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Abstract

Large Language Models (LLMs) have achieved re-
markable success across various domains. How-
ever, they still face significant challenges, includ-
ing high computational costs for training and limi-
tations in solving complex reasoning problems. Al-
though existing methods have extended the rea-
soning capabilities of LLMs through structured
paradigms, these approaches often rely on task-
specific prompts and predefined reasoning pro-
cesses, which constrain their flexibility and gener-
alizability. To address these limitations, we propose
a novel framework that leverages graph learning to
enable more flexible and adaptive reasoning capa-
bilities for LLMs. Specifically, this approach mod-
els the reasoning process of a problem as a graph
and employs LLM-based graph learning to guide
the adaptive generation of each reasoning step. To
further enhance the adaptability of the model, we
introduce a Graph Neural Network (GNN) mod-
ule to perform representation learning on the gen-
erated reasoning process, enabling real-time adjust-
ments to both the model and the prompt. Exper-
imental results demonstrate that this method sig-
nificantly improves reasoning performance across
multiple tasks without requiring additional training
or task-specific prompt design. Code can be found
in https://github.com/zch65458525/L2T.

1 Introduction
In recent years, LLMs [Radford et al., 2018] have achieved
remarkable success in fields such as natural language pro-
cessing [Brown et al., 2022], machine translation [Jiao et
al., 2022], and code generation [Ni et al., 2022]. However,
training these models requires substantial computational re-
sources and energy, resulting in high costs and environmental

∗Corresponding authors.

impacts [Patterson et al., 2022]. As a result, efficiently uti-
lizing LLMs has become a key research focus, with prompt
engineering emerging as a critical technique [Liu et al., 2023;
Zhou et al., 2022; Sun et al., 2022]. By designing effec-
tive prompts, it is possible to optimize model performance
without additional training, making it a cost-effective and
straightforward approach. Notably, the Chain-of-Thought
(CoT) method [Wei et al., 2022] has demonstrated signifi-
cant improvements in tasks such as mathematical reasoning
and logical inference by guiding models through step-by-step
reasoning processes. CoT works by crafting prompts that
break down complex problems into logical steps, enabling the
model to solve them incrementally.

Prompts that do 
not require task-
specific design

Context-adaptive 
thought generation 
strategies

Task-specific 
prompts

Predefined 
thought 
generation 
strategies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

类别 1

系列4 系列 3 系列 2 系列 1

(a) Conventional Method.

Prompts that do 
not require task-
specific design

Context-adaptive 
thought generation 
strategies

Task-specific 
prompts

Predefined 
thought 
generation 
strategies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

类别 1

系列4 系列 3 系列 2 系列 1

(b) Our Proposed Method.

Figure 1: A comparison between our method and conventional
methods.

Based on Chain of Thoughts, numerous related meth-
ods have been proposed in recent years, including Tree
of Thoughts (ToT)[Chu et al., 2024], Graph of Thoughts
(GoT)[Besta et al., 2024], and Thread of Thoughts
(ThoT)[Zhou et al., 2023b]. These methods introduce more
complex thinking paradigms, such as tree structures, graph
structures, and thread-based reasoning, thereby further ex-
tending the reasoning capabilities of LLMs. Compared to
chain-based reasoning structures, these approaches have sig-
nificantly enhanced the breadth and depth of the cognition of
LLMs [Qiao et al., 2023]. They have played an active role
in optimizing the performance of LLMs [Hadi et al., 2024].
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However, these methods still face several critical challenges.
First, they lack adaptability to different contexts. Existing

