recent LLMs, the visual in-
jection bypasses the gating mechanism for simplicity.

We dynamically activate visual injection based on the en-
tropy H of output probabilities in intermediate layers rs− re.
If entropy in layer r2 ∈ [rs, re] exceeds a threshold G, vi-
sual evidence is injected at the next layer r2 + 1 by replac-
ing FFN(r2+1) as FFN

(r2+1)
visual . This injection is performed

only once in uncertain scenarios to preserve feature stabil-
ity. This method enriches the visual cues tied to the question
and enhances reasoning consistency with visual content, thus
improving the model’s capability to integrate multimodal in-
formation for accurate predictions.
Early-Exit Pruning (EP). To reduce inefficiency in deep lay-
ers, we introduce early-exit pruning by omitting overall vi-
sual token processing. Initially, we explored a dynamic early
exit based on entropy convergence, enabling the model to by-
pass unnecessary computations for high-confidence samples.
However, experiments showed that samples with prolonged
uncertainty paid minimal attention to image tokens in deep
layers, indicating that delayed exits do not enhance under-
standing and instead increase computing costs. Therefore,
we adopted a fixed-layer exit strategy, which simplifies im-
plementation and ensures consistent efficiency.

Specifically, for layers r > r3, all visual token compu-
tations are omitted. The attention mechanism is simplified
to only focus on text tokens Tt and the FFN computations
for visual tokens are bypassed. This pruning strategy signifi-
cantly reduces computational costs while ensuring the model
maintains reasoning accuracy.

4 Experiments
4.1 Benchmarks and Metrics
We conducted evaluations of our method on 6 long video
understanding benchmarks, including VideoMME [Fu et al.,
2024a], LongVideoBench [Wu et al., 2024], EgoSchema
[Mangalam et al., 2023], MLVU [Zhou et al., 2024], NExT-
QA [Xiao et al., 2021], and PerceptionTest [Patraucean et al.,
2024]. Following evaluation tool LMMs-Eval [Zhang et al.,
2024a], we perform standardized evaluation settings and met-
rics, i.e., accuracy, on each benchmark. We evaluate the effi-
ciency by computing FLOPs and prefill time of LLMs using
the library from LLM-Viewer [Yuan et al., 2024], and assume
1000 text tokens for LLaVA-Video due to their time prompt,
while 100 for the others.

4.2 Implementation Details
Our implementation mainly follows LLaVA-Video-7B
[Zhang et al., 2024d]. We adopt SigLIP [Zhai et al.,
2023] as the vision encoder and Qwen2 [Yang et al.,
2024] as the LLM. For DToMA, the selected layer
r1 = 3, r2 ∈ [12, 18], r3 = 21. For TKR, following
optimal design [Du et al., 2024] for SigLIP, we use 2×2
pooling for keyframes, while 3×3 for coarse non-keyframes.
Token budget B is pre-defined according to experimental
requirements, and token compression ratio is self-adaptive
according to B. With no specifically stated, we set
m = S = N/4. For V-Inj, we set threshold G = 0.75, factor
α = 0.25. We also adapt DToMA in LLaVA-OV-0.5B [Li
et al., 2024], Qwen2-VL-2B [Wang et al., 2024] to evaluate
generalizing across VideoLLM architectures and sizes.

4.3 Comparative Evaluation
Comparison with SOTA Methods. We compare DToMA
with state-of-the-art (SOTA) methods, focusing on long video
comprehension under identical token budgets. Specifically,
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w/o sub. Val M-Avg Test Val Test

Proprietary Models
GPT4-V - 59.9 59.1 49.2 - - -
GPT4-o - 71.9 66.7 64.6 - - -
Gemini-1.5-Pro - 75.0 64.0 - 72.2 - -

Open-Source Video MLLMs
LLaVA-OV-0.5B 6k 44.0 43.4 50.3 26.8 49.2 57.2
w. DToMA 6k 45.8 44.9 52.4 27.2 49.8 59.7

Qwen2-VL-2B 16k 55.6 - - 54.9 53.9 -
Qwen2-VL-2B* 8k 54.2 48.1 57.2 54.3 53.2 75.2
w. DToMA 8k 55.1 48.9 59.1 56.5 53.9 76.8

