Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

A Fast and Accurate ANN-SNN Conversion Algorithm with Negative Spikes

Xu Wang!?, Dongchen Zhu'?* | Jiamao Li'?

!Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

{xu.wang, dchzhu, jmli} @mail.sim.ac.cn

Abstract

Spiking neural network (SNN) is an event-driven
neural network that can greatly reduce the power
consumption of the conventional artificial neural
networks (ANN). Many ANN models can be con-
verted to SNN models when the activation func-
tion is ReLU. For ANN models with other activa-
tion functions, such as the Leaky ReL.U function,
the converted SNN models either suffer from se-
rious accuracy degradation or require a long time
step. In this paper, we propose a fast and accurate
ANN-SNN conversion algorithm for models with
the Leaky ReLU function. We design a novel neu-
ron model that supports negative spikes. To address
the problem of long tail distribution in the activa-
tion values, we propose a threshold optimization al-
gorithm based on the variance of the activation val-
ues. To avoid the problem of error accumulation,
we jointly calibrate all layers in the SNN model
with adaptive weighting. Experiment results verify
the effectiveness of the proposed algorithm.

1 Introduction

In recent years, the method of artificial neural network (ANN)
has been adopted in lots of applications due to its superior
performance. As the networks grow larger and larger, the
problem of power consumption becomes one of the major
concerns when deploying the networks in battery-powered
mobile terminal devices. On the other hand, the human brain
can work with much lower power consumption. According
to a study from Nature [Roy ef al., 2019], for the typical task
of image classification, the power consumption of an ANN
model is about 250 watts, whereas only 20 watts are needed
by the human brain.

To improve the power efficiency of ANNS, the brain mech-
anisms can be resorted to. By mimicking the activities of
neurons, spiking neural networks (SNNs) utilize the spikes to
transfer information between neurons. If the output of a neu-
ron is non-zero, the neuron fires a spike and transmits it to
the next neuron. If the output of a neuron is zero, no spike
is emitted and nothing will be transmitted. Thanks to this
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event-driven mechanism, neurons that do not emit spikes do
not participate in the computation of the neural network. As a
result, the power consumption of SNN models is much lower
than ANN models.

In SNNs, the Heaviside step function is adopted when the
neuron emits a spike, which is a non-differentiable function.
A widely used method is to train an ANN model first and then
convert the ANN model to a SNN model. The converted SNN
model is expected to achieve the same accuracy as the ANN
model.

The use of spikes impose tight constraints on spiking neu-
ral networks. The presence and absence of the spikes can only
represent two states, “1” and “0”, which are non-negative
numbers. On the other hand, negative numbers are widely
used in neural networks. For example, the Leaky ReLU ac-
tivation function is adopted in YOLO [Redmon er al., 2016],
whose outputs include both positive and negative values. In
fact, 51% of the output of the neurons in YOLO are nega-
tive values [Kim er al., 2020]. To address the problem of
representing negative numbers, the polarity of the spike is ex-
ploited [Yu er al., 2022], where positive and negative spikes
represent “1” and “-17, respectively, and the absence of spike
represents “0”.

A widely used neuron model that supports negative spikes
is the signed neuron with imbalanced threshold (IBT) [Kim
et al., 2020]. Due to the large negative threshold in IBT, a
long time step is required [Yu er al., 2022]. To reduce the
latency of the converted SNN model, symmetric-threshold
ReLU (stReLU) is designed in [Han et al., 2023]. However,
the gradient of the stReLU function is zero within two large
regions, which may lead to a decrease in model accuracy.

It is known that by adjusting the threshold of the activa-
tion function, the firing rate after model weight normaliza-
tion can be improved, which helps to reduce the latency of
the converted SNN model [Rueckauer et al., 2016]. This can
be achieved by adding a clipping layer after the activation
function [Ho and Chang, 2021]. Another approach to reduce
the threshold is to minimizing the quantization error [Hu et
al., 2023]. Noting that the spikes propagate in both the spa-
tial and temporal domains, it is shown in [Wang et al., 2025]
that the latency of the converted SNN model can be reduced
by calibrating the SNN model in the temporal domain.