approaches are often unable to make real-time adjustments to
models and prompts in response to dynamic changes in sce-
narios, resulting in limited flexibility and robustness when ad-
dressing diverse tasks [Chu et al., 2024]. Once the reasoning
process begins, LLMs typically follow a predefined prompt
and execute reasoning in a relatively fixed manner. This leads
to a second issue: these methods often require task-specific
prompt design to handle different tasks effectively, particu-
larly for those involving more complex reasoning processes.
This reliance is, to some extent, inevitable, as more intri-
cate reasoning demands highly precise and specific prompts
to effectively guide the model. Only with carefully crafted
prompts can the models fully exploit their extended reasoning
frameworks. Without sufficiently targeted prompts, their rea-
soning performance may degrade greatly, failing to achieve
the desired cognitive outcomes. This heavy dependence on
task-specific prompts poses a major limitation, severely un-
dermining the generalizability of such methods. One possi-
ble solution is to collect task-specific data and use fine-tuning
methods to train the LLM. However, this approach incurs sig-
nificant costs in industrial scenarios and is not feasible for
cases where only API access is available. Figure 1(a) pro-
vides a visual summary of these challenges.

Thus, a key question emerges: is there a way to address
different types of problems in a unified manner with-
out requiring LLM training or additional prompt design,
while also allowing the model to flexibly adjust based on
the problem and reasoning process? To achieve this, it is
essential to establish a suitable unified framework to model
the entire reasoning process of LLMs, enabling them to adopt
different modes of thinking at appropriate moments, much
like humans do.

To this end, we propose the Learn to Think (L2T) method,
which guides the LLM to “think” based on graph learning.
This method employs graphs to unify the representation of
the reasoning process of LLMs across different tasks. These
graphs are annotatable, enabling more effective representa-
tion and accurate prediction of reasoning strategies. Sub-
sequently, L2T utilizes a graph learning approach based on
LLMs to adaptively guide reasoning strategies for various
scenarios. By combining such an approach with the auto-
matic extraction of reasoning process formats and evaluation
criteria from task descriptions, L2T effectively handles di-
verse tasks without relying on task-specific prompts. Then,
L2T introduces a GNN-based reasoning mode selection mod-
ule to perform relatively lightweight representation learning
on the graph, facilitating the switch between different rea-
soning modes for LLMs. This enables real-time adjustments
during the reasoning process, and the GNN-based reasoning
mode selection module is further refined within a reinforce-
ment learning framework. Figure 1(b) illustrates the advan-
tages of the proposed method. In summary, our contributions
are as follows:

• We propose an LLM reasoning framework that can adapt
to different problems and develop reasoning pathways
without requiring task-specific prompts.

• By integrating a GNN-based reasoning mode selection
module, we enable real-time adjustment of the LLM rea-
soning strategies. Furthermore, the module can be con-
tinuously optimized through reinforcement learning.

• Extensive experiments are conducted to thoroughly val-
idate and analyze the proposed method.

2 Related Works
Prompt engineering. Prompt engineering for LLMs has
seen significant advancements, introducing innovative tech-
niques aimed at enhancing reasoning and reliability. Meth-
ods such as CoT [Wei et al., 2022] improve reasoning ca-
pabilities by incorporating intermediate steps, while self-
consistency [Wang et al., 2023] enhances reliability by ag-
gregating consistent outputs. Interactive question answer-
ing further enables dynamic interactions with the model, fa-
cilitating adaptive reasoning processes [Yao et al., 2023b;
Masson et al., 2024]. To mitigate hallucinations, Retrieval-
Augmented Generation (RAG) [Lewis et al., 2020] integrates
external retrieval mechanisms to ensure factual accuracy. Ad-
ditionally, methods like Chain-of-Verification (CoVe) [Dhuli-
awala et al., 2024], Chain-of-Note (CoN) [Yu et al., 2023],
and Chain-of-Knowledge (CoK) focus on step-by-step vali-
dation for robust reasoning. Furthermore, prompt engineer-
ing research has also explored areas such as user intent un-
derstanding [Diao et al., 2024], autonomous prompt selec-
tion [Zhou et al., 2023a], external tool integration [Paranjape
et al., 2023], and emotional control in responses [Li et al.,
2023].