LongVA-7B 18k 52.6 - 56.3 - - 68.3
LLaVA-OV-7B 6k 58.6 56.5 64.7 60.1 57.1 79.4
LongVU-7B 8k 60.6 - 65.4 67.6 - -
Qwen2-VL-7B 16k 63.3 - - 66.7 62.3 -
LLaVA-Video-7B 12k 63.3 58.2 70.8 57.3 67.9 83.2
w. DToMA 12k 65.0 59.6 71.7 59.3 68.9 83.8

Table 1: Performance on 6 long video benchmarks. * represent our
implementation results with 64 frame inputs.

we evaluate DToMA across three different architectures and
sizes of video models, i.e., LLaVA-OV-0.5B, Qwen2-VL-2B,
and LLaVA-Video-7B. By compressing visual tokens and us-
ing coarse representations for non-keyframes, DToMA en-
ables more frame inputs within the same token budget. We
set a double frame input for DToMA, with an 80.5% non-
keyframes compression ratio. Table 1 summarizes the re-
sults on 6 video understanding benchmarks. DToMA consis-
tently improves performance across all 3 tested models, with
the averaged improvement of 1.48%, 1.35%, and 1.43% on
the 6 benchmarks, respectively. Specifically, when applied
to LLaVA-Video-7B, it achieves SOTA results on 5 out of 6
benchmarks. Moreover, under the same token budget, the ef-
ficiency of DToMA also shows an improvement, with 83.6%
FLOPs and 79.0% prefill time, which will be discussed in
the ablation. This demonstrates the effectiveness of DToMA
in enhancing both efficiency and understanding capabilities,
and the generalization ability across diverse architectures and
sizes of VideoLLMs.
Comparison with token reduction and efficient video rep-
resentation Methods. To assess performance and efficiency
(FLOPs and prefill time) of DToMA, we compared it with
existing token reduction techniques, i.e., ToMe [Bolya et
al., 2023], FastV [Chen et al., 2025], FasterVLM [Zhang
et al., 2024c], and efficient video representation strategies,
i.e., coarse representation T̂v , SlowFast [Zhang et al., 2024d],
SF-LLaVA [Xu et al., 2024], on VideoMME using LLaVA-
Video with 64 and 128 frame inputs. The results are shown
in Table 2. It reveals that DToMA achieves superior per-
formance in terms of FLOPs and prefill time while improv-
ing accuracy on VideoMME. Specifically, With 64-frame

Methods #Tokens #Frames FLOPs Prefill Time VideoMME

(TB) (ms) w/o subs

LLaVA-Video 11,648 64 249.3 1,214 63.3

ToMe 70% 64 163.1 734.5 62.8
FastV 70% 64 172.2 789.3 63.4
FasterVLM 70% 64 162.9 734.2 63.1

ToMe 50% 64 113.0 483.7 61.1
FastV 50% 64 127.5 565.8 63.1
FasterVLM 50% 64 112.9 483.5 63.0
DToMA 50% 64 96.6 410.2 63.6

ToMe 30% 64 69.0 276.6 57.6
FastV 30% 64 88.1 374.8 61.2
FasterVLM 30% 64 68.9 276.5 61.9
DToMA† 30% 64 64.9 262.2 62.5

LLaVA-Video 23,296 128 589.0 3,224 64.0

Corase rep. 11,520 128 219.1 1,056 63.7
SlowFast 11,200 128 211.8 990.6 64.2
SF-LLaVA 15,232 128 320.8 1,643 63.8

ToMe 50% 128 249.8 1,231 63.8
FastV 50% 128 285.4 1,429 64.2
FasterVLM 50% 128 249.0 1,217 64.3
DToMA 50% 128 208.3 988.6 65.0

Table 2: Comparison results on VideoMME based on LLaVA-Video.
As DToMA uses coarse representations for non-keyframes, reducing
tokens to less than 70% without token-level compression, we report
results only at 50% and 30% ratios. † At 30% ratio, we use the visual
encoder’s attention to compress keyframe token counts.

videos, DToMA at a 50% compression ratio surpasses base-
line (+0.4%) whereas other methods perform below base-
line. For 128-frame videos, DToMA’s advantages are more
highlighted. This is especially notable as 128-frame inputs
increase redundancy challenges for LLaVA-Video which is
trained on 64-frame inputs. DToMA consistently outper-
forms the baseline (+1.0%) and other methods (+0.7%) with
fewer FLOPs and prefill time, proving the effectiveness of
DToMA in improving efficiency and understanding abilities.

