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Abstract
Text-video retrieval establishes accurate similar-
ity relationships between text and video through
granularity alignment and feature enhancement.
However, relying solely on similarity to associate
intra-pair features and distinguish inter-pair fea-
tures is insufficient, e.g., when querying a multi-
scene video with sparse text or selecting the most
relevant video from many similar candidates. In
this paper, we propose a novel Dual Uncertainty
Quantification (DUQ) model that separately han-
dles uncertainties in intra-pair interaction and inter-
pair exclusion. Specifically, to enhance intra-pair
interaction, we propose an intra-pair similarity un-
certainty module to provide similarity-based trust-
worthy predictions and explicitly model this uncer-
tainty. To increase inter-pair exclusion, we pro-
pose an inter-pair distance uncertainty module to
construct a distance-based diversity probability em-
beding, thereby widening the gap between simi-
lar features. The two components work synergis-
tically, jointly improving the calculation of similar-
ity between features. We evaluate our model on six
benchmark datasets: MSRVTT (51.2%), DiDeMo,
LSMDC, MSVD, Charades, and VATEX, achiev-
ing state-of-the-art retrieval performance.

1 Introduction
In recent years, text-video retrieval has made significant
progress, focusing on finding the most relevant videos based
on text queries [Liu et al., 2019]. The emergence of feature
representation learning [Luo et al., 2022] has laid the founda-
tion for addressing the text-video retrieval task. This method
leverages powerful pre-trained models, e.g., CLIP [Radford
et al., 2021], which project text and video into a shared latent
space based on the semantic similarities of text-video pairs,
enabling more efficient and accurate cross-modal retrieval.
Meanwhile, coarse-grained and fine-grained feature interac-
tions [Chen et al., 2024] enhance the dense feature extractor
to learn better representations. However, is it sufficient to rely

*Corresponding author.
†Code is available at https://github.com/OPA067/DUQ

Query8308: a man is playing baseball.

Similarity
Space

#R1: picture of batsman ready to bat.

......

#R2: guy is spinning around with a bat.

......

#R3: a man is playing baseball.

......

Push

Uncertainty
Space

Figure 1: Motivation. (left) A failed text-video retrieval example
based on feature-level similarity relationships, struggling with un-
certainty from intra-pair interaction and inter-pair exclusion. (right)
Our method models “Pull” and “Push” dynamics to reduce feature
uncertainty.

solely on the similarity between features to obtain reliable re-
trieval results?

Actually, relying on similarity alone is insufficient to sup-
port cross-modal interactions and distinguish within-modal
differences. As illustrated in Figure 1, given the text query
“a man is playing baseball,” the top 3 retrieval results are re-
turned based on features similarity using the X-Pool model
[Gorti et al., 2022]. Although #R1 and #R2 are related
to baseball, the query does not accurately match the ac-
tual description. In contrast, #R3 highlights a man playing
baseball while being interviewed. However, this is a failed
retrieval task because #R3 includes an irrelevant interview
scene, which results in greater misalignment in feature in-
teraction. This is a common issue in intra-pair interaction,
frequently occurring in multi-scene video retrieval when us-
ing a sparse text query. Similarly, the sparse text query and
weak semantic differences between highly similar candidate
videos lead to higher uncertainty in inter-pair exclusion. In
other words, both the interaction and the exclusion of fea-
tures may involve uncertainty. Therefore, we categorize this
uncertainty into two types: (1) Intra-pair uncertainty. Low-
quality data, such as multi-scene videos, duplicate images,
and non-detailed descriptions, etc., is detrimental to the in-
teraction between paired text and video, inevitably leading to
unreliable retrieval results. (2) Inter-pair uncertainty. High-
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similarity data, such as same-scene videos, similar images,
and consistent descriptions, etc., often causes interference in
the retrieval of positive samples. The root of this issue lies
in the limitations of the similarity feature space, which does
not provide confidence for intra-pair interaction or construct
distinguishability for inter-pair exclusion. Therefore, it is es-
sential to quantify the uncertainty in text-video pairs to enable
a more reliable similarity assessment.

