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Abstract

Human activity recognition (HAR) is prone to per-
formance degradation in real-world applications
due to data missing between intra-sensor and inter-
sensor channels. Masked modeling, as one main-
stream paradigm of self-supervised pre-training,
can learn robust representations across sensors in
the data missing scenario by reconstructing the
masked content based on the unmasked part. How-
ever, the existing methods predominantly empha-
size the temporal dynamics of human activities,
which limits their ability to effectively capture
the spatial interdependencies among multiple sen-
sors. Besides, different human activities often span
across various spatial-temporal scales, which re-
sults in activity recognizer failing to capture in-
tricate spatial-temporal semantic information. To
address these issues, we propose RobustHAR, a
new HAR model with multi-scale spatial-temporal
masked self-supervised pre-training designed to
improve model performance on the data missing
context. RobustHAR involves three main steps: (1)
RobustHAR constructs location-inspired spatial-
temporal 3D-variation modeling to capture spatial-
temporal correlated information in human activ-
ity data. (2) RobustHAR then designs multi-
scale spatial-temporal masked self-supervised pre-
training with semantic-consistent multi-scale fea-
ture co-learning for learning robust features at dif-
ferent scales. (3) Finally, RobustHAR fine-tunes
the pretraining model with adaptive multi-scale fea-
ture fusion for human activity recognition. Ex-
tensive experiments on three public multi-sensor
datasets demonstrate that RobustHAR outperforms
existing state-of-the-art methods.

1 Introduction

Wearable sensor-based human activity recognition (WSHAR)
has seen rapid development with the increasing availability
of low-cost wearable devices. Compared with visual data
[Liu et al., 2024c; Liu et al., 2024a; Zhou et al., 2024] (such
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Figure 1: Multiscale masks in activity data from multiple wear-
able sensors can be classified into three types: segment-wise mask,
channel-wise mask, and sensor-wise mask.

as RGB, depth, and skeleton), wearable sensors enable the
recognition model focus more on motion information, with
its robustness to environmental variations [Hong et al., 2024].
Hence, WSHAR has attracted increasing research attention
and demonstrates extensive applicability across diverse do-
mains (including industrial control, and smart classrooms).

WSHAR is a standard time series classification task, ow-
ing to the temporal nature of the data generated by wearable
sensors. Therefore, common time series classification meth-
ods like TimeNet [Wu et al., 2023] and Informer [Zhou et
al., 2021] can enhance the performance of activity recogni-
tion to a certain extent. Nevertheless, traditional supervised
learning methods are limited by extensive labeled datasets,
which results in substantial labeling costs and potential in-
consistencies. In practical application contexts, the collec-
tion and annotation of large-scale wearable sensor data of-
ten demand considerable time and financial resources, par-
ticularly in domains requiring specialized expertise. Further-
more, variations in labeling by different annotators can in-
troduce inconsistencies that significantly affect the quality of
model training, ultimately compromising its performance in
real-world applications. To address the aforementioned is-
sues, self-supervised pre-training can learn activity feature
from large amounts of unlabeled data and then fine-tune for
HAR with a limited set of labeled data.
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Currently, contrastive learning [Zhang et al., 2025a] and
masked modeling [Haresamudram et al., 2022] are two
predominant approaches within self-supervised pre-training,
widely used in WSHAR. Although contrastive learning can
effectively extract features by data augmentation, it encoun-
ters considerable limitations in addressing data missing issues
prevalent in real-world applications. This limitation arises
from its reliance on complete sample pairs for training. Data
missing compromises the construction of positive and neg-
ative pairs, leading to biased representations. In contrast,
masked modeling can reconstruct the masked wearable sen-
sor data based on the unmasked part. This approach facil-
itates the model’s ability to learn robust activity representa-
tions without dependence on complete data. However, since
semantic information of sensor-based action data is mainly
contained in temporal variations [Dong er al., 2024], the ex-
isting masked modeling often ignores spatial correlated infor-
mation among different wearable sensors. Spatial-temporal
masked modeling addresses this gap by integrating spatial
and temporal dimensions, allowing the model to leverage spa-
tial relationships while capturing temporal variations. Com-
mon spatial-temporal masked modeling (such as MaskCAE
[Cheng et al., 2024], STD-MAE [Gao et al., 2024], ST-MAE
[Miao et al., 2024]) often separates temporal masking from
spatial masking, which restricts the interaction between spa-
tial and temporal information among wearable sensor data.
Besides, different human activities often span across various
spatial-temporal scales, which results in activity recognizer
failing to capture intricate spatial-temporal semantic informa-
tion, as shown in Fig.1.

Motivated by the above observations, we propose Ro-
bustHAR, a new HAR model with multi-scale spatial-
temporal masked self-supervised pre-training. Firstly,
RobustHAR extracts spatial-temporal correlated features
among inter-sensor and intra-sensor by constructing location-
inspired spatial-temporal 3D-variation modeling. Secondly,
multi-scale spatial-temporal masked pre-training enables ac-
tivity recognition model to learn robust feature across various
temporal and spatial scales, thereby improving its capacity to
capture the contextual information inherent in human activ-
ity. Finally, a small amount of labeled activity data is used to
fine-tune the pre-training model for human activity recogni-
tion. Besides, Extensive experiments conducted on three pub-
lic multi-sensor datasets demonstrate that RobustHAR out-
performs the current state-of-the-art algorithms. The main
contributions of our work are as follows:

* Location-inspired spatial-temporal 3D-variation model-
ing is constructed to mine spatial-temporal correlated in-
formation among human activity data.