4.4 Ablation Study
Effectiveness of Each Component. We ablate the three key
components of DToMA: text-guided keyframe-aware reor-
ganization (TKR), uncertainty-based visual injection (V-Inj),
and early-exit pruning (EP), in VideoMME dataset based on
LLaVA-Video. The results are shown in Table 4. TKR re-
duces the token count by 50% and thus achieves marked effi-
ciency gains, using only 49.6% of baseline FLOPs and 43.9%
of prefill time while improving performance. It demonstrates
that TKR effectively emphasizes the related visual context
and reduces redundancy, thereby enhancing both efficiency
and accuracy. V-Inj reintroduces visual information when un-
certainty is detected, adding less than 0.5% FLOPs but boost-
ing accuracy by 0.4% with baseline tokens and 0.7% with
reorganized tokens in 128 frames. The results prove its ef-
fectiveness in mitigating uncertainty and aligning reasoning
with visual context with only a small computing increase. EP
uses 72.9% FLOPs and 71.7% prefill time of baseline to pro-
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TKR V-Inj EP #Token #Frame FLOPs Prefill Time VideoMME

LLaVA-Video 11,648 64 249.3 1,214 63.3
✓ 5,824 64 123.7 533.2 63.4

✓ 11,648 64 250.2 1,215 63.7
✓ 11,648 64 181.9 870.7 63.1

✓ ✓ 5,824 64 124.4 533.9 63.8
✓ ✓ ✓ 5,824 64 96.6 410.2 63.6

LLaVA-Video 23,296 128 589.0 3,224 64.0
✓ 11,648 128 275.2 1,317 64.5

✓ 23,296 128 590.4 3,225 64.4
✓ 23,296 128 424.5 2,336 63.8

✓ ✓ 11,648 128 276.4 1,318 65.2
✓ ✓ ✓ 11,648 128 208.3 988.6 65.0

Table 3: Ablation Studies of each component in DToMA based on
LLaVA-Video in VideoMME dataset.

r1 in TKR r2 in V-Inj r3 in EP

Layer Acc. FLOPs Layer Acc. FLOPs Layer Acc. FLOPs
1 64.4 190.5 13 64.6 207.4 19 63.9 191.5
2 64.9 199.2 17 64.7 207.4 20 64.8 199.8
3 65.0 208.3 12-18 64.6 208.6 21 65.0 208.3
4 65.0 216.9 13-18 65.0 208.3 22 64.7 216.7
5 64.8 225.6 13-19 64.9 208.4 Dynamic 65.0 226.3

Table 4: Deployment layer analysis of each component in DToMA
based on LLaVA-Video in VideoMME dataset.

cess the same visual tokens by pruning all visual tokens in
deep layers, improving model efficiency without compromis-
ing performance. Overall, these strategies enable DToMA to
consistently improve both performance and computing effi-
ciency. Notably, with 128-frame inputs, DToMA achieves
a 1.7% improvement over the 64-frame baseline, using just
83.5% of the FLOPs and 81.4% of the prefill time, proving
its excellent accuracy-efficiency trade-off.
Layer selection analysis. In DToMA, the methods TKR,
V-Inj, and EP target inefficiencies in shallow, intermediate,
and deep LLM layers, respectively. We select target lay-
ers based on attention and entropy dynamics. TKR is ap-
plied at the first layer when cross-attention shifts from in-
clined to vertical patterns. V-Inj starts when entropy di-
verges between easy and hard questions and ends when en-
tropy rises sharply again, with visual attention drops. EP is
applied when attention nearly vanishes. We evaluated vari-
ous layer indices to find the best balance between accuracy
and efficiency. Results in Table 4 show the optimal setup is
r1 = 3, r2 ∈ [13− 18], r3 = 21, maximizing accuracy while
minimizing resource usage. We also tested dynamic r3 based
on model uncertainty, but found no clear performance ben-
efits and delayed the early exit due to diminished attention
focus. Thus, we opt for a fixed early exit layer.
Uncertainty Decline Analysis. To investigate the im-
pact of V-Inj on uncertainty, we visualize the uncertainty
H across LLM layers in two datasets: VideoMME and
LongVideoBench. The visualization results in Fig. 5 reveal
that injecting visual content at intermediate layers greatly re-
duces model uncertainty. This reduction is not only imme-

Figure 5: Visualization of uncertainty w. and w/o. V-Inj on the
VideoMME and LongVideoBench datasets based on LLaVA-Video.