To address the uncertainty matching problem, existing
methods for text-video retrieval focus on granularity align-
ment and enhanced feature learning. As for the former,
UCoFiA [Wang et al., 2023] proposes a unified coarse-to-
fine alignment model, which combines interactive similar-
ity aggregation and normalization strategies, effectively im-
proving the accuracy of video-text retrieval. HBI [Jin et al.,
2023a] proposes the Hierarchical Banzhaf Granularity Inter-
action, which uses multivariate game theory to model interac-
tions between video frames and text words, overcoming the
limitations of traditional feature similarity. As for the latter,
T-Mass [Wang et al., 2024] addresses the inherent sparsity
of text features using feature enhancement and regularization
techniques, thereby mitigating uncertainty in intra-pair inter-
action. Although these methods alleviate feature uncertainty
to some extent, they often rely on complex fine-grained align-
ment strategies and feature enhancement techniques. More
importantly, these methods still focus on similarity-based fea-
ture spaces and far from effectively handling the inherent un-
certainties in determining optimal entity combinations with
appropriate granularities during text-video matching.

In this paper, we propose a novel text-video retrieval
model to tackle both intra-pair interaction and inter-pair ex-
clusion uncertainty problems, named the Dual Uncertainty
Quantification (DUQ) Model. Figure 2 illustrates the over-
all framework. First, for intra-pair uncertainty, we propose
an Intra-pair Similarity Uncertainty Module (ISUM) to pro-
vide trustworthy predictions by quantifying the uncertainty
in text-video feature interaction arising from inherent low-
quality data. This method leverages the out-of-domain con-
fidence learning problem in classification tasks, aiming not
only to maximize similarity scores for in-domain matches
but also to increase confidence in the presence of inherent
data ambiguity. Second, for inter-pair uncertainty, we pro-
pose an Inter-pair Distance Uncertainty Module (IDUM) to
construct modality-specific differences by computing the dis-
tance in text-video probabilistic embeddings arising from in-
herent high-similarity data. We break the limitations of tra-
ditional single-feature approaches by proposing a local fea-
ture aggregation module to construct diversified probabilistic
embeddings. Compared to traditional feature embeddings,
probabilistic embeddings offer greater diversity and expres-
siveness, effectively distinguishing similar features within the
same modality. Meanwhile, we use the maximum distance as
an exclusion metric between inter-pair multiple probabilistic
embeddings, which effectively reduces computational com-
plexity and excludes similar probabilistic embeddings in an
extreme boundary fashion. Third, the two uncertainty mod-
ules work synergistically, expanding retrieval criteria to in-
clude both feature interaction uncertainty and feature exclu-
sion distance. Our contributions are summarized as follows:

• We propose a novel text-video retrieval framework, Dual
Uncertainty Quantification, to address the uncertainty is-
sues in text-video interactions and exclusions.

• For intra-pair interaction uncertainty caused by low-
quality data, we propose an Intra-pair Similarity Un-
certainty Module to provide similarity-based trustwor-
thy predictions and explicitly model this uncertainty.

• For inter-pair exclusion uncertainty caused by high-
similarity data, we propose an Inter-pair Distance Un-
certainty Module to construct distance-based diversity
probability embeddings, thereby increasing the gap be-
tween similar data.

• We conduct extensive experiments on six benchmark
datasets: MSRVTT, DiDeMo, LSMDC, MSVD, Cha-
rades, and VATEX, achieving state-of-the-art retrieval
performance (51.2%, +1.9% in R@1 on MSRVTT).