In this paper, we investigate the problem of converting
ANN models into SNN models with negative spikes. We
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design a new neuron model with adjustable negative thersh-
old. In the spatial domain, we propose to reduce the clipping
threshold by optimizing the variance of the activation values.
In the temporal domain, we show that the calibration error
can be reduced by jointly calibrating multiple layers in the
SNN model. The contribution of this paper are summarized
as follows:

(1) We design a novel neuron model that supports nega-
tive spikes. Compared to the conventional IBT model, the
proposed neuron model has a larger firing rate for negative
spikes, which helps to reduce the latency of the converted
SNN model. Compared to the conventional stReLU model,
the proposed neuron model is designed based on the Leaky
ReLU activation function, whose gradient is non-zero within
all regions. So the proposed neuron model does not suffer
from the accuracy loss problem.

(2) We show that some neurons have a long tail distribution
of the activation values, which hinders the reduction of the
clipping threshold. We propose a threshold optimization al-
gorithm based on the variance of the activation values, which
can improve the firing rate after model weight normalization.

(3) To avoid the problem of calibration error accumulation,
we propose to jointly calibrate all layers in the SNN model. In
addition, we design a dynamic weighting method for multiple
layers, which can adaptively adjust the attention to each layer
based on the progress of the training.

2 Related Works

Neuron Model With Negative Spikes. To represent the neg-
ative activation values in YOLO, the signed neuron with im-
balanced threshold (IBT) is proposed in [Kim et al., 2020].
The IBT model adopts a very large negative threshold. So
the membrane potential has to accumulated within multiple
time steps until it reaches the negative threshold. As a con-
sequence, the firing rate of negative spikes in IBT is much
lower than that of positive spikes. To address this problem,
stReLU is developed in [Han er al., 2023], where the nega-
tive threshold has the same magnitude as the positive thresh-
old. In stReLU, hard clipping is adopted. The gradient of
the stReLU function is zero within the clipped region, which
results in a decrease in model accuracy. In [Yu erf al., 2022],
an augmented spike scheme is proposed, where the magni-
tude of the spikes is an integer whose value may be larger
than one. However, the augmented spike scheme also adopts
a large negative threshold.

In [Wang er al., 2022], a signed neuron with memory
(SNM) is proposed to address the SNN asynchronous trans-
mission information error problem. The SNM neuron emits a
negative spike when the memory of the neuron satisfies cer-
tain condition. To address the sequential error problem, a
signed IF neuron is designed in [Hu er al., 2023]. Interest-
ingly, a very small negative threshold is adopted. Note that
both the neuron model in [Wang er al., 2022] and [Hu er al.,
2023] are designed for the ReLU activation function, not the
Leaky ReLU activation function. The results in [Wang et
al., 2022] and [Hu et al., 2023] show that even for models
based on ReLU, adding some negative spikes can improve
the model performance.

ANN-SNN Conversion. In ANN-SNN conversion meth-
ods, an ANN model is trained first, and then converted to
a SNN model [Diehl et al., 2015; Rueckauer et al., 2017;
Sengupta er al., 2019]. Usually, the ANN-SNN conversion
method can obtain a good performance in model accuracy,
but requires a long time step [Eshraghian er al., 2023]. Many
algorithms have been developed to reduce the latency of the
converted SNN model. In [Ding et al., 2021], a rate norm
layer is proposed to replace the ReLU during the ANN train-
ing. In [Deng and Gu, 2021], a conversion pipeline based
on the threshold balance and soft-reset mechanisms is de-
veloped, which can minimize the conversion error between
SNN and ANN. In [Bu et al., 2022b], a quantization clip-
floor-shift activation function is proposed, which can approx-
imate the clipping error and quantization error. In [Liu et
al., 2022], the neuron model is separated into a accumulating
phase and a generating phase, and the neuron follows a in-
verse LIF scheme. In [Lv et al., 2024], a group of neurons are
employed when converting the ANN models to SNN models.
Note that all of the above algorithms only consider the train-
ing of ANN in the spatial domain, but not the calibration of
SNN in the temporal domain.