Figure 6: Hyper-parameter analysis on VideoMME dataset based on
LLaVA-Video.

diate but also propagates to deeper layers, thus ensuring a
sustained decrease in uncertainty throughout VideoLLM. V-
Inj also lowers the uncertainty peaks in intermediate and deep
layers, enabling the model to make more informed responses
based on visual context in complex scenarios. The improved
consistency and confidence underscore the value of V-Inj in
enhancing the performance and reliability of VideoLLMs.
Hyper-parameter Analysis. To investigate the impact of
hyper-parameters on DToMA, we conduct experiments by
varying segment S in TKR, injection ratio α, and threshold
G in V-Inj. More specifically, we consider the following set-
tings: S ∈ {1, 4, 16, 32}, α ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.4},
and G ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 0.85}. The results in Fig.
6 show that the optimal performance is achieved with S = 16,
α = 0.25, and G = 0.75.

5 Conclusion
This paper addresses the challenge of efficiently process-
ing long videos in VideoLLMs while enhancing compre-
hension. By analyzing reasoning patterns of VideoLLMs
in multi-choice VideoQA task through entropy and cross-
attention dynamics, we identify three distinct reasoning
stages—shallow, intermediate, and deep stages—and the in-
efficiencies existing in these stages. To address these, we
proposed DToMA, a training-free Dynamic Token Manipu-
lation method in three aspects: text-guided keyframe-aware
reorganization, uncertainty-based visual injection, and early-
exit pruning. Experiments on 6 long video benchmarks show
that DToMA boosts both performance and efficiency, outper-
forms SOTA methods, and generalizes well across various
VideoLLMs. In sum, DToMA offers a promising alternative
to directly using the baseline, enabling superior long video
understanding within reduced computational resources.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grants 62325206 and 62301276,
the Key Research and Development Program of Jiangsu
Province under Grant BE2023016-4, and the Opening Foun-
dation of the State Key Laboratory of Tibetan Intelligence,
Key Laboratory of Tibetan Information Processing, Ministry
of Education (2024-2-003).

References
[Bolya et al., 2023] Daniel Bolya, Cheng-Yang Fu, Xiao-

liang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your vit but faster. In The
Eleventh International Conference on Learning Represen-
tations, 2023.

[Chen et al., 2024a] Shiqi Chen, Miao Xiong, Junteng Liu,
Zhengxuan Wu, Teng Xiao, Siyang Gao, and Junxian He.
In-context sharpness as alerts: An inner representation
perspective for hallucination mitigation. arXiv preprint
arXiv:2403.01548, 2024.

[Chen et al., 2024b] Yi Chen, Jian Xu, Xu-Yao Zhang, Wen-
Zhuo Liu, Yang-Yang Liu, and Cheng-Lin Liu. Recov-
erable compression: A multimodal vision token recovery
mechanism guided by text information. arXiv preprint
arXiv:2409.01179, 2024.

[Chen et al., 2025] Liang Chen, Haozhe Zhao, Tianyu Liu,
Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play
inference acceleration for large vision-language models.
In European Conference on Computer Vision, pages 19–
35. Springer, 2025.

[Du et al., 2024] Yifan Du, Yuqi Huo, Kun Zhou, Zijia Zhao,
Haoyu Lu, Han Huang, Wayne Xin Zhao, Bingning Wang,
Weipeng Chen, and Ji-Rong Wen. Exploring the design
space of visual context representation in video mllms.
arXiv preprint arXiv:2410.13694, 2024.

[Dundas and Chik, 2011] Jitesh Dundas and David Chik.
Implementing human-like intuition mechanism in artificial
intelligence. arXiv preprint arXiv:1106.5917, 2011.

[Endo et al., 2024] Mark Endo, Xiaohan Wang, and Serena
Yeung-Levy. Feather the throttle: Revisiting visual to-
ken pruning for vision-language model acceleration. arXiv
preprint arXiv:2412.13180, 2024.