Logic and reasoning within LLM prompting. Efforts to
enhance logic and reasoning in LLM prompting have intro-
duced various innovative methods. Auto-CoT [Zhang et al.,
2023] automates the generation of reasoning chains, while
Logical CoT (LogiCoT) [Zhao et al., 2024] leverages sym-
bolic logic for step-by-step verification. Prompt Sketching
[Beurer-Kellner et al., 2024] constrains outputs to predefined
logical structures, ensuring coherence and adherence to logi-
cal frameworks. Topological frameworks have also been ex-
plored, such as ToT [Yao et al., 2023a] and GoT [Besta et al.,
2024], which utilize hierarchical and graph-based structures,
respectively, to model complex reasoning processes. Algo-
rithm of Thoughts (AoT) [Sel et al., 2024] employs in-context
algorithmic examples to guide LLMs through structured rea-
soning pathways, while ThoT [Zhou et al., 2023b] generates
structured thought threads to decompose and address com-
plex problems. Although these methods have made signifi-
cant contributions, they typically follow predefined reasoning
processes and depend heavily on task-specific prompts, lim-
iting their adaptability and generalizability. In contrast, our
method addresses these limitations by enabling more flexi-
ble and adaptive reasoning capabilities for LLMs. Additional
details on related work are available in Appendix A.

3 Method
Our method consists of the following parts: first, represent-
ing the complete logical reasoning process of the LLM as a
specifically designed graph. Second, automatically generate
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Class = 1
Reasoning Process 

Stop

Class = 1
Reasoning Process 

Stop Class = 3
Final Result

Thoughts that have been processed

Thoughts yet to be processed

Figure 2: An example of the reasoning process graph. Each box contains a thought generated by the LLM, representing a node in the
reasoning process graph. The green boxes in the graph indicate the nodes currently being processed. We classify these nodes and used their
categories to guide the LLM’s next steps.

the format and evaluation criteria of the reasoning process,
then employ a graph learning framework to process the rea-
soning process graph, thereby facilitating flexible and adap-
tive multi-step problem-solving that does not require task-
specific prompts. Finally, iteratively refining the proposed
reasoning model through reinforcement learning. We will
elaborate on them in detail.

3.1 Reasoning Process Graph

The conversation with the LLM consists of user messages
(prompts) and the LLM’s responses (thoughts). Extensive re-
search has been conducted on how to organize such prompts
and thoughts to optimize LLM performance [Liu et al., 2023],
leading to the proposal of various structures of thoughts,
such as chain structures [Wei et al., 2022], tree structures
[Yao et al., 2023a], graph structures [Besta et al., 2024],
etc. Among these, graphs are particularly effective for rep-
resenting the reasoning frameworks of most existing models,
as trees, chains, and other structures can be viewed as spe-
cial cases of graphs. Building on this, our approach employs
a specifically designed graph to represent logical reasoning,
which we refer to as the reasoning process graph.

Particularly, we represent the entire reasoning process of
an LLM as a reasoning process graph G = {V, E}, where V
denotes the set of nodes, with each node v ∈ V representing a
thought generated by the LLM. Similarly, E denotes the set of
edges, where each edge e ∈ E represents a connection from
one thought to its subsequent thought.

The set V can be partitioned into two subsets: Vpres and
Vhist. Here, Vpres represents the nodes corresponding to un-
processed thoughts and will serve as the basis for generating
subsequent thoughts. In contrast, Vhist represents the nodes
that have already been processed and will no longer be revis-
ited.

Each node v in Vpres is assigned a category label Yv , where
Yv ∈ {1, 2, 3, 4}. The meaning of each label is as follows:

• Label 1: Reasoning should not proceed based on node
v.

• Label 2: Reasoning should continue based on node v.
• Label 3: Node v should be output as the final result.
• Label 4: A backtracking operation should be performed

on node v, meaning that reasoning should continue
based on its parent node.

To assign specific labels to each node in Vpres, we utilize
LLM-based graph learning for node classification. These la-
bels are subsequently employed to guide the thought genera-
tion process. By leveraging this approach, L2T eliminates the
need for task-specific prompts to direct the reasoning process.
Instead, the labels effectively determine how the reasoning
proceeds. In the following sections, we will elaborate on this
process in detail. Figure 2 gives an illustration example for
the reasoning process graph.