* Multi-scale spatial-temporal masked pre-training with
semantic-consistent multi-scale feature co-learning is
designed for capturing robust spatial-temporal contex-
tual information at different scales.

* RobustHAR fine-tunes the pre-training model with a
small set of labeled data for human activity recognition
by adaptive multiscale feature fusion.

2 Related Work

2.1 Wearable sensor-based human activity
recognition

WSHAR can provide personalized solutions for human-
computer interaction by leveraging real-time, continuous
data collection from wearable sensors. Early human activ-
ity recognition models often rely on a single wearable sen-
sor, such as accelerometers, gyroscopes, and magnetome-
ters [Chen et al,, 2023]. However, using a single sensor
for capturing human activity data may introduce measure-
ment bias, which limits its ability to distinguish ambigu-
ous activity with similar data sequences [Liu et al., 2024b].
Hence, integrated devices (such as smart wristbands, smart-
phones, and data gloves) have been increasingly utilized in
HAR, a trend made possible by the rapid advancements in
sensor technology. Meanwhile, the extensive application of
deep learning (such as GRU [Lalwani and Ramasamy, 2024;
Pandey and Kumar, 2024], Transformer [Kitaev ef al., 2020;
Zhou et al., 20211, GNN [Zhang et al., 2023; Wei et al., 2024;
Wei et al., 2025], and MambalLi et al., 2024; Zhang et
al., 2025b]) has substantially improved the performance of
WSHAR. In real-world applications, factors such as sensor
malfunctions and signal loss can easily lead to the loss of col-
lected human activity data. Therefore, constructing a robust
HAR model has become a primary focus of current research.

2.2 Self-supervised pre-training learning for
human activity recognition

Common self-supervised pre-training learning for HAR in-
cludes contrastive learning and masked modeling [Haresamu-
dram et al., 2022; Jain et al., 2022]. Contrastive learning
[Haresamudram et al., 2021] aims to maximize the similar-
ity between positive samples and minimize the distance be-
tween negative samples, which can guide the model to learn
robust feature representations. However, contrastive learning
is not suitable for data-missing scenario. The primary chal-
lenge lies in the fact that contrastive learning relies on main-
taining consistency in the feature space across different action
samples. In contrast, masked modeling [Cheng er al., 2024;
Gao et al., 2024; Miao et al., 2024] can reconstruct miss-
ing activity data based on the unmasked data. It can dy-
namically compensate for missing activity data, thereby en-
hancing data integrity and improving the model’s generaliza-
tion capacity. Nevertheless, since semantic information in
sensor-based activity data is often contained in temporal vari-
ations [Dong er al., 2024], most existing masked modeling
often ignores spatially correlated information among different
wearable sensors. Furthermore, the varying spatial-temporal
scales of human activities often hinder activity recognizers
from capturing fine-grained spatiotemporal semantics. As a
result, existing self-supervised frameworks struggle to effec-
tively model complex spatial-temporal dependencies under
multi-scale data-missing conditions.

3 Methodology

As mentioned above, RobustHAR aims to capture multi-scale
spatial-temporal correlated information among human activ-
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Figure 2: Research Framework. RobustHAR is comprised of three key components: location-inspired spatial-temporal 3D-variation model-
ing, multi-scale spatial-temporal masked pre-training, and fine-tuning for HAR. The location-inspired spatial-temporal 3D-variation modeling
is designed to uncover the intricate spatial-temporal correlated information within human activity data. Based on it, multi-scale spatial-
temporal masked pre-training employs multi-scale masking based on positional information and incorporates a semantic-consistent multi-
scale feature co-learning to capture contextual semantics across various scales. Finally, fine-tuning for HAR is conducted with adaptive

multiscale feature fusion to enhance recognition performance.

ity data in the data-missing scenario, as shown in Fig. 2. The
details of RobustHAR are described as follows.

3.1 Location-inspired spatial-temporal
3D-variation modeling

Human activity is temporally dynamic and spatially com-
plex, especially in multi-sensor environments, where the po-
sitional relationships and interactions between different sen-
sors can significantly impact the performance of HAR. By
considering the spatial distribution of sensors, we can bet-
ter understand the relative relationships of each body parts
during movement, thereby extracting richer spatial-temporal
activity features. Therefore, RobustHAR leverages location-
inspired spatial-temporal 3D-variation modeling to capture
the spatial-temporal correlated information among wearable
sensor-based human activity data.