2 Related Work
Text-Video Retrieval. The text-video retrieval is a key re-
search topic in multimodal studies. Early works [Liu et al.,
2019; Chen et al., 2020] primarily focus on enhancing fea-
ture representations to align text and video, as well as on es-
tablishing benchmarks and foundational models. Recently,
transformer-based text-video retrieval methods [Luo et al.,
2022; Gorti et al., 2022] use cross-attention to abstract multi-
modal cues, achieving significant performance gains. For ex-
ample, TS2Net [Liu et al., 2022] employs a “token shift and
selection transformer” to preserve token integrity and cap-
ture subtle actions, improving retrieval performance. With
the large-scale text-image pretraining model CLIP [Radford
et al., 2021] achieving significant success, it has inspired im-
provements in retrieval tasks. For example, DiCoSA [Jin
et al., 2023b] enhances text-video retrieval by decoupling
coarse features into semantic factors and using adaptive pool-
ing for accurate set-to-set matching. Additionally, to better
represent text features, T-Mass [Wang et al., 2024] uses ran-
dom text modeling and text regularization to extract effective
frames and text, thereby enhancing semantic similarity be-
tween text and video. Although existing methods establish
similarity alignment baselines by fine-tuning CLIP, they over-
look the reliability of pairings and the impact of noisy sam-
ples. By contrast, our model goes beyond feature-level simi-
larity, eliminating the need for complex granularity alignment
strategies and focusing on addressing key issues in retrieval.
Uncertainty Model. Currently, the most influential uncer-
tainty models include uncertainty distributions [Oh et al.,
2018; Song and Soleymani, 2019; Chun et al., 2021] and un-
certainty metrics [Lakshminarayanan et al., 2017; Sensoy et
al., 2018; Li et al., 2024]. Uncertainty distributions construct
probabilistic representations to differentiate between features.
For example, HIB [Oh et al., 2018] proposes the Hedged In-
stance Embedding to handle one-to-many probabilistic cor-
respondences for metric learning, which has been success-
fully applied to face recognition and 2D-to-3D pose estima-
tion. Uncertainty metrics handle out-of-domain classification
tasks and are powerful in both making accurate predictions
and providing reliable uncertainty estimates. For example,
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Figure 2: Framework. (1) The Feature Extraction Module maps text and video inputs into a joint embedding space to compute similarity. (2)
The Intra-pair Similarity Uncertainty Module provides similarity-based trustworthy predictions and explicitly models intra-pair interaction
uncertainty. (3) The Inter-pair Distance Uncertainty Module constructs distance-based diversity probabilistic embeddings and uses boundary
distances to represent inter-pair exclusion differences.

EDL [Sensoy et al., 2018] replaces the Dirichlet distribu-
tion on class probabilities and treats the predictions of a neu-
ral network as subjective opinions, learning the function that
collects the evidence leading to these opinions through a de-
terministic neural network from data. Although uncertainty-
based methods have made impressive progress in recognition
and classification tasks, applying them to more complex re-
trieval tasks remains challenging.

3 Methodology
3.1 Preliminaries
Features Extraction. As shown in Figure 2 (1), given a text
query T , we leverage the CLIP [Radford et al., 2021] text
encoder to output word features Ft = [w1, w2, · · · , wNt ] ∈
RNt×D, where Nt and D represent the number and the di-
mension of the word features, respectively. Then we take the
representation of the [EOS] token as the sentence feature
Ft ∈ R1×D. Similar to the text encoder, we utilize the CLIP
video encoder to extract visual features. Specifically, given
a video V comprising multiple frames, we uniformly sample
Nv frames, then feed them into the video encoder to obtain
visual frame features Fv = [f1, f2, · · · , fNv

] ∈ RNv×D.
Features Interaction. The feature interaction lies in learn-
ing a similarity score s(t, v), which aims to maximize the
similarity for positive pairs (intra-pairs) and minimize it for
negative pairs (inter-pairs). Typically, video frame features

Fv ∈ RNv×D are aggregated to obtain video feature Fv ∈
R1×D that can interact with the text feature Ft, e.g., through
average pooling of video frames. In our work, we adopt the
most effective cross-attention frame aggregation method X-
Pool [Gorti et al., 2022] to obtain the video feature Fv , and
compute the similarity score s(t, v) = Ft·Fv

||Ft||·||Fv|| . During
training, a common optimization method is to use a symmet-
ric cross-entropy loss in both the text-to-video and video-to-
text directions, as shown in Eq. (1):

LS = −1

2

(
1

B

B∑
i=1

log
es(ti,vi)·λ∑B
j=1 e

s(ti,vj)·λ

+
1

B

B∑
i=1

log
es(ti,vi)·λ∑B
j=1 e

s(tj ,vi)·λ

)
,

(1)