In [Ho and Chang, 20211, a clipping layer is added after

the activation function, which is used to optimize the thresh-
old with L2-regularization. Our threshold optimization algo-
rithm adopts the clipping layer from [Ho and Chang, 2021].
We find that some neurons suffer from a long tail distribution
of the activation values, which hinders the reduction of the
threshold. So we propose to fine-tune the ANN model based
on the variance of the activation values, which can improve
the firing rate after model weight normalization.
Training of SNN in the Temporal Domain. The SNN model
can be trained from scratch without a conversion process. In
[Zheng er al., 2021], a threshold-dependent batch normaliza-
tion (tdBN) method is developed, which supports SNN mod-
els with 50 layers. In [Meng er al., 2022], a differentiation on
spike representation method is developed by encode the spike
sequence and represent the SNN spiking as sub-differentiable
mapping. In [Cai er al., 2024], a patial-channel-temporal-
fused attention module is proposed to introduce the visual
attention mechanisms into SNN. These SNN training algo-
rithms do not require an ANN model as a reference.

In some ANN-SNN conversion methods, the converted
SNN model is calibrated in the temporal domain. In [Li
et al., 2021], it is proposed to calibrate the model weights
and initial potential to minimize the conversion error. In
[Wu et al., 2022], a progressive tandem learning framework
is proposed to compensate for the approximation errors in
ANN-SNN conversion. In [Wang er al., 2025], the initial
membrane potential is calibrated first, and then each layer is
calibrated with back-propagation-through-time (BPTT). Note
that all the algorithm [Li er al, 2021; Wu ef al., 2022;
Wang et al., 2025] adopt layer-wise calibration. The calibra-
tion error from the shallow layers may accumulate into the
deep layers, since every layer is calibrated separately.

In [Rathi and Roy, 2023], the membrane leak, thresh-
old, and model weights are fine-tuned by training the whole
model. However, only the output of the model is used to
calculate the loss function. In our method, all feature maps
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within the model are considered in the loss function.

3 Neuron Model

3.1 IF Neuron Model

In SNN, spike trains are used to convey information be-
tween neurons. We consider the integrate-and-fire (IF) neu-
ron model, which is widely used in [Deng and Gu, 2021;
Bu et al., 2022a; Hao et al., 2023]. At time step ¢, the tem-
porary membrane potential of the i-th neuron in the [-th layer
can be written as

,Ué,temp(t) = Ui(t - 1) + Z wi,jsfj_l(t) (l)
J

where v!(t — 1) is the membrane potential at time step ¢ — 1,
wf ; is the synaptic weight, sé-*l (t) is the spike from the pre-

vious layer. If the temporary membrane potential vﬁ’lemp (t)is
larger than the threshold V;}l], a spike is fired,
1, if ol g, () > Vi
l ’ %, tem, th»
. t = ’ p 2
55(®) {0, otherwise. @
After firing the spikes, the membrane potential is reset.
Ué (t) = Ué,temp(t) - Sé (t)v;kll (3)

Let vi(t) = [v}(t),v}(t),vh(t),...]T be membrane poten-
tial of all neurons in the (-th layer, and similarly s(¢) for the
spikes. Substituting (1) into (3), the membrane potential can
be written as

viit) =vit —1) + Wist=1(t) — sl (1) V] 4)

where W is the weight of all synapses in the I-th layer.