Given that the multi-dimensional data collected from N
sensors is represented as D = {d; ;}V,; € RT*VN*xC j =
1,2,...,T. where d; ; denotes the measurement value of
the ¢-th sensor at time j, C denotes the dimensionality of
the features generated by each sensor, and 7' is the num-
ber of time steps. Meanwhile, each sensor’s relative spatial
position is represented by position matrix A. Therefore, we
can transform the original multisensor human activity data
into location-inspired spatial-temporal 3D-variation, and the
transformation formula is shown as follows:

X =DA, €y

where X € RTXEXN denotes the spatial-temporal 3D-
variation, as shown in Fig.1. The spatial-temporal 3D vari-
ation X represents human activity data that are spatially adja-
cent and also adjacent in the semantic space. This adjacency
ensures the coherence and validity of human activity data.

Specifically, we map the sensors to the Z-axis of a 3D coordi-
nate system according to their spatial positions on the human
body. Subsequently, the time and feature dimensions of the
sensors along the Z-axis are projected onto the X and Y axes
of the 3D coordinates.

3.2 Multiscale spatial-temporal masked
self-supervised pre-training

Multi-scale spatial-temporal masked: Human activities
inherently exhibit multi-scale temporal and spatial charac-
teristics. For instance, actions such as walking and run-
ning, though similar in basic motion patterns, differ signif-
icantly in their spatial-temporal representations. To capture
such fine-grained distinctions, multi-scale spatial-temporal
masked is used to extract rich contextual semantics across di-
verse scales. This approach not only enhances the model’s
ability to learn comprehensive activity features but also im-
proves robustness in data-missing scenarios by leveraging
spatial-temporal correlations at different scales.

Common masks in WSHAR include segment-wise mask,
channel-wise mask, and sensor-wise mask. Segment-wise
mask, channel-wise mask, and sensor-wise mask are in a
similar manner, so we take sensor-wise mask as an exam-
ple. Given spatial-temporal 3D-variation X € RTXCxN
we randomly select N,, out of N wearable sensors for
masking. Meanwhile, we define the spatial masked matrix
M € RT*EXN with the same shape as spatial-temporal 3D-
variation F, so M can be represented as follows:

- {]
1

where z represents the Z-axis index of spatial-temporal 3D-
variation X. So we obtain sensor-wise masked human activity

,z € Random(Np,),
, others,

2
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data by the following equation:
F;, = Encoder(M © X)), 3)

where © represents element-wise product, F'§, means sensor-
wise masked human activity feature, Encoder(:) denotes
feature extractor, we use transformer as feature encoder. Sim-
ilarly, we can obtain segment-wise masked activity feature
F%¢, and channel-wise masked activity feature F,).

After obtaining the masked multi-scale activity data fea-
tures, we restore them to a form that closely approximates
the original data by the decoder layer. This decoding pro-
cess not only recovers the masked spatial-temporal activity
data, but also reinforces the model’s comprehension of data
integrity by progressively reconstructing human activity fea-
tures. Such a process enhances the model’s robustness in
the presence of data-missing interference, while facilitating
the extraction of more meaningful features during training,
thereby improving the overall performance in activity recog-
nition tasks. We use X3,, X3S, and X, to represent recon-
structed sensor-wise activity data, segment-wise activity data,
and channel-wise activity data, respectively. Hence, the de-
coding process is shown in the following equation:

X% = Decoder(F%,),
Xse = Decoder(F52), 4)
X¢ = Decoder(F¢)),

where Decoder(-) denotes decoder layer, we use Trans-
former as the decoder layer. Given ground truth of the masked
activity data X®, X*®¢ and X°, we can compute the 10ss L.
among ground truth and the reconstructed data by mean ab-
solute error (MAE), as shown in the following equation:

Lree = Lo + L3+ L

Tec Tec rec’ (5)

B B
where ’C’iec = %Zi:l | Xzs ol an,z |’ ’Cf“Zc = %Zi:l |

X —X5e, | and LS, = % Zf;l | X§ — X7, ,; | represent
sensor-wise reconstructed loss, segment-wise reconstructed
loss, and channel-wise reconstructed loss, respectively. B de-
notes the number of batch size.

Semantic-consistent multi-scale feature co-learning:
When performing masking operations on multi-scale data
(such as segment-wise mask, channel-wise mask, and sensor-
wise mask), HAR model needs to ensure that the information
representation at different scales remains consistent. If the
masking operations at each scale lead to inconsistent seman-
tic information, HAR model may lose its overall understand-
ing of human activity, resulting in a decline in recognition
performance. Besides, semantic-consistent multi-scale fea-
ture co-learning can enhance the robustness of HAR model
when wearable sensor data at one scale is incomplete, the oth-
ers can still provide sufficient semantic information. Hence,
we introduce similarity metric to ensure consistent semantic
representations in the HAR model under different masking
scales, as shown in the following equation:

Leon = sim(XE, X5¢) + sim(X$, XE) + sim(Xg, X5°),

(6)
where X1,i € {se,s,c} denotes complete human activity
data that its masked portions has been replaced by the gener-
ated data, sim(-) represents similarity metric function (such
as cosine similarity).

As a result, the loss function £, of multi-scale spatial-
temporal masked self-supervised pretraining model mainly
consists of multi-scale reconstruction loss and semantic con-
sistency multi-scale feature co-learning loss, as shown in the
following equation.