where B is the batch size and λ is the temperature hyper-
parameter. This loss function maximizes the similarity of
intra-pairs and minimizes the similarity of inter-pairs. Al-
though previous works optimize this loss at the feature simi-
larity level with some success, when faced with a sparse tex-
tual query, this strategy lacks credibility in intra-pair inter-
actions and fails to support inter-pair exclusion. Therefore,
we need to break feature-level similarity and develop a more
robust interaction mechanism.
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3.2 Intra-pair Similarity Uncertainty
Uncertainty Theory. The Bayesian Neural Network (BNN)
[Lakshminarayanan et al., 2017] incorporates Bayesian
statistics into traditional neural networks, producing an un-
certainty distribution instead of a single value. Orthogonally
to BNN, Evidential Deep Learning (EDL) [Sensoy et al.,
2018] uses explicit modeling based on Subjective Logic (SL)
to capture prediction uncertainty by associating the belief dis-
tribution with parameters of the Dirichlet distribution. Specif-
ically, EDL provides an evidential theoretical framework to
quantify the belief masses b = (b1, b2, . . . , bB) of the class
probabilities ŷ = (ŷ1, ŷ2, . . . , ŷB) in a B-class classification
problem, and the overall uncertainty mass u follows Eq. (2) :

u+
B∑
i=1

bi = 1, u ≥ 0, bi ≥ 0. (2)

Let ei ≥ 0 denote the evidence derived from ŷi, e.g., non-
negative operation ei = exp(ŷi). Then, the belief bi and the
uncertainty mass u are computed as:

bi =
ei∑B
i=1 αi

, u =
B∑B
i=1 αi

, (3)

where αi = ei+1 and S =
∑B

i=1 αi denote the Dirichlet dis-
tribution parameters and strength, respectively. The evidence
ei serves as a measure of the support gathered from the data,
indicating the likelihood of a sample being classified into a
particular class. In brief, a higher u and lower ei in target clas-
sification indicate greater ambiguity and lower confidence in
the outcome. Uncertainty theory demonstrates strong robust-
ness in classification tasks, providing uncertainty in addition
to classification probabilities. However, effectively general-
izing it to retrieval tasks poses many challenges, such as han-
dling more complex cross-modal features. Therefore, it is es-
sential to understand the differences and connections between
the two in order to effectively model uncertainty in retrieval.
Similarity Uncertainty Modeling. For a B-class classifica-
tion task, the probability of classifying xi into the ith class
is ŷi, with the label yi = 1. For a B-size retrieval task,
the similarity between the text ti and the video feature vj is
sij , with no label yij . In fact, if we provide label support
and reduce the dimension of the similarity matrix, retrieval
tasks can be transformed into classification tasks. There-
fore, we propose an Intra-pair Similarity Uncertainty Module
(ISUM) to guide the model in learning uncertainty from text-
video modality interactions in Figure 2 (2). Intuitively, we
expect the similarity matrix SB×B output by the model to
be as close as possible to the identity matrix EB×B . At
this point, we first obtain the Dirichlet distribution Dir(αij),
where αij = eij + 1 = ReLU(Sij) + 1, and the distri-
bution strength Si =

∑B
j=1 αij . Given the known labels

yij ∼ EB×B and the Dirichlet distribution pij ∼ Dir(αij),
we use a generalized Mean-Squared Error loss to supervise
the model in learning how to generate a similarity matrix that
approaches the identity matrix:

Epij∼Dir(αij)||yij − pij ||22. (4)

For the specific ith text to retrieve all videos in the entire
batch, we can derive:

LU
i =

B∑
j=1

E
[
y2ij − 2yijpij + p2ij

]
=

B∑
j=1

(
y2ij − 2yijE[pij ] + E[p2ij ]

)
,

(5)

where E[pij ] = αij/Si, E[p2ij ] = Var[pij ] + E2[pij ], and

Var[pij ] =
αij(Si−αij)

S2
i (Si+1)

. Letting p̂ij = E[pij ] = αij/Si, Eq.
(5) can then be further simplified to:

LU
i =

B∑
j=1

(yij − p̂ij)
2
+

p̂ij(1− p̂ij)

Si + 1
. (6)

Similarly, for the video LU
j can also be computed, and the

total evidence loss function is given by Eq. (7):

LU
S =

1

B

( B∑
i=1

LU
i +

B∑
j=1

LU
j

)
. (7)

It is important to note that we elevate the metric for measur-
ing retrieval pair relationships from similarity s to confidence
e, and cleverly integrate the identity matrix E to provide a
theoretical foundation for building reliable pairings.