It is well known that the SNN model can be related an ANN
model when the spikes are propagated multiple time steps.
Let r' be the firing rate of the neurons from time O to 7" — 1,

=
== s (5)
t=0
It is proved that [Bu er al., 2022a]
wirl=1  yl) = vi(T
o W) i) ©
Vi TVy,
erl—l
Vi @)
th

where the approximation in (7) holds when the time step 7' is
very large. Let W' = W' /V/!_ Eq. (7) can be rewritten as

rl— Wipl—1 (8)
r winl—1
=max (W'r'™ "0 )

where (9) follows from the fact the 53 (t) = 0, hence rl > 0.
As shown in the above equation, the firing rate of the [-th
layer can be written as the form of the ReLU function in
ANN. Consequently, a widely used training method for SNN
is to train the corresponding ANN model first, and then con-
vert the trained ANN model to a SNN model.

3.2 Neuron Model with Negative Spikes

The output of the ReLU function is always non-negative. On
the other hand, many activation functions contain negative
outputs. For example, the Leaky ReLU function is adopted in
YOLO [Redmon et al., 2016],

)= {

where « is a positive real number.

As discussed in the previous section, the non-negativity of
the ReLU function plays a key when relating the SNN model
to the ANN model (cf. (9)). In fact, for neuron models with
ON/OFF spikes (2), the firing rate r! is always non-negative
according to the definition of firing rate in (5). As a result,
the ON/OFF spikes (2) can not be related to the Leaky ReLLU
function.

To account for the negative values in the Leaky ReL.U func-
tion, we propose a new neuron model with two outputs. The
positive output generate spikes pé- (t) as before,

1, if ol o (t) > Pl
l ’ 4, temy th?
p;(t) = oemp 11

j( ) {0, otherwise. b

x, ifz > 0;

10
ax, otherwise. (10)

where P! is the positive threshold. The negative output gen-
erate negative spikes né (t) when the temporary membrane is
lower than the negative threshold N},

~1, ifuvl . (t) < Ni;
l ’ %, temy th?
(t »lemp 12
(1) {O, otherwise. 12)

The negative threshold N{, is negative number. Note that the
neuron can not generate the positive spike and the negative
spike simultaneous since Pf > 0 > N}. After firing the
spike, the membrane potential is reset,

vé,temp(t) - pé’ (t)Ptiv if Ué,temp(t) > ‘Pt{v

VH(E) = S Ol temp (£) = 5 (OONG,, i 0] o (1) < N3 (13)
vé,lemp (t), otherwise.

Similar to (4), the membrane potential can be written as
vi(t) =vi(t—1)+ W'p'='(t) - p(t) Py,
+BWn' (1) — 0 (NG, (14)

where (3 is a constant.
Define the firing rate as,

T—1
1
rl = T Z [pl(t) + nl(t)] (15)
t=0
It is shown in Appendix A when
Nl
B=a2p (16)
Py,

the firing rate of the [-th layer can be written as the form of
the Leaky ReL.U function in ANN.

Winl—1 -1 > 0.
o {max(Wr ,0), 't >0; (17)

min (awlrl_l,O), r'=1 <0
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where W! = w!/pt.
In the conventional IBT neuron model, the negative thresh-
old N, is set to [Kim et al., 2020]
Pl
Ng =t (18)
o
In this case, the scalar  is no longer needed for membrane
potential since it reduces to an unity g = 1.
The membrane potential equation (14) involves the emis-
sion of positive spikes and negative spikes. When the activa-

tion value in ANN is positive, the negative spikes do not emit,
so (14) reduces to

vi(t) = vi(t — 1) + Wpp' ! (t) — p'(t) By, (19)

where W, is the weight for the positive neuron. Similarly,
when the activation value in ANN is negative, the positive
spikes do not emit, so (14) reduces to

vit) =vi(t —1) + SWhn! =1 (t) — n' ()N}, (20)

where W is the weight for the negative neuron. For the sake
of easy implementation, hereafter we use a pair of neurons
whose membrane potentials follow (19) and (20).