£p7‘e = Aﬁrec + (]- - )\)»Cconv (7)

where ) represents balance coefficient in the loss function.
The former is used to ensure the accurate reconstruction of
the masked data across different scales, helping the model re-
cover the missing information and preserve the original struc-
ture of human activity data. The latter enforces semantic con-
sistency across the different scales, ensuring that the feature
representations at each scale align in terms of their underlying
semantic information.

3.3 Fine-tuning with adaptive multi-scale feature
fusion

From multi-scale spatial-temporal masked self-supervised
pretraining, we can obtain multi-scale feature encoders
Encoder®, Encoder®®, and Encoder®. Given a small
set of labeled human activity data D' = {dl,y;i},i =
1,2,---,n;, where n; denotes the number of labeled activ-
ity data, y; represents the label of activity sample data d’. We
then extract multi-scale activity features by encoder after self-

supervised pre-training, as shown in the following equation:
FJ = Encoder!(d}), (®)

where j € {s, se,c} means sensor-wise operation, segment-
wise operation, and channel-wise operation. Features at dif-
ferent scales can capture distinct aspects of human activity.
For example, segment-wise features focus on subtle motion
details, while sensor-wise features highlight the spatial cor-
relations between different sensors. Based on it, we con-
struct adaptive multi-scale feature fusion [Wu er al., 2024;
Guan et al., 2025; Liu ef al., 2025] to integrate features across
various scales by cross-attention [Hou et al., 2019], as shown
in Fig.2.

We use sensor-wise activity feature F'$ and channel-wise
feature F'© as examples. Firstly, we construct correlation layer
to calculate a relationship between sensor-wise and channel-
wise human activity features with cosine distance, as calcu-
lated in Equation (9):

Fs Fs
RS _ T ,
et e o
FC T( FC )
R® = \
TFR TF T

where R® and R° represent the relevance between sensor-
wise and channel-wise human activity features. Cross-
attention mechanism is then used to generate sensor-wise A®
and channel-wise A€ attention maps, respectively. Given the
sensor-wise correlation R® and channel correlation R€, so
fused feature can be calculated in Equation (10).

A® = Crossatt(R® F®),
A° =

Crossatt(R®, F€), (19)
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Dataset Devices Activities Subjects  Size
Opportunity 5 17 4 8165
RealWorld 7 8 13 39281
CZU-MHAD 10 22 7 880

Table 1: Statistical description of datasets.

where Crossatt(-) denotes cross-attention. Subsequently,
we integrate sensor-wise information and channel-wise infor-
mation to more accurately capture the dynamic features of
human activity, as shown in Equation (11).

F*¢ = (A®® A°), (11)

where F*¢ represents fused human activity features, ® de-
notes dot product. Finally, the fusion of human activity fea-
tures is used to predict the label of human activity data (D).
Meanwhile, the cross-entropy loss function is introduced to
train HAR model.

3.4 Complexity analysis

The overall computing complexity of RobustHAR is
O(LTN CQ), where L is the number of Transformer layers,
T is the time step, IV is the number of wearable sensors, and
C' is the dimensionality of the features generated by wearable
sensors. It is slightly higher than other models (such as ST-
MAE: O(LTNC)). However, its robustness and accuracy in
data-missing scenarios far exceed those of the others.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. To validate the effectiveness of the proposed
method, we conduct experiments on the following three
multi-sensor public datasets: Opportunity [Roggen et al.,
2010], RealWorld [Sztyler and Stuckenschmidt, 2016], and
CZU-MHAD [Chao et al., 2022], the detailed description of
datasets is shown in the Table.1.

Evaluation Metrics. The evaluation metrics are essential
for assessing the robustness and generalization of the human
activity recognition models. We employ accuracy (denoted as
Acc), and F1 score as the evaluation metrics for the model.

4.2 Baselines

To evaluate whether RobustHAR can achieve performance
comparable to supervised learning with limited labeled data,
we have chosen four supervised HAR models (Reformer [Ki-
taev et al., 2020], Informer [Zhou et al., 2021], TimeNet [Wu
et al., 2023], and MSGNet [Cai et al., 2024]). Meanwhile, to
verify the superiority of RobustHAR in the spatial-temporal
feature extraction, we have selected four self-supervised
HAR models (SimMTM [Dong et al., 2024], MaskCAE
[Cheng et al., 2024], STD-MAE [Gao et al., 2024], ST-MAE
[Miao et al., 2024]).

4.3 Implementation Details

To ensure fair comparisons, we carefully tune all models, in-
cluding both baselines and our proposed RobustHAR. Specif-
ically, we first initialize hyperparameters in each baseline ac-
cording to guidelines provided in the original papers, and then

fine-tune them on our used datasets for ensuring their fair per-
formance. The experiments are conducted with two NVIDIA
GeForce RTX 4090 GPUs with 24GB memory. All models
are implemented with Python 3.9 and PyTorch 2.4. In the pre-
training phase, we set the batch size to 64 and the number of
training epochs to 200, with a learning rate of 0.001. Encoder
layer and decoder layer both use a single-layer transformer
with 8 attention heads. During the fine-tuning RobustHAR,
the batch size is set to 32 and the number of training epochs
is set to 100, with the learning rate of 0.001. Meanwhile, we
divide datasets into training, validation, and test sets in a ra-
tio of 8:1:1. When fine-tuning the pre-training model with a
small set of labeled data, the labeled data accounts for 15%
of the training dataset. Besides, balance coefficient A is cho-
sen from {0.1,0.3,0.5,0.7,0.9}, and masking rate is selected
from {0.1,0.3,0.5,0.7,0.9}. All experimental results are re-
ported as mean values obtained from five independent trials.