3.2 Thought Generation Framework
Next, we introduce our thought generation framework. Since
the reasoning process is carried out step by step, we will ex-
plain in detail how reasoning is performed at the first step, the
intermediate k-th step, and the final step, respectively. The
overall framework is given in Figure 3.

First Step
In the first step, we begin by obtaining an initial state. Using
the LLM, we generate three components: the initial reason-
ing process graph G(1), the constraint format and examples
for the process, and the evaluation criteria for the generated
thoughts. Specifically, the initial reasoning process graph is
defined as G(1) = {V(1), E(1)}. In G(1), the subscript “1” in
parentheses corresponds to the iteration step one. V(1) and
E(1) represent the sets of nodes and edges in G(1), respec-
tively. At this stage, |V(1)| = 1 and E(1) = ∅, as G(1) con-
tains only a single initial node. The node in G(1) is assigned
to Vpres(1). The attribute of this node is the task description.
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Reinforcement
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First 
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GNN
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LLM

LLM

G(k-1)

G(k)

Task Description

Init Prompt

Result Evaluation Information X eva

Starting Node
G(1)
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Modify
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Result
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Reasoning 
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(1) Reasoning Process Graph Node Classification

(2) GNN-based Reasoning Mode Selection (3) Thought Generation

Figure 3: The framework of the proposed method. All LLM modules uniformly utilize the same LLM.

Additionally, we utilize the LLM to directly produce X fmt

that includes format descriptions and a set of corresponding
example answers for new thought generation. Furthermore,
based on the LLM, we extract relevant information Xeva from
the task description that pertains to the criteria for evaluat-
ing and scoring the quality of the model’s output. The above
design ensures that L2T can perform step-by-step reasoning
for complex problems in a unified format without relying on
task-specific prompts, while also providing a reasonable eval-
uation of task execution. Details of all L2T prompts can be
found in Appendix B.5.

k-th Step

For the k-th step, we generate the subsequent thoughts to con-
struct G(k) based on G(k−1). L2T first conducts reasoning
process graph node classification, then achieves GNN-based
reasoning mode selection. Based on the classification infor-
mation and the selected reasoning mode, L2T finally gener-
ates the thoughts. We will elaborate on the details in the fol-
lowing content.

(1) Reasoning process graph node classification. The
node classification is performed for all nodes within
Vpres(k−1). For each node v ∈ Vpres(k−1), we ex-
tract its corresponding subgraph G̃

(k−1)
v , where G̃

(k−1)
v =

{Ṽ(k−1)
v , Ẽ(k−1)

v }. Here, Ṽ(k−1)
v represents the set of all

nodes in G(k−1) that have paths pointing to node v with a
path length less than β, where β is a predefined hyperparam-

eter. The edge set Ẽ(k−1)
v is defined as:

Ẽ(k−1)
v ={

(u,w) ∈ E(k−1) | u ∈ Ṽ(k−1)
v , w ∈ Ṽ(k−1)

v

}
. (1)

Thus, G̃(k−1)
v is the induced subgraph of G(k−1) whose ver-

tex set is Ṽ(k−1)
v . The provided information will be utilized

as input to the LLM to perform node classification. Beyond
the node attributes, the topological relationships between the
target node v and other nodes will be annotated and expressed
in textual form. This annotation process is straightforward, as
the neighboring nodes primarily represent historical or back-
tracking information. The overall node classification process
can be mathematically expressed as follows:

Ẏ (k)
v = f

(
Snode, τ

(
{xu | u ∈ Ṽ(k−1)

v }, G̃(k−1)
v

))
, (2)

where Snode represents the prompts designed for node classi-
fication, Ẏ (k)

v denotes the estimated label, xu denotes the tex-
tual representation of the reasoning thought associated with
node u, f(·) denotes the LLM, and τ(·) is the function that
converts graph-related information into a descriptive textual
format. Further details regarding the implementation of τ(·)
are provided in Appendix B.3.
(2) GNN-based reasoning mode selection. Our GNN-
based reasoning mode selection module processes the graph
G(k−1) using a GNN [Kipf and Welling, 2017; Wu et al.,
2020] g(·), which is a deep learning model designed to pro-
cess and analyze graph-structured data by leveraging the
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relationships between nodes and edges. The GNN takes
an attributed graph as input and outputs feature vectors for
each node. For the implementation of g(·), we utilize a
one-layer Graph Convolutional Network (GCN) [Kipf and
Welling, 2017] followed by a two-layer Multi-Layer Percep-
tron (MLP). During the aforementioned node classification,
each node v in G(k−1) save the final-layer representation hv

generated by the LLM as the node feature vector for this
stage. Here, hv is the representation corresponding to the
last output token in the answer sequence. These output repre-
sentations are subsequently transformed into vectors denoted
as a. Specifically, each reasoning node v(k) in Vpres(k) is as-
sociated with a vector a(k)v . The vector a(k)v consists of a set
of parameters, including adjustable prompt-related parame-
ters (e.g., the number of generated branches) as well as LLM
hyperparameters (e.g., the temperature parameter). Formally,
a
(k)
v is defined as:

a(k)v = A
(
g[v](G

(k−1))
)
, (3)

where A(·) denotes the function that outputs a
(k)
v based on

g[v](G
(k−1)), g[v](G(k−1)) is the GNN output representation

of node v at the (k − 1)-th step. In fact, A(·) implements the
Actor mechanism in the Actor-Critic algorithm [Konda and
Tsitsiklis, 1999], and the implementation details of this func-
tion will be elaborated in Section 3.3. We treat a(k)v as an
action of choosing a mode of reasoning, the model will be it-
eratively updated to optimize the selection of modes. Further
details regarding a

(k)
v can be found in Appendix B.4.

(3) Thought generation. Finally, we carry out thought gen-
eration. According to the classes described in section 3.1, for
a given node v, new nodes need to be generated only when
the label of v is 2, and the newly generated nodes are all child
nodes of v. For other types of nodes, only deletion, modifica-
tion, and adjustment of set membership are required, which
can be directly addressed through standardized processing on
G(k−1). The standardized processing can be implemented
through straightforward code development. Subsequently, we
input the prompts, pre-generated template examples, and the
textual description of node attributes into an LLM, enabling
it to generate the subsequent thought nodes when the label
of v is 2. The process of generating the textual features of a
child node u based on the content of its parent node v can be
formalized as follows:

xu = f(Sgen, x(k−1)
v , X fmt,a(k)v ), (4)

where xu represents the textual features of the node u, and
Sgen denotes the prompt used for data generation. Note that a
portion of the prompt is determined by a

(k)
v , which also influ-

ences the hyperparameters of the LLM. Based on xu, along
with other standardized processing, the graph G(k) can then
be constructed. The newly generated child nodes, together
with the backtracked parent nodes, will form Vpres(k).

Final Step
The reasoning process concludes when the final result
emerges. This occurs when the current set, denoted as Vpres,
contains a node labeled as 3, signifying the appearance of the

final result. At this point, all intermediate steps and iterations
cease, and the process terminates.

Additionally, if all nodes in Vpres have their corresponding
thoughts labeled as 1 (indicating that reasoning stops at the
current thought), these thoughts will then be regenerated. If
they are still labeled as 1, the process will also terminate.

3.3 Update
We employ the Actor-Critic algorithm from reinforcement
learning to optimize and update the GNN-based reasoning
mode selection module, which comprises g(·) and A(·).
These components work together to produce the output a(k)v .
The Actor-Critic algorithm uses two models: the Actor,
which selects actions based on the policy, and the Critic,
which evaluates the actions by estimating the value function
to improve the policy. Please refer to Appendix E.2 and E.3
for detailed introductions. Assuming we are at the k-th step,
we first consider the case where there is only one node in
G(k−1) that needs to be processed, i.e., |Vpres(k)| = 1, and the
pending node is v. As mentioned in the previous section, at
step k, we regard a

(k)
v as an action of choosing the mode of

reasoning. At this point, g[v](G(k−1)), i.e., the GNN output
representation of node v at the (k − 1)-th step, is treated as
the input state.