4 Proposed ANN-SNN Conversion Algorithm

In this section, we design a novel algorithm to convert an
ANN model to a SNN model. In the spatial domain, we
show that some neurons suffer from a long tail distribution
of the activation values, and design a threshold optimization
algorithm based on the variance of the activation values. In
the temporal domain, we propose to jointly calibrate multiple
layers in the SNN model, adaptively adjust the attention to
each layer depending on the progress of the calibration train-

ing.
4.1 Threshold Optimization

As discussed in the previous sections, when converting a
trained ANN model to a SNN model, an underlying assump-
tion is that the time step 7" is very large. When the time step 7'
is finite, the accuracy of the SNN model is degraded, since the
approximation no longer holds. This problem is even worse
when the time step is small. Note that the spikes have only
three values -1, 0 and 1, so the total number of emitted spikes
is an integer. According to the definition of firing rate in (15),
the smallest non-zero floating point number that can be repre-
sented by the firing rate is 1/7". For example, when the time
step 1" = 8, the minimum value is 0.125. If an ANN model
contains an activation whose value is, e.g., 0.01, a large ap-
proximation error occurs when converting the ANN model to
SNN.

To increase the magnitude of the activation values, the
threshold of the activation function should be minimized in
model weight normalization. To avoid clipping error, the
threshold is usually set to the maximum magnitude of the ac-
tivation value. However, some neurons suffer from a long tail
distribution of the activation values, as shown in Figure 1.

It can be seen that the magnitude of most negative acti-
vation values is less than 0.8, but a few negative activation
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Figure 1: The distribution of activation values in some neurons.

values reach a magnitude of 2.0, i.e., there is a long tail in the
interval [—2.0, —0.8]. If the negative threshold is set to -0.8,
the activation values in the interval [—2.0, —0.8] will be trun-
cated, resulting in large clipping errors which will degrade
the accuracy of the model. If the negative threshold is set to
-2.0, the threshold is too large for the activation values in the
interval [—0.8, 0], resulting decreased firing rates which will
increase the latency of the converted SNN model.

A long tail distribution of the activation values indicates
that the activation value is scattered over a large interval,
so the variance of the activation values is large. To address
the problem of long tail distribution, we use the variance of
the activation values as a penalty term to fine tune the ANN
model,

=0’ @D
where o is the standard deviation of the activation values.
Noting that the standard deviation has the following mathe-
matical properties,

std(vyz) = ystd(x) (22)
where v is a constant. Direct optimization of 7 = o2 may
not reduce the degree of the long tail phenomenon, since the
activation values may be scaled by a constant. We propose to
use the following penalty term,
o3
! ml+ep?
where m is the mean of the activation values, and € is a very
small positive number. In the ideal case, if the standard devi-
ation o is zero after threshold optimization, the value of the
activation values becomes a constant 1 after model weight
normalization, and only one time step is needed for the con-
verted SNN model.

In some neural networks, the Batch Normalization (BN)
layer is in front of the activation function, e.g., the VGG-
16 model. There are two parameters in the BN layer which
represent the standard deviation and mean of the activation
values passing through the BN layer. Then the penalty term
(23) can be calculated from the parameters of the BN layer.

After fine-tuning the model with the variance penalty (23),
trainable clipping layers [Ho and Chang, 2021] are added af-
ter the activation functions. The clipping threshold are opti-
mized with L? regularization,

mo=>_ 105> + 0% (24)
l

(23)
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Figure 2: Joint calibration of all layers in the SNN model.

where 0% and 6% are the positive and negative clipping
thresholds in the I-th layer.

4.2 Joint Calibration of Multiple Layers

After threshold optimization, the ANN model can be con-
verted to a SNN model. In SNN models, the spikes are prop-
agated in both the spatial and temporal domains. But ANN
models are trained and fine-tuned in the spatial domain. So
the ANN models contain no information about the temporal
domain properties of spike sequences. In fact, there are some
deviations between the estimated firing rate from ANN and
the real firing rate in SNN [Wang et al., 2025]. To compen-
sate for such deviations, the converted SNN models have to
be calibrated in the temporal domain.

We calibrate the SNN model by using the ANN model as a
reference. Neural networks usually consist of multiple layers,
each of which output a feature map. In the ideal case, the
firing rate of each feature map in the SNN model should be
identical to the feature map in the ANN model. Due to the
temporal domain properties of spike sequences, there is some
deviation between SNN and ANN. We have to fine-tune the
SNN model such that the deviation is as small as possible.