4.4 Comparison with baselines

The experimental results demonstrate that RobustHAR
achieves superior performance compared to other baselines
on the Opportunity, RealWorld, and CZU-MHAD datasets,
as shown in the table 2. Specifically, Transformer-based ac-
tion recognition models (such as Reformer and Informer)
can leverage the modeling capacity of a Transformer with
an architecture that can capture long-sequence semantic in-
formation of activity data. However, these methods over-
look the varying inter-series correlations across different time
scales. Hence, TimeNet and MSGNet can improve the accu-
racy of activity recognition. Compared to supervised learn-
ing models, self-supervised learning-based human activity
recognition models, particularly in masked modeling (such
as SImMTM, MaskMAE, and ST-MAE), these models can
enable the activity recognition model to learn global and con-
textual semantic features by masking portions of the input
data. Meanwhile, STD-MAE can model the heterogeneity of
spatial-temporal activity data by spatial-temporal-decoupled
masked pre-training. While these masked modeling meth-
ods can effectively capture the spatial-temporal features of
human activities, they often fail to account for the influence
of spatial-temporal features across different scales on HAR.
Therefore, RobustHAR achieves excellent recognition per-

100%
95% 1
90% A I ‘
85% | ‘ ‘
80% :
ACC ‘ Fl1 ACC ‘ Fl1 ACC ‘ F1
Opportunity RealWorld CZU-MHAD
mw/o LST-3D ®mw/o MSTM ®w/o AMFF = RobustHAR

Figure 3: Ablation studies.
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Method Venue Opportunity RealWorld CZU-MHAD
ACC(%)r Fl1(%)r ACC(%)1T Fl(%)t ACC(%)r Fl1(%)t
Reformer ICLR’20 86.58 86.62 89.79 89.83 88.35 88.43
Informer AAAT21 89.64 89.65 90.37 90.35 90.46 90.48
TimeNet ICLR’23 91.05 91.02 91.74 91.77 92.19 92.33
MSGNet AAAT’24 92.23 92.24 92.43 92.45 91.86 91.83
SimMTM  NeurIPS’23 92.51 92.49 92.04 92.06 91.46 91.48
MaskCAE JBHI'24 90.34 90.36 92.65 92.67 89.72 89.73
STD-MAE IJCAI'24 92.43 92.42 93.63 93.66 91.39 91.41
ST-MAE Ubicomp’24 92.65 92.58 93.07 93.11 92.73 92.74
RobustHAR - 93.72 93.74 95.76 95.78 94.63 94.69
Table 2: Comparison with baselines.
100 100 4.6 Parameters Analysis
Impact of balance coefficient in the loss function. Dur-
95 ing the pre-training phase, loss function L,.. in Ro-
$ 95 & Ak bustHAR is primarily composed of reconstruction 1oss L.
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g N £ 90 NI that RobustHAR can recover the masked human activity
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< =t Opportunity < 85 | —#+—Opportunity spatial-temporal correlated information among inter-sensor
CZU-MHAD CZU-MHAD and intra-sensor channels. The latter enforces semantic-
Realiaeld RealWorld consistent in activity features across different scales. Hence,
85 80 how to balance the reconstruction loss and semantic-
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Figure 4: Parameter Analysis.

formance on the Opportunity (ACC:93.72%, F1: 93.74%),
RealWorld (ACC: 95.76%, F1: 95.78%), and CZU-MHAD
datasets (ACC:94.63%, F1: 94.69%).

4.5 Ablation Studies

RobustHAR primarily consists of location-inspired spatial-
temporal 3D-variation modeling module (LST-3D), multi-
scale spatial-temporal masked self-supervised pre-training
module (MSTM), and fine-tuning the pre-training model with
adaptive multiscale feature fusion (AMFF). In order to eval-
uate the contributions of each individual module, we conduct
a series of ablation experiments. These experiments system-
atically remove (denoted as w/o) specific components to as-
sess their impact on the overall performance, as shown in
Fig.3. Specifically, the experimental results indicate that the
performance of RobustHAR is most significantly impacted
when multi-scale spatial-temporal masked pre-training is not
employed. On the RealWorld dataset, this results in a 10%
reduction in recognition accuracy of RobustHAR. Further-
more, it is apparent that both the location-inspired spatial-
temporal 3D-variation modeling and fine-tune pre-training
model with adaptive multi-scale feature fusion play crucial
roles in enhancing the final recognition performance. Over-
all, RobustHAR can capture the spatial-temporal relation-
ships among inter-sensor and intra-sensor at different scales,
thereby ensuring the semantic consistency of features across
various scales.