3.3 Inter-pair Distance Uncertainty
Uncertainty Probabilistic Construction. Retrieval relation-
ships based solely on feature-level similarity are often unre-
liable due to false positives (highly similar candidate data) in
inter-pair exclusion. To mitigate semantic interference within
the same modality, PCME [Chun et al., 2021] constructs
probability distributions from text and images, enabling di-
verse embeddings and overcoming single-feature limitations.
However, PCME focus on individual images and fail to ad-
dress complex video scenarios. Therefore, we propose a Lo-
cal Feature Aggregation Module to generate aggregated em-
beddings for text and video in Figure 2 (top). This module in-
cludes local feature aggregation via multi-head attention and
global feature fusion via concatenation; the former captures
fine-grained local details, while the latter provides contextual
support for local features. However, the aggregated embed-
dings (zt, zv) obtained through this module do not show sig-
nificant differences compared to traditional features. There-
fore, it is necessary to re-represent the aggregated embed-
dings to capture the diversity of probabilistic embeddings.

p(z | t) ∼ N
(
hµ
T (zt), e

hσ
T (zt)

)
,

p(z | v) ∼ N
(
hµ
V(zv), e

hσ
V(zv)

)
,

(8)

where hµ
∗ and hσ

∗ denote linear operations, and p(z | ∗) de-
notes a Gaussian distribution. To enable stable training and
facilitate sampling, we introduce a standard Gaussian distri-
bution ϵk ∼ N (0, I) to generate probabilistic embedding zkt :

zkt = hµ
T (zt) + eh

σ
T (zt) · ϵk,

zkv = hµ
V(zv) + eh

σ
V(zv) · ϵk,

(9)
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where k = 1, 2, . . . ,K , zk∗ ∈ R1×D, and z∗ ∈ RK×D.
Uncertainty Probabilistic Distance. Most previous meth-
ods adopt Euclidean distance [Oh et al., 2018] and Multi-
Instance InfoNCE loss [Chun et al., 2021] to achieve ef-
fective alignment between single probabilistic embedding.
However, these methods are often constrained by compu-
tational efficiency and embedding selection when handling
multiple probabilistic embeddings (K > 1). To address
this issue and support inter-pair exclusion, we propose an
Inter-pair Distance Uncertainty Module (IDUM), which ele-
gantly resolves the challenge of aligning probabilistic embed-
dings across multiple instances in Figure 2 (3). Intuitively, to
achieve effective inter-pair exclusion, we only need to focus
on specific boundary information, namely the maximum dis-
tance between inter-pair probabilistic embeddings. This ap-
proach not only reduces the number of probabilistic embed-
dings involved in alignment computation, thereby lowering
the computational cost, but also improves the model’s sensi-
tivity to embedding boundaries. Specifically, we define the
distance between probabilistic embeddings as:

d(zi,mt , zj,nv ) = 1− s(zi,mt , zj,nv ), (10)

where i, j = 1, 2, . . . , B, m,n = 1, 2, . . . ,K , and zi,mt and
zj,nv represent the mth probabilistic embedding of the ith text
feature and the nth probabilistic embedding of the jth video
feature, respectively. Based on effective boundary selection,
we choose the maximum value for inter-pair exclusion (i ̸= j)
and the minimum value for intra-pair interaction (i = j):

d(zit, z
j
v) =

{
max d(zi,mt , zj,nv ), ∀n,m, i ̸= j,

min d(zi,mt , zj,nv ), ∀n,m, i = j.
(11)

Similar to the feature similarity loss in Eq. (1), we can di-
rectly obtain the probabilistic embedding distance loss:

LD =
1

2

(
1

B

B∑
i=1

log
ed(z

i
t,z

i
v)·λ∑B

j=1 e
d(zi

t,z
j
v)·λ

+
1

B

B∑
i=1

log
ed(z

i
t,z

i
v)·λ∑B

j=1 e
d(zj

t ,z
i
v)·λ

)
.