A conventional method is to calibrate the SNN model
layer-by-layer [Wang et al., 2025]. For each layer in the
neural network, the input and the output of the layer in the
ANN model are saved as a calibration dataset. Then the cor-
responding layers in the SNN model are fine-tuned with the
calibration dataset. Note that the outputs of the shallow layers
are the inputs of the deep layers, the calibration errors from
the shallow layers are accumulated and grows as the depth of
the model goes deeper.

To address the calibration error accumulation problem, we
propose to jointly calibrate all layers at the same time. In the
proposed joint calibration method, for each layer in the neu-
ral network, the loss between the SNN model and the ANN
model is calculated, and the averaged loss of all layer is used
as the total loss,

(25)

R

h \

where A; is the loss in the [-th layer, and L is the number of
layers.

For the SNN model, it is the last layer whose output deter-
mines the accuracy of the model. The calibration of the shal-
low layers should only play an auxiliary role, but every layer
in (25) has the same weight. So the model pays too much
attention to the shallow layers during training. In particular,
when the training is almost finished, the coefficients of the
shallow layers are still varying due to the large weight 1/L.
So the patterns of the calibration error of the shallow lay-
ers are also changing. The deep layers have to keep track of
the changes of calibration errors in the shallow layers, which
makes it is hard to fine-tune the loss in the last layer.

On the other hand, in the early stage of training, the cali-
bration errors of the shallow layers may vary greatly. In such
cases, it is difficult to tune the deep layers since their inputs
are from the shallow layers. In other words, we should pay
more attention to the shallow layers rather that the deep lay-
ers.

As discussed above, in the early stage of multi-layer cali-
bration, we should pay more attention to the shallow layers.
As the training processes, the attention should be moved to
deep layers. Here we propose a dynamic weighting method,
where weights of each layer are adaptive adjusted as the train-
ing progresses,

A= Z T ¢l (26)

where ¢;(p) is the welght of the I-th layer and p € [0,1] is the
progress of training. The weight of each layer is normalized
by dividing 3, ¢1(p).

When the training progress begins with p = 0, ¢;(p) is a
monotonically decreasing function with respect to the layer
index [. In this way, the shallow layers are given larger
weights while the deep layers are given smaller weights. In
other words, we pay more attention to the shallow layers. For
the deeper layers in the model, we assigns a small but non-
zero positive number, so ¢;(p) > 0, VL.

When the training progress ends with p = 1, ¢;(p) is a
monotonically increasing function with respect to the layer
index [. In this way, the shallow layers are given smaller
weights while the deep layers are given larger weights. So
more attention is payed on the deep layers in the model.

When the training progress is at the middle stage, 0 < p <
1, ¢i(p) is a first-increasing and then-decreasing function
with respect to the layer index [. The attention is mainly fo-
cused on the [pL]-th layer, where [-] is the rounding operation.
As the training proceeds, the value of p increases. So the in-
dex of the layer with the most attention also increases. In this
way, the attention is gradually shifted from the first layer to
the last layer.

The weight function ¢;(p) can be designed in several ways.
For example, ¢;(p) can be designed based on the cosine func-

tion,
¢1(p) = cos B (é - p)} 27)

¢1(p) can also be designed based on the sigmoid function,
¢1(p) = pl = o(pz)]o(pz) (28)



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method ANN SNN  Time Steps
AugMapping 92.11% 92.11% 220
stReLU 90.83% 90.83% 79
proposed 92.72%  92.62% 10

Table 1: Model Accuracy on the Fashion-MNIST dataset.

with
(ha) = ———— 29)
TMHL) = 1+ e He
T = L P (30)

L

5 Experiment Results

5.1 Implementation Details

Variance Penalty. When fine-tuning the model with the
variance penalty (23), the total loss function can be written
as

A=A+ 31

where A, is the original loss function adopted in the training
of the ANN model, and \; is the weighting factor. The value
of 7 may change dramatically from epoch to epoch during
the training. So it is suggested to use an adaptive weighting
factor A\; = 0.1|A.|/n. The weighting factor A; is calculated
by detaching from the computation graph of A, and 7.