The Actor, which is represented as A(·), is used to gener-
ate the action a

(k)
v , which represents the selected reasoning

mode. At the k-th step, we calculate an action distribution
π(a

(k)
v |g[v](G(k−1)); θactor) based on a single-layer MLP with

θactor as the parameters, and action a
(k)
v is sampled from this

distribution. The process can be formulated as:

a(k)v ∼ π(a(k)v |g[v](G(k−1)); θactor), (5)

π denotes the strategy distribution. The parameters of π
is output with the MLP, which takes g[v](G

(k−1)) as its in-
put. Next, we acquire an immediate reward rk and the next
state g[v](G

(k)). The reward rk is set to 100 if the generated
thought represents the final result. Otherwise, it is an integer
between 0 and 10, determined by the LLM based on G(k) and
Xeva. The detailed prompt used for this process is provided
in Appendix B.5.

The Critic evaluates the performance of the current strat-
egy by estimating the state value function V

(
g[v](G

(k−1))
)
,

which is also implemented using a single-layer MLP with
θcritic as the parameters.

We adopt the widely used PPO framework [Schulman et
al., 2017] for LLM training as the specific implementation of
the Actor-Critic algorithm, optimizing and updating the Ac-
tor and Critic that we have constructed. Through collabora-
tive optimization, the policy network gradually learns a better
strategy for selecting reasoning modes, enabling the model to
dynamically optimize inference efficiency and performance
under different graph states.

For graphs with multiple pending nodes, i.e., |Vpres(k)| >
1, each node is processed sequentially as different steps, with
optimization and updates performed individually.
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Method
3×3 Sudoku 4×4 Sudoku 5×5 Sudoku 4×4 Sudoku w/o TSP

Average Min Max Average Min Max Average Min Max Average Min Max
IO 43.85±10.44 4/13 8/13 24.62±10.50 0/13 4/13 10.77±6.41 0/13 3/13 24.62±10.50 0/13 4/13
CoT (zero-shot) 61.54±9.87 5/13 9/13 33.08±9.47 3/13 7/13 13.85±8.70 0/13 4/13 10.77±9.54 0/13 5/13
CoT (few-shot) 80.77±9.54 9/13 12/13 57.69±10.92 5/13 9/13 46.92±10.32 4/13 8/13 30.00±12.91 1/13 7/13
ToT 92.31±4.39 12/13 13/13 72.31±5.99 8/13 12/13 63.85±10.44 5/13 10/13 34.62±13.91 1/13 9/13
GoT 95.38±5.19 12/13 13/13 72.35±11.47 8/13 13/13 67.69±10.92 5/13 11/13 37.69±15.89 2/13 9/13
AoT 97.65±4.37 12/13 13/13 77.69±7.25 8/13 12/13 69.41±9.66 8/13 12/13 36.47±13.67 2/13 9/13

L2T w/o GNN 98.46±3.61 11/13 13/13 93.08±9.47 9/13 13/13 89.46±9.87 9/13 13/13 93.08±9.47 9/13 13/13
L2T 100.00±0.00 13/13 13/13 98.46±3.76 12/13 13/13 89.23±6.41 10/13 13/13 98.46±3.76 12/13 13/13

Table 1: Results for performance on Sudoku. Bold denotes the best result, and underline denotes the second best. For tied results in either first
or second place, the performance is determined by comparing other relevant results within the same group. Min and Max represent the best
and worst performances achieved by a method, respectively, in terms of the number of correct solutions out of 13 total puzzle sets. Results
for 4× 4 Sudoku w/o TSP (without task-specific prompts) reflect the performance of models when task-specific prompts are removed. Since
IO, L2T w/o GNN, and L2T do not use task-specific prompts by design, their results are directly copied from the corresponding problem and
are shown in italic to indicate this.