consistent loss is crucial to achieving optimal performance in
RobustHAR. As shown in Fig.4(a), RobustHAR attains the
highest recognition accuracy on the Opportunity and Real-
World dataset when balance coefficient is set to 0.5. Mean-
while, RobustHAR achieves the best performance on the
CZU-MHAD dataset when balance coefficient is set to 0.7.
Impact of masking rate during the pre-training phase.
The masking rate in the pre-training phase plays a critical
role in determining both the learning effectiveness and the
ultimate performance of HAR model. An appropriately cho-
sen masking rate strikes a balance between the complexity of
HAR task and the capacity of HAR to learn meaningful and
generalized representations from human activity data. When
the masking rate is too low, HAR model has access to an ex-
cessive amount of information, facilitating rapid convergence
but potentially leading to overfitting. It primarily stems from
HAR model’s excessive reliance on the available human ac-
tivity data. Conversely, if the masking rate is too high, HAR
model may struggle to learn sufficient meaningful patterns of
human activity. This can result in hindering its ability to cap-
ture the underlying structure of human movements. As shown
in Fig.4(b), when masking rate is set to 0.3, RobustHAR
achieves the highest recognition accuracy on the Opportunity
and CZU-MHAD datasets; when the masking rate is set to
0.5, RobustHAR performs best on the RealWorld dataset.

4.7 Robustness for HAR in the data-missing
scenario

Human activity recognition (HAR) models often face chal-
lenges when data is missing, either due to sensor failures
or noise in the environment. To evaluate the robustness of
the RobustHAR model under such conditions, we simulate
data-missing scenarios by randomly removing data points at
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Figure 5: Reconstruction performance in self-supervised pre-
training. The dashed box indicates the masked and reconstructed
parts of human activity data.

different scales. Specifically, we analyze the robustness of
different methods in data-missing scenarios by randomly set-
ting different masking rates among different scales. For the
data-missing rates, we select three conditions: 5%, 10%, and
15%. The experimental results are shown in Table.3. As can
be seen from the table, the robustness of the self-supervised
pre-trained model outperforms that of the supervised model.
More importantly, RobustHAR achieves the best robust per-
formance by capturing spatial-temporal dependencies at dif-
ferent scales.

4.8 Case study

The reconstruction performance during the self-supervised
pre-training phase plays a crucial role in understanding the
intricate internal structure of human activity data. We ex-
amine how well RobustHAR can recover the missing in-
formation, as well as the quality of the reconstructed fea-
tures, by comparing the reconstructed data to the original
input. As illustrated in Fig.5, RobustHAR exhibits varying
degrees of reconstruction accuracy depending on the scale at
which human activity data is masked. At the segment-wise
mask, RobustHAR can capture long-range dependencies be-
tween different activities. Meanwhile, the reconstruction per-
formance applied at the channel-wise mask remains robust.
This suggests that RobustHAR can retain the channel-specific
features for accurately recognizing human activities. Be-
sides, at the sensor-wise level, where individual sensor data
is masked, RobustHAR can effectively exploit cross-sensor
correlations to reconstruct the missing sensor values, demon-
strating its ability to capture spatial dependencies between
different sensor locations. Although there is a discrepancy
between the reconstructed human activity data (sensor-wise
mask) and the original ground-truth data, sensor-wise fea-
tures can ensure semantic coherence across different feature
scales by semantic-consistent multi-scale feature co-learning.
This consistency enables the model to better leverage a small
amount of labeled data during the fine-tuning stage.

5 Conclusion

This paper proposes RobustHAR, a novel multi-scale spatial-
temporal masked self-supervised pre-training framework.

Method Opportunity RealWorld CZU-MHAD
Reformer 84.58% 86.59% 84.42%
Informer 87.82% 87.63% 88.64%
Timenet 90.26% 89.94% 88.57%
MSGNet 90.37% 90.88% 89.39%
SimMTM 90.87% 91.35% 90.12%

MaskCAE 88.24% 89.17% 85.93%
STD-MAE 90.61% 91.32% 88.29%
ST-MAE 90.04% 90.45% 89.32%
RobustHAR 92.96% 94.85% 93.58%
Reformer 81.92% 82.75% 79.94%

Informer 83.28% 84.68% 84.21%
Timenet 85.69% 85.37% 84.62%
MSGNet 85.21% 85.72% 86.77%
SimMTM 88.56% 87.61% 88.54%

MaskCAE 84.17% 86.44% 84.65%
STD-MAE 87.73% 88.83% 83.82%
ST-MAE 85.75% 87.27% 85.73%
RobustHAR 91.37% 94.04% 92.17%
Reformer 75.85% 74.68% 70.78%

Informer 77.64% 75.94% 78.66%

Timenet 78.46% 77.28% 80.36%
MSGNet 76.91% 79.63% 80.25%
SimMTM 82.48% 81.85% 83.72%
MaskCAE 79.59% 80.46% 82.57%

STD-MAE 83.46% 82.67% 79.06%

ST-MAE 80.62% 83.11% 81.57%

RobustHAR 88.67% 86.73% 89.52%

Table 3: Robustness for HAR in the data-missing scenario. The
data-missing rate in the green section is 5%, in the red section is
10%, and in the blue section is 15%. The values in the table are
recognition accuracy.