(12)

Additionally, the distance matrix D in Eq. (11) between prob-
abilistic embeddings can directly adopt the method used for
processing the similarity matrix S in Sec. 3.2, with the labels
yij ∼ (1− EB×B):

LU
D =

1

B

( B∑
i=1

LU
i +

B∑
j=1

LU
j

)
. (13)

3.4 Training and Inference
Training. Following [Oh et al., 2018], we also introduce an
additional KL divergence loss between the probabilistic em-
beddings to prevent them from collapsing to zero:

LKL = KL(p(z|t)||N (0, I))+KL(p(z|v)||N (0, I)). (14)

Therefore, based on feature similarity (Eq. (1) and (7)) and
probabilistic distance (Eq. (12) and (13)) losses, the total
training objective can be defined as:

Ltotal = LS + LU
S + α(LD + LU

D) + βLKL, (15)

where α and β are weight hyper-parameters.
Inference. After training, in addition to using the regular
feature similarity s in Eq. (1) for sampling, the similarity
uncertainty us in Eq. (3), the probabilistic distance d in Eq.
(11), and the distance uncertainty ud in Eq. (3) can also be
used to update the similarity calculation:

s′ = exp(−γ1ud) · (1− d)) ◦ (exp(−γ2us) · s, (16)

where γ1 and γ2 are hyper-parameters used to control the im-
pact of re-ranking on prediction.

4 Experiments
4.1 Experimental Setting
Datasets. We adopt six benchmark datasets for evaluation:
(1) MSRVTT [Xu et al., 2016] consists of 10K videos, each
paired with 20 captions. We follow the training and testing
splits from [Yu et al., 2018]. (2) DiDeMo [Anne Hendricks
et al., 2017] contains 10,642 video clips and 40,543 captions.
We use the training and testing protocols from [Gabeur et al.,
2020]. (3) LSMDC [Rohrbach et al., 2015] includes 118,081
video clips from 202 movies. We use the split from [Torabi et
al., 2016], with 1,000 videos reserved for testing. (4) MSVD
[Liu et al., 2019] includes 1,970 videos and over 80K cap-
tions, with training, validation, and test sets containing 1,200,
100, and 670 videos, respectively. (5) Charades [Sigurdsson
et al., 2016] consists of 9,848 video clips, and we adopt the
split protocol from [Lin et al., 2022]. (6) VATEX [Wang et
al., 2019] contains 34K video clips. We follow the train-test
split from [Chen et al., 2020].
Metrics and Implementation. We report R@k (k = 1, 5,
10), median rank (MdR), and mean rank (MnR) as evalua-
tion metrics, where higher R@k and lower MdR/MnR indi-
cate better performance. Following previous methods [Gorti
et al., 2022], we use CLIP as our backbone model. The batch
size is set to 32, and the model is trained for 5 epochs across
different datasets. We sample an average of F = 12 frames
from each video clip, resizing them to 224 × 224 pixels for
all datasets. The hyper-parameters are set as α = 1 × 10−1,
β = 1 × 10−4, γ1 = γ2 = 1 × 10−1, and the number of
probabilistic embeddings is K = 7.

4.2 Comparisons with State-of-the-art Methods
Table 1 provides the retrieval results on the MSRVTT, and
DUQ outperforms recently proposed SOTA methods on both
text-to-video (+0.6% in R@1) and video-to-text (+1.4% in
R@1) retrieval tasks. Meanwhile, Table 2 provides text-to-
video retrieval results on other datasets. DUQ demonstrates
consistent improvements across multiple datasets, including
the long-video DiDeMo (+10.9% in R@1) and the sparse-text
LSMDC (+11.3% in R@1), highlighting the effectiveness of
our method. See Appendix A for more results.

4.3 Ablation Study
To evaluate the impact of each component on the DUQ
model, we conduct an ablation study in Table 3: (1) Base-
line: We adopt the conventional feature similarity loss as the
baseline. (2) Similarity Uncertainty: Comparing #1 and #2,
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Methods
MSRVTT (Text-to-Video) MSRVTT (Video-to-Text)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
CLIP-Non
CE [Liu et al., 2019] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
MMT [Gabeur et al., 2020] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
SST [Patrick et al., 2020] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -

CLIP-ViT-B/32
EMCL-Net [Jin et al., 2022] 46.8 73.1 83.1 2.0 - 46.5 73.5 83.5 2.0 -
X-Pool [Gorti et al., 2022] 46.9 72.8 82.2 2.0 14.3 44.4 73.3 84.0 2.0 9.0
DiCoSA [Jin et al., 2023b] 47.5 74.7 83.8 2.0 13.2 46.7 75.2 84.3 2.0 8.9
UATVR [Fang et al., 2023] 47.5 73.9 83.5 2.0 12.3 46.9 73.8 83.8 2.0 8.6
HBI [Jin et al., 2023a] 48.6 74.6 83.4 2.0 12.0 46.8 74.3 84.3 2.0 8.9
Cap4Video [Wu et al., 2023] 49.3 74.3 83.8 2.0 12.0 47.1 73.7 84.3 2.0 8.7
T-Mass [Wang et al., 2024] 50.2 75.3 85.1 1.0 11.9 47.7 78.0 86.3 2.0 8.0
DUQ (Ours) 51.2 77.3 86.1 1.0 10.8 50.4 79.2 87.5 1.0 6.4
CLIP-ViT-B/16
X-Pool [Gorti et al., 2022] 48.2 73.7 82.6 2.0 12.7 46.4 73.9 84.1 2.0 8.4
UATVR [Fang et al., 2023] 50.8 76.3 85.5 1.0 12.4 48.1 76.3 85.4 2.0 8.0
Cap4Video [Wu et al., 2023] 51.4 75.7 83.9 1.0 12.4 49.0 75.2 85.0 2.0 8.0
T-Mass [Wang et al., 2024] 52.7 77.1 85.6 1.0 10.5 50.9 80.2 88.0 1.0 7.4
DUQ (Ours) 55.9 81.0 88.6 1.0 8.4 54.6 82.4 89.9 1.0 5.3

Table 1: Retrieval performance on the MSRVTT-1K dataset. “↑” means that higher is better. “↓” means that lower is better.

Methods
DiDeMo (Text-to-Video) LSMDC (Text-to-Video)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
CE [Liu et al., 2019] 16.1 41.1 - 8.3 43.7 11.2 26.9 34.8 25.3 -
EMCL-Net [Jin et al., 2022] 45.3 74.2 82.3 2.0 12.3 23.9 46.4 53.7 8.0 -
TS2-Net [Liu et al., 2022] 41.8 71.6 82.0 2.0 14.8 23.4 42.3 50.9 9.0 56.9
X-Pool [Gorti et al., 2022] 44.6 73.2 82.0 2.0 15.4 25.2 43.7 53.5 8.0 53.2
CLIP-VIP [Xue et al., 2022] 48.6 77.1 84.4 2.0 - 25.6 45.3 54.4 8.0 -
DiCoSA [Jin et al., 2023b] 45.7 74.6 83.5 2.0 11.7 25.4 43.6 54.0 8.0 41.9
DiffusionRet [Jin et al., 2023c] 46.7 74.7 82.7 2.0 14.3 24.4 43.1 54.3 8.0 40.7
UATVR [Fang et al., 2023] 43.1 71.8 82.3 2.0 15.1 - - - - -
DUQ (Ours) 51.8 77.9 86.5 1.0 10.6 28.5 48.2 58.0 6.0 41.2

Methods
Charades (Text-to-Video) VATEX (Text-to-Video)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Support-Set [Patrick et al., 2020] - - - - - 44.9 82.1 89.7 1.0 -
CLIP4Clip [Luo et al., 2022] 9.9 27.1 36.8 21.0 85.4 - - - - -
X-Pool [Gorti et al., 2022] 11.2 28.3 38.8 20.0 82.7 60.0 90.0 95.0 1.0 3.8
UATVR [Fang et al., 2023] - - - - - 61.3 91.0 95.6 1.0 3.3
T-Mass [Wang et al., 2024] 14.2 36.2 48.3 12.0 54.8 63.0 92.3 96.4 1.0 3.2
DUQ (Ours) 28.5 55.0 66.8 4.0 22.9 80.0 97.4 99.0 1.0 1.6

Table 2: Retrieval performance on other datasets. “↑” means that higher is better. “↓” means that lower is better.

the latter additionally incorporates the intra-similarity uncer-
tainty module, leading to a noticeable improvement in re-
trieval performance (+1.3% in R@1), demonstrating the ef-
fectiveness of modeling intra-similarity uncertainty. (3) Dis-
tance Metric: Comparing #1 and #3 (or #2 and #4), the lat-
ter addresses the limitations of single-feature representations
by constructing distance-based diversity probabilistic embed-
dings. This approach increases inter-modal differences and
improves retrieval performance (+2.8% in R@1). (4) Dis-

tance Uncertainty: Comparing #4 and #6, the latter directly
integrates the similarity uncertainty from (2), transforming
it into distance-based uncertainty. This integration similarly
enhances the model’s retrieval performance (+2.9% in R@1).
See Appendix B for more ablation studies.