Method Game of 24 Game of 24 w/o TSP
IO 15.92±1.89 15.92±1.89
CoT (zero-shot) 28.63±0.86 25.82±2.01
CoT (few-shot) 30.34±2.21 26.12±2.23
ToT 70.52±3.26 48.12±1.18
GoT 72.30±1.55 48.15±1.28
AoT 74.23±1.59 27.54±7.76

L2T w/o GNN 77.45±1.17 77.45±1.17
L2T 80.42±2.98 80.42±2.98

Table 2: Results for performance on Game of 24. Bold denotes the
best result, and underline denotes the second best. Results for Game
of 24 w/o TSP reflect the performance of models when task-specific
prompts are removed. As Table 1, italic denotes the results that are
directly copied from the corresponding problem, as the correspond-
ing method do not use task-specific prompts by design.

4 Experiments
4.1 Comparison with State-of-the-Art Methods
Baselines
For our experiments, we utilized GPT-4o as the base model.
First, we directly compared our proposed L2T method with
the original output of GPT-4o[OpenAI, 2023] (denoted as
IO). Subsequently, we compared L2T with several advanced
LLM reasoning methods, including CoT [Wei et al., 2022],
ToT [Yao et al., 2023a], GoT [Besta et al., 2024], and AoT
[Sel et al., 2024]. Among these, we specifically analyzed both
the zero-shot and few-shot versions of CoT.

Tasks
We evaluated our method on four distinct tasks: Sudoku, the
Game of 24, TruthQuest [Mondorf and Plank, 2024], and
Creative Writing. These tasks were chosen as they are com-
monly used in the evaluation of similar methods [Yao et al.,
2023a; Besta et al., 2024].

The Sudoku task is a logic-based puzzle involving the
placement of numbers within a grid according to specific
rules, we adopted 3 sizes, 3 × 3, 4 × 4, and 5 × 5. Game
of 24 is a mathematical puzzle where players use four given
numbers and basic arithmetic operations to reach a total of
24. TruthQuest [Mondorf and Plank, 2024] is a recently in-

Method 3 Characters 4 Characters 5 Characters 3 Characters w/o TSP
IO 36.83±1.57 35.06±6.73 6.57±2.04 36.83±1.57
CoT (zero-shot) 40.92±0.71 38.91±1.09 10.52±0.85 37.85±0.96
CoT (few-shot) 45.24±1.47 39.43±1.24 13.42±2.25 42.05±1.24
ToT 53.68±2.65 47.82±0.81 17.58±0.34 49.16±1.37
GoT 51.42±1.80 47.95±1.24 16.72±0.28 48.85±1.06
AoT 53.15±1.34 46.69±1.80 16.41±1.01 41.94±1.14

L2T w/o GNN 67.74±1.09 54.84±3.01 25.81±2.58 67.74±1.09
L2T 69.31±0.64 59.75±0.99 27.93±0.05 69.31±0.64

Table 3: Results for performance on TruthQuest. Bold denotes the
best result, and underline denotes the second best. Results for 3
Characters w/o TSP reflect the performance of models upon 3 Char-
acters TruthQuest when task-specific prompts are removed. As Ta-
ble 1, italic denotes the results that are directly copied from the cor-
responding problem, as the corresponding method do not use task-
specific prompts by design.

troduced benchmark for evaluating the reasoning and verifi-
cation abilities of LLMs. Creative Writing task consisted of a
series of diverse writing challenges (designed to avoid redun-
dancy in task definitions) to assess the logical and conceptual
abilities of LLMs in generating coherent and creative text.
More details can be found in Appendix C.

For all tasks, the L2T method was tested using identical
prompts, ensuring a consistent evaluation framework.

Settings
We utilized the GPT-4o API to conduct all the experiments,
including those for the baselines. We also present the per-
formance of L2T w/o GNN, which refers to L2T without the
GNN-based reasoning mode selection module and, as a re-
sult, does not require any training.