It not only captures temporal-spatial correlations informa-
tion among intra-sensors and inter-sensors by location-
inspired spatial-temporal 3D modeling, but also effectively
mines multi-scale robust activity features with multi-scale
spatial-temporal masked pretraining model. Meanwhile,
RobustHAR ensures semantic consistency across activity
features at different scales. Besides, experimental results
demonstrate that RobustHAR surpasses state-of-the-art base-
lines, and maintains robust performance for HAR in the data-
missing scenario.

Acknowledgments

This work was supported in part by the Nature Sci-
ence Foundation of China under Grant No.62277046, the
Key Research and Development Program of Xuzhou un-
der Grant No.KC23296, the Science and Technology Pro-
gram of Xuzhou under Grant No.KC22047, the Gradu-
ate Innovation Program of China University of Mining and
Technology under Grant No.2023WLKXJ179, the Funda-
mental Research Funds for the Central Universities under
Grant No.2023XSCXO048, the Postgraduate Research & Prac-
tice Innovation Program of Jiangsu Province under Grant
No.KYCX23 2728.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

References

[Cai et al., 2024] Wanlin Cai, Yuxuan Liang, Xianggen Liu,
Jianshuai Feng, and Yuankai Wu. Msgnet: Learning multi-
scale inter-series correlations for multivariate time series
forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 11141-11149, 2024.

[Chao et al., 2022] Xin Chao, Zhenjie Hou, and Yujian Mo.
Czu-mhad: a multimodal dataset for human action recog-
nition utilizing a depth camera and 10 wearable inertial
sensors. IEEE Sensors Journal, 22(7):7034-7042, 2022.

[Chen et al., 2023] Ling Chen, Yi Zhang, Shenghuan Miao,
Sirou Zhu, Rong Hu, Liangying Peng, and Mingqi Lv.
Salience: An unsupervised user adaptation model for mul-
tiple wearable sensors based human activity recognition.
IEEE Transactions on Mobile Computing, 22(9):5492—
5503, 2023.

[Cheng et al., 2024] Dongzhou Cheng, Lei Zhang, Lutong
Qin, Shuoyuan Wang, Hao Wu, and Aiguo Song.
Maskcae: Masked convolutional autoencoder via sen-
sor data reconstruction for self-supervised human activity
recognition. IEEE Journal of Biomedical and Health In-
formatics, 28(5), 2024.

[Dong et al., 2024] Jiaxiang Dong, Haixu Wu, Haoran
Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked
time-series modeling. In Proceedings of Advances in Neu-
ral Information Processing Systems, volume 36, 2024.

[Gao er al., 2024] Haotian Gao, Renhe Jiang, Zheng Dong,
Jinliang Deng, and Xuan Song. Spatio-temporal-
decoupled masked pre-training for traffic forecasting. In
Proceedings of International Joint Conference on Artifi-
cial Intelligence, 2024.

[Guan er al., 2025] Renxiang Guan, Wenxuan Tu, Siwei
Wang, Jiyuan Liu, Dayu Hu, Chang Tang, Yu Feng, Jun-
hong Li, Baili Xiao, and Xinwang Liu. Structure-adaptive
multi-view graph clustering for remote sensing data. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 16933-16941, 2025.

[Haresamudram et al., 2021] Harish Haresamudram, Irfan
Essa, and Thomas P16tz. Contrastive predictive coding for
human activity recognition. In Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, pages 1-26. ACM New York, NY, USA, 2021.

[Haresamudram et al., 2022] Harish Haresamudram, Irfan
Essa, and Thomas Plotz. Assessing the state of self-
supervised human activity recognition using wearables. In
Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, pages 1-47. ACM New
York, NY, USA, 2022.

[Hong et al., 2024] Zhiging Hong, Zelong Li, Shuxin
Zhong, Wenjun Lyu, Haotian Wang, Yi Ding, Tian He, and
Desheng Zhang. Crosshar: Generalizing cross-dataset hu-
man activity recognition via hierarchical self-supervised
pretraining. In Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, pages 1—
26. ACM New York, NY, USA, 2024.

[Hou ez al., 2019] Ruibing Hou, Hong Chang, Bingpeng Ma,
Shiguang Shan, and Xilin Chen. Cross attention network
for few-shot classification. In Proceedings of Advances in
Neural Information Processing Systems, volume 32, 2019.

[Jain et al., 2022] Yash Jain, Chi Ian Tang, Chulhong Min,
Fahim Kawsar, and Akhil Mathur. Collossl: Collabora-
tive self-supervised learning for human activity recogni-
tion. In Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, pages 1-28. ACM
New York, NY, USA, 2022.

[Kitaev et al., 2020] Nikita Kitaev, Lukasz Kaiser, and
Anselm Levskaya. Reformer: The efficient transformer.
In Proceedings of International Conference on Learning
Representations, pages 1-12, 2020.

[Lalwani and Ramasamy, 2024] Pooja Lalwani and Gane-
shan Ramasamy. Human activity recognition using a
multi-branched cnn-bilstm-bigru model.  Applied Soft
Computing, 154(3):111344, 2024.