Surrogate Function. The Heaviside step function is used
when the neuron fires spikes in SNN, whose gradient is in-
finite when the argument of the Heaviside step function is
zero. So a surrogate function is needed when training the
SNN model in the temporal domain [Wu et al., 2019]. We
adopt the sigmoid function as the surrogate function,

g(z) !

lderm
where « is a constant. The sigmoid function g(x) approaches
the Heaviside step function as the constant  increases. In
the experiment, & is set to 6.7, and is increased to 10 after 10
epochs, and is increased to 15 at the 20-th epoch.

(32)

Calibration Loss. The calibration loss function is used to
measure the difference between the SNN model and the ANN
model. In the experiment, we adopt the Kullback-Leibler
(KL) Divergence as the calibration loss function,

P(i)
Qi)
where P(i) is the activation values in the ANN model, and
Q (%) is the firing rate in the SNN model.

mmm=ZHMn 33)

5.2 Comparison with State-of-the-art Methods

Table 1 shows the model accuracy of the state-of-the-art al-
gorithms that support negative spikes on the Fashion-MNIST
dataset. The network structure under investigation contains
two convolutional layers and two linear layers (32c¢5-p2-
64c5-p2-1024-10), which is the Net4 in [Yu et al., 2022].

Method Time Steps ANN SNN JAV

two-stage T=4 95.62% 91.76% 3.86%
proposed T=4 96.26% 93.69% 2.57%
two-stage T=28 95.62% 93.38% 2.24%
proposed T=28 96.26% 95.17% 1.09%

Table 2: Model Accuracy of VGG-16 on the CIFAR-10 dataset.

Method Time Steps ANN SNN Agee

two-stage T=4 96.81% 91.23% 5.58%
proposed T=4 97.12% 94.17% 2.95%
two-stage T=28 96.81% 93.93% 2.88%
proposed T=38 97.12% 95.09% 2.03%

Table 3: Model Accuracy of ResNet-18 on the CIFAR-10 dataset.

The proposed method requires the shortest time step, which
is 1/8 of the stReLU method [Han er al., 2023] , and 1/22
of the AugMapping method [Yu er al., 2022]. The AugMap-
ping method is based on the IBT neuron model, so the nega-
tive threshold is set to 10 times of the positive threshold. As
a result, the neuron has to accumulate within multiple time
steps such that the membrane potential exceeds the negative
threshold before firing a spike, leading to a very long time
step. In the stReLLU method, the negative threshold has the
same magnitude as the positive threshold, so the firing rate
of the negative spikes is on a par with that of the positive
spikes. Consequently, the time step of stReLU is shorter than
AugMapping. However, the gradient of the stReL.U function
is zero within two large regions, which leads to a decreased
accuracy for the ANN model.

Table 2 shows the model accuracy of VGG-16 on the
CIFAR-10 dataset, where A, is the conversion loss in terms
of model accuracy. It can be seen that the proposed algorithm
suffers from much less accuracy loss than the two-stage al-
gorithm [Wang et al., 2025] under the same time step. For
example, when the time step 7' = 8, the two-stage algo-
rithm suffers an accuracy loss of 2.24%. On the other hand,
the proposed algorithm has an accuracy loss of only 1.09%,
which is a performance gain of more than 1% compared to
the two-stage algorithm. The two-stage algorithm adopts the
IBT neuron model, whose negative threshold is too large. Be-
sides, the two-stage algorithm calibrates the converted SNN
model in a layer-by-layer fashion. Hence the calibration error
are accumulated from shallow layers to deep layers. When
the time step 1" = 4, the proposed algorithm outperforms the
two-stage algorithm by 1.29% in terms of accuracy loss. In
addition, the accuracy of the proposed algorithm at " = 4 is
better than that of the two-stage algorithm at 7" = 8.