[Fang et al., 2024] Yixiong Fang, Ziran Yang, Zhaorun
Chen, Zhuokai Zhao, and Jiawei Zhou. From uncertainty
to trust: Enhancing reliability in vision-language models
with uncertainty-guided dropout decoding. arXiv preprint
arXiv:2412.06474, 2024.

[Fu et al., 2024a] Chaoyou Fu, Yuhan Dai, Yongdong Luo,
Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-
mme: The first-ever comprehensive evaluation benchmark
of multi-modal llms in video analysis. arXiv preprint
arXiv:2405.21075, 2024.

[Fu et al., 2024b] Yuhan Fu, Ruobing Xie, Jiazhen Liu,
Bangxiang Lan, Xingwu Sun, Zhanhui Kang, and Xirong
Li. Magnifier prompt: Tackling multimodal hallucina-
tion via extremely simple instructions. arXiv preprint
arXiv:2410.11701, 2024.

[Geva et al., 2021] Mor Geva, Roei Schuster, Jonathan Be-
rant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 5484–5495, 2021.

[Jiang et al., 2024a] Lei Jiang, Weizhe Huang, Tongxuan
Liu, Yuting Zeng, Jing Li, Lechao Cheng, and Xiao-
hua Xu. Fopru: Focal pruning for efficient large vision-
language models. arXiv preprint arXiv:2411.14164, 2024.

[Jiang et al., 2024b] Nick Jiang, Anish Kachinthaya, Suzie
Petryk, and Yossi Gandelsman. Interpreting and editing
vision-language representations to mitigate hallucinations.
arXiv preprint arXiv:2410.02762, 2024.

[Kim et al., 2024] Wonkyun Kim, Changin Choi, Wonseok
Lee, and Wonjong Rhee. An image grid can be worth a
video: Zero-shot video question answering using a vlm.
arXiv preprint arXiv:2403.18406, 2024.

[Lan et al., 2024] Xiaohan Lan, Yitian Yuan, Zequn Jie, and
Lin Ma. Vidcompress: Memory-enhanced temporal com-
pression for video understanding in large language models.
arXiv preprint arXiv:2410.11417, 2024.

[Li et al., 2022] Yiming Li, Xiaoshan Yang, and Chang-
sheng Xu. Dynamic scene graph generation via anticipa-
tory pre-training. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
13874–13883, 2022.

[Li et al., 2024] Bo Li, Yuanhan Zhang, Dong Guo, Ren-
rui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy
visual task transfer. arXiv preprint arXiv:2408.03326,
2024.

[Li et al., 2025] Yanwei Li, Chengyao Wang, and Jiaya Jia.
Llama-vid: An image is worth 2 tokens in large language
models. In European Conference on Computer Vision,
pages 323–340. Springer, 2025.

[Liu et al., 2024a] Haotian Liu, Chunyuan Li, Yuheng Li,
and Yong Jae Lee. Improved baselines with visual in-
struction tuning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
26296–26306, 2024.

[Liu et al., 2024b] Haotian Liu, Chunyuan Li, Yuheng Li,
Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowl-
edge, 2024.

[Liu et al., 2025] Shi Liu, Kecheng Zheng, and Wei Chen.
Paying more attention to image: A training-free method
for alleviating hallucination in lvlms. In European Confer-
ence on Computer Vision, pages 125–140. Springer, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Mangalam et al., 2023] Karttikeya Mangalam, Raiymbek
Akshulakov, and Jitendra Malik. Egoschema: A diag-
nostic benchmark for very long-form video language un-
derstanding. Advances in Neural Information Processing
Systems, 36:46212–46244, 2023.

[nostalgebraist, 2020] nostalgebraist. Interpreting gpt: The
logit lens. LessWrong, 2020.

[Patraucean et al., 2024] Viorica Patraucean, Lucas Smaira,
Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan
Banarse, Skanda Koppula, Mateusz Malinowski, Yi Yang,
Carl Doersch, et al. Perception test: A diagnostic bench-
mark for multimodal video models. Advances in Neural
Information Processing Systems, 36, 2024.

[Shang et al., 2024] Yuzhang Shang, Mu Cai, Bingxin Xu,
Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive to-
ken reduction for efficient large multimodal models. arXiv
preprint arXiv:2403.15388, 2024.