[Li e al., 2024] Shuangjian Li, Tao Zhu, Furong Duan, Lim-
ing Chen, Huansheng Ning, Christopher Nugent, and Yap-
ing Wan. Harmamba: efficient and lightweight wearable
sensor human activity recognition based on bidirectional
mamba. [EEE Internet of Things Journal, 12(3):2373—
2384, 2024.

[Liu et al., 2024a] Jinfu Liu, Chen Chen, and Mengyuan Liu.
Multi-modality co-learning for efficient skeleton-based ac-
tion recognition. In Proceedings of the 32nd ACM Interna-
tional Conference on Multimedia, pages 4909-4918, 2024.

[Liu e al., 2024b] Xiao Liu, Guan Yuan, Rui Bing, Zhuo
Cai, Shengshen Fu, and Yonghao Yu. When skeleton
meets motion: adaptive multimodal graph representation
fusion for action recognition. In Proceedings of 2024

IEEE International Conference on Multimedia and Expo
(ICME), pages 1-6. IEEE, 2024.

[Liu et al., 2024c] Yang Liu, Fang Liu, Licheng Jiao,
Qianyue Bao, Lingling Li, Yawei Guo, and Puhua Chen.
A knowledge-based hierarchical causal inference network

for video action recognition. IEEE Transactions on Multi-
media, 26(4):9135-9149, 2024.

[Liu et al., 2025] Yang Liu, Lei Si, Zhongbin Wang, Dong
Wei, Xin Li, and Jinheng Gu. Dual discriminator and
adaptive multisource feature fusion wgan-gp for coal-rock
properties recognition under limited infrared thermal im-

ages. IEEE Transactions on Industrial Informatics, pages
1-12, 2025.

[Miao et al., 2024] Shenghuan Miao, Ling Chen, and Rong
Hu. Spatial-temporal masked autoencoder for multi-
device wearable human activity recognition. In Proceed-
ings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, pages 1-25. ACM New York,
NY, USA, 2024.

[Pandey and Kumar, 2024] Ajeet Pandey and Piyush Kumar.
Residual deep gated recurrent unit-based attention frame-
work for human activity recognition by exploiting dilated
features. The Visual Computer, 40(2):1-20, 2024.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Roggen et al., 2010] Daniel Roggen, Alberto Calatroni,
Mirco Rossi, Thomas Holleczek, Kilian Forster, Gerhard
Troster, Paul Lukowicz, David Bannach, Gerald Pirkl,
Alois Ferscha, et al. Collecting complex activity datasets
in highly rich networked sensor environments. In Proceed-
ings of International Conference on Networked Sensing
Systems, pages 233-240. IEEE, 2010.

[Sztyler and Stuckenschmidt, 2016] Timo  Sztyler  and
Heiner Stuckenschmidt. On-body localization of wearable
devices: An investigation of position-aware activity recog-
nition. In Proceedings of IEEE International Conference
on Pervasive Computing and Communications, pages 1-9.
IEEE, 2016.

[Wei et al., 2024] Yuecen Wei, Haonan Yuan, Xingcheng Fu,
Qingyun Sun, Hao Peng, Xianxian Li, and Chunming Hu.
Poincaré differential privacy for hierarchy-aware graph
embedding. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9160-9168, 2024.

[Wei et al., 2025] Yuecen Wei, Xingcheng Fu, Lingyun Liu,
Qingyun Sun, Hao Peng, and Chunming Hu. Prompt-
based unifying inference attack on graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, pages 12836-12844, 2025.

[Wu et al., 2023] Haixu Wu, Tengge Hu, Yong Liu, Hang
Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series
analysis. In Proceedings of International Conference on
Learning Representations, 2023.

[Wu et al., 2024] Zonggian Wu, Yujing Liu, Mengmeng
Zhan, Ping Hu, and Xiaofeng Zhu. Adaptive multi-
modality prompt learning. In Proceedings of the ACM In-
ternational Conference on Multimedia, pages 8672—-8680,
2024.

[Zhang ef al., 2023] Guixian Zhang, Debo Cheng, and
Shichao Zhang. Fpgnn: Fair path graph neural network for
mitigating discrimination. World Wide Web, 26(5):3119—
3136, 2023.

[Zhang et al., 2025a] Guixian Zhang, Guan Yuan, Debo
Cheng, Lin Liu, Jiuyong Li, and Shichao Zhang. Disen-
tangled contrastive learning for fair graph representations.
Neural Networks, 181(1):106781, 2025.

[Zhang et al., 2025b] Xuebin Zhang, Qicheng Xu, Fuyuan
Feng, Xiaochen Lu, and Longting Xu. Fall-mamba: A
multimodal fusion and masked mamba-based approach
for fall detection. [EEE Internet of Things Journal,
12(8):10493-10505, 2025.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi
Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long
sequence time-series forecasting. In Proceedings of the
AAAI conference on Artificial Intelligence, pages 11106—
11115, 2021.

[Zhou et al., 2024] Yuxuan Zhou, Xudong Yan, Zhi-Qi
Cheng, Yan Yan, Qi Dai, and Xian-Sheng Hua. Block-
gcn: Redefine topology awareness for skeleton-based ac-

tion recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
2049-2058, 2024.