Table 3 shows the model accuracy of ResNet-18 on the
CIFAR-10 dataset. Similar results are observed. The pro-
posed algorithm suffers from much less accuracy loss than the
two-stage algorithm [Wang et al., 2025] under the same time
step, and the accuracy of the proposed algorithm at T' = 4 is
better than that of the two-stage algorithm at 7" = 8.
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Threshold Optimization Layerl Layer2 Layer3
with 0.0964 0.0763  0.1856
without 0.0368 0.0161  0.0477
Table 4: Firing rate of each layer in Net4.
Method ANN SNN  Time Steps
average 92.72% 92.61% 19
cosine 92.72%  92.62% 10
sigmoid 92.72%  92.6% 13

Table 5: Weighting method for the calibration of SNN models in the
temporal domain.
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Figure 3: Accuracy of the converted SNN model as a function of the
time step.

5.3 Ablation Study

Now we conduct ablation study on the proposed algorithm.
All the ablation experiments are conducted on the Fashion-
MNIST dataset with model Net4. Table 4 shows the firing
rate of each layer in Net4. In can be seen that the firing rate
is significantly improved with the threshold optimization.

Table 5 shows the performance with different weighting
method for the calibration of SNN models in the temporal
domain. In can be seen that the averaging method gives the
poorest performance since the attention is not adjusted dur-
ing the training process. For the dynamic weighting method,
the weight function based on the cosine function performs
slightly better than the one based on the sigmoid function.

Figure 3 shows the accuracy of the converted SNN model
as a function of the time step. It can be seen that if the SNN
model is not calibrated in the temporal domain, the accuracy
increases slowly after arriving at an accuracy of 92%. About
20 extra time steps are needed to get an accuracy of 92.6%.
That is because the ANN model is trained in the spatial do-
main and contains no information of the spike sequence in
the temporal domain. Such mismatch between the temporal
domain and the spatial domain can be compensated by extra
time steps, as discussed in Section 3. So a longer time step is
required for model without calibration.

6 Conclusion

In this paper, we consider the conversion of ANN models to
SNN models for the Leaky ReLU function. We design a novel
neuron model that supports negative spikes. We show that
some neurons may suffer from the long tail distribution prob-
lem, and propose a threshold optimization algorithm based on
the variance of the activation values. To avoid the problem of
error accumulation, we jointly calibrate all layers in the SNN
model, where the weight of each layer is adaptive adjusted
based on the progress of training.

A Proof of the Membrane Potential Scalar
Let us accumulating (14) from time step O to 7" — 1,

VI(T—1)=vI(0) WIS rl =
) Y UL & )
t=0 t=0
BWI T 1 T—-1

+ (34)

WS n - e S )

To related (34) to the Leaky ReLU function, let us first con-
sider the case when the input is positive, i.e., f(z) = =,
Va > 0. Then only positive spikes are fired, and the firing
rate r' > 0. Eq. (34) becomes

T-1

l l 1 T-1 !
vi(T-1)—v'(0) W _ P
T :TZPZ 1(t)_?tthl(t)
t=0 t=0
=Wh'™' - pir! (35)
When the time step 7 is very large, r! can be written as
Wl
rl = —lrl_1 (36)
B
Wl
=max [ —r'7,0 (37)
B

which align with the positive part of the Leaky ReLU func-

tion.
When the input is negative, i.e., f(x) = ax, Vo < 0. Then
only negative spikes are fired, and the firing rate r' < 0. Eq.

(34) becomes

VT = 1) =vi(0) BW! ' ,_ Nl =
7 TT ') - D n'®)
t=0 t=0
= Wi~ — Nl ¢! (38)

When the time step T is very large, 3 = aNy, /Py, r! can be
written as

! !
1 _PW oW

r = I = i r
Nth Rh

Wl
= min a—lrl_l, 0
P

which align with the negative part of the Leaky ReL U func-
tion.

(39)

(40)
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