[Shen et al., 2024] Xiaoqian Shen, Yunyang Xiong, Chang-
sheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu,
Zechun Liu, Fanyi Xiao, Balakrishnan Varadarajan, Flo-
rian Bordes, et al. Longvu: Spatiotemporal adaptive com-
pression for long video-language understanding. arXiv
preprint arXiv:2410.17434, 2024.

[Song et al., 2024] Dingjie Song, Wenjun Wang, Shunian
Chen, Xidong Wang, Michael Guan, and Benyou Wang.
Less is more: A simple yet effective token reduction
method for efficient multi-modal llms. arXiv preprint
arXiv:2409.10994, 2024.

[Team et al., 2024] Gemini Team, Petko Georgiev, Ving Ian
Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

[Wang et al., 2024] Peng Wang, Shuai Bai, Sinan Tan, Shi-
jie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

[Wu et al., 2024] Haoning Wu, Dongxu Li, Bei Chen, and
Junnan Li. Longvideobench: A benchmark for long-
context interleaved video-language understanding. arXiv
preprint arXiv:2407.15754, 2024.

[Xiao et al., 2021] Junbin Xiao, Xindi Shang, Angela Yao,
and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings
of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 9777–9786, 2021.

[Xu et al., 2024] Mingze Xu, Mingfei Gao, Zhe Gan, Hong-
You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang, and
Afshin Dehghan. Slowfast-llava: A strong training-free
baseline for video large language models. arXiv preprint
arXiv:2407.15841, 2024.

[Yang et al., 2024] An Yang, Baosong Yang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,

Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

[Ye et al., 2024] Weihao Ye, Qiong Wu, Wenhao Lin, and
Yiyi Zhou. Fit and prune: Fast and training-free visual to-
ken pruning for multi-modal large language models. arXiv
preprint arXiv:2409.10197, 2024.

[Yuan et al., 2024] Zhihang Yuan, Yuzhang Shang, Yang
Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, et al. Llm infer-
ence unveiled: Survey and roofline model insights. arXiv
preprint arXiv:2402.16363, 2024.

[Zhai et al., 2023] Xiaohua Zhai, Basil Mustafa, Alexander
Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11975–
11986, 2023.

[Zhang et al., 2024a] Kaichen Zhang, Bo Li, Peiyuan Zhang,
Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei
Liu. Lmms-eval: Reality check on the evaluation of large
multimodal models, 2024.

[Zhang et al., 2024b] Peiyuan Zhang, Kaichen Zhang,
Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang,
Ziyue Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu.
Long context transfer from language to vision. arXiv
preprint arXiv:2406.16852, 2024.

[Zhang et al., 2024c] Qizhe Zhang, Aosong Cheng, Ming
Lu, Zhiyong Zhuo, Minqi Wang, Jiajun Cao, Shaobo Guo,
Qi She, and Shanghang Zhang. [cls] attention is all you
need for training-free visual token pruning: Make vlm in-
ference faster. arXiv preprint arXiv:2412.01818, 2024.

[Zhang et al., 2024d] Yuanhan Zhang, Jinming Wu, Wei Li,
Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint
arXiv:2410.02713, 2024.

[Zhao et al., 2024] Shiyu Zhao, Zhenting Wang, Felix
Juefei-Xu, Xide Xia, Miao Liu, Xiaofang Wang, Mingfu
Liang, Ning Zhang, Dimitris N Metaxas, and Licheng
Yu. Accelerating multimodel large language models by
searching optimal vision token reduction. arXiv preprint
arXiv:2412.00556, 2024.

[Zhou et al., 2024] Junjie Zhou, Yan Shu, Bo Zhao, Boya
Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive
benchmark for multi-task long video understanding. arXiv
preprint arXiv:2406.04264, 2024.

[Zou et al., 2025] Xin Zou, Yizhou Wang, Yibo Yan, Yuan-
huiyi Lyu, Kening Zheng, Sirui Huang, Junkai Chen, Pei-
jie Jiang, Jia Liu, Chang Tang, and Xuming Hu. Look
twice before you answer: Memory-space visual retracing
for hallucination mitigation in multimodal large language
models. The Forty-second International Conference on
Machine Learning (ICML), 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