4.4 Out-of Domain Tasks
To evaluate the model’s generalization on unseen data, we
compare the out-of-domain text-to-video retrieval in Table
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Baseline DUQ MSRVTT (Text-to-Video) MSRVTT (Video-to-Text)

N/LS LU
S LD LU

D R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
1/✓ 46.9 74.5 82.2 2.0 14.3 44.4 73.3 84.0 2.0 9.0
2/✓ ✓ 47.5 73.9 83.5 2.0 12.3 46.9 73.8 83.8 2.0 8.6
3/✓ ✓ 48.2 74.6 83.4 2.0 12.2 45.2 73.7 84.8 2.0 8.6
4/✓ ✓ ✓ 49.2 77.6 85.4 2.0 11.2 49.2 77.7 84.8 2.0 8.1
5/✓ ✓ ✓ 48.9 76.3 84.6 2.0 12.6 48.5 74.5 84.3 2.0 8.1
6/✓ ✓ ✓ ✓ 51.2 77.3 86.1 1.0 10.8 50.4 79.2 87.5 1.0 6.4

Table 3: Ablation study of different Components. We use the symbol LY
X to represent the corresponding components.

Methods
MSRVTT MSRVTT>DiDeMo MSRVTT>LSMDC

R@1↑ R@Sum↑ MdR↓ R@1↑ R@Sum↑ MdR↓ R@1↑ R@Sum↑ MdR↓
CLIP4Clip [Luo et al., 2022] 43.8 195.8 2.0 31.8 154.9 4.0 15.3 87.1 21.0
X-Pool [Gorti et al., 2022] 46.9 201.9 2.0 35.3 168.5 3.0 16.4 93.5 18.0
DiffusionRet [Jin et al., 2023c] 49.0 206.9 2.0 33.2 160.9 3.0 17.1 90.5 21.0
T-Mass [Wang et al., 2024] 50.2 210.6 1.0 39.5 178.2 2.0 19.7 102.5 14.0
DUQ (Ours) 51.2 214.6 1.0 43.0 188.6 2.0 21.4 110.0 11.0

Table 4: Out-of-domain text-to-video retrieval performance. X > Y , where X denotes the training data and Y denotes the test data.

(a) X-Pool (b) DUQ
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Figure 3: Visualization of re-ranked retrieval results.

4. We first train on the “source” dataset MSRVTT and then
test on the “target” datasets DiDeMo and LSMDC. We ob-
serve that models achieving strong in-domain performance
often experience significant drops when generalized to out-
of-domain data. Compared to other methods, our approach
demonstrates excellent retrieval performance both in-domain
and out-of-domain. Additionally, we provide the perfor-
mance comparison for video question answering in Table 5.

Methods Accuracy(%)↑
VQA-T [Yang et al., 2021] 41.5
MERLOT [Zeng et al., 2022] 43.1
Co-Tokenization [Piergiovanni et al., 2022] 45.7
EMCL-QA [Jin et al., 2022] 45.8
HBI [Jin et al., 2023a] 46.2
TG-VQA [Li et al., 2023] 46.3
DUQ (Ours) 47.8

Table 5: Video question answering performance.

20
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-20

Figure 4: Visualization of probabilistic embeddings.

4.5 Visualization Results
Figure 3 illustrates a failed retrieval case discussed in the in-
troduction. By incorporating the similarity uncertainty mod-
ule into feature interactions, the weak semantic interaction
capability under sparse queries is effectively enhanced. Fig-
ure 4 visualizes the distances between probabilistic embed-
dings. The central circle represents the aggregated embed-
ding, while the others represent probabilistic embeddings.

5 Conclusion
In this paper, we propose a novel Dual Uncertainty Quan-
tification (DUQ) framework to provide trustworthy predic-
tions by quantifying the confidence of intra-pair interactions
and inter-pair exclusions induced by data uncertainty. Ac-
curate text-video retrieval requires reliable intra-pair associa-
tions and inter-pair exclusions to ensure the model effectively
captures semantic consistency between text and video. Exten-
sive experiments on six benchmark datasets demonstrate that
our approach achieves new SOTA retrieval performance. We
hope this work inspires further applications in other domains.
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