Furthermore, we conducted additional experiments
(marked in orange) that removed the task-specific com-
ponents of methods including CoT, ToT, GoT, and AoT.
Further details regarding the experimental settings and
hyperparameter configurations can be found in Appendix B.

Results
Next, we analyze the results across different tasks. Tables
1, 2, and 3 summarize the results for Sudoku, Game of 24,
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Method
Sentence Formation (Less Hints) Sentence Formation (More Hints) Text Expansion

Higher Same Lower Std. Higher Same Lower Std. Higher Same Lower Std.

IO 93.06 6.93 0.00 ±3.92 82.67 17.33 0.00 ±3.76 51.93 38.91 9.16 ±2.24

CoT 62.87 36.14 0.00 ±3.22 61.39 38.61 0.00 ±3.08 42.28 41.78 15.94 ±1.24

ToT 48.27 50.24 1.49 ±2.90 50.74 47.02 2.23 ±2.53 41.98 36.83 21.19 ±2.83

GoT 47.77 49.99 2.23 ±2.56 49.75 48.02 2.23 ±3.33 41.88 35.64 22.48 ±2.65

AoT 48.82 49.06 2.11 ±1.88 48.12 49.05 2.82 ±2.18 44.24 36.82 18.94 ±2.44

L2T w/o GNN 15.05 50.84 34.11 ±3.38 15.38 39.13 45.48 ±3.84 15.88 64.08 20.04 ±4.10

Table 4: Comparison of method performance on the Creative Writing task. All data represent the performance of L2T comparisons to other
methods. Higher indicates cases where L2T achieved a better score compared to the corresponding method. Same represents cases where
L2T achieved the same score as the corresponding method. Lower indicates cases where the L2T scored worse compared to the corresponding
method.

Method Accuracy (%) Generated Nodes
L2T 80.42±2.98 36.14±9.29
L2T w MLP 78.20±1.36 40.29±9.87
L2T w/o RL 78.85±1.42 43.13±8.61
L2T w/o GNN 77.45±1.17 46.56±21.11

Table 5: Comparison of accuracy and number of generated nodes
for different methods.

Method
Prompt Tokens Generate Tokens

Tokens per Case
per Thought per Thought

IO 0.18k 0.56k 0.56k
CoT 0.23k 1.86k 1.86k
AoT 0.55k 1.74k 1.74k
ToT 0.48k 0.20k 11.60k
GoT 0.48k 0.21k 7.56k
L2T 0.49k 0.18k 4.68k

Table 6: Comparison of prompt tokens per thought, generate tokens
per thought, and tokens per case for different methods.

and TruthQuest. Our method consistently outperforms oth-
ers, showing significant improvements, particularly without
task-specific prompts, where its efficiency advantage is more
pronounced. Even without the GNN-based reasoning mode
selection module (L2T w/o GNN), performance remains su-
perior, highlighting the effectiveness of our approach.

Table 4 presents results on Creative Writing, focusing on
relative scores to L2T. Evaluations via an LLM reduce fluctu-
ations. L2T achieves higher or equivalent scores in over 80%
of cases, with less than 20% lower, outperforming baselines.
L2T w/o GNN performs comparably, supporting conclusions
from prior results.

4.2 In-Depth Analysis
Ablation Study
To further delve into the analysis of our algorithm, we con-
ducted ablation experiments. These experiments were per-
formed on the Game of 24 task to evaluate the contribution of
each component in our proposed method. We implemented
three variations of the method with specific components ab-
lated: (1) L2T w MLP, which replaces the GNN with an MLP;
(2) L2T w/o RL, which removes the reinforcement learning
mechanism for updating the GNN and instead directly trains

the GNN-based reasoning mode selection module based on
the scores of individual nodes; and (3) L2T w/o GNN, which
completely eliminates the GNN-based reasoning mode selec-
tion module.

The experimental results are shown in Table 5. We not
only evaluated the accuracy of each variant but also ana-
lyzed the number of nodes generated by each method. This
provides an indication of the number of reasoning steps re-
quired to arrive at the final result. The results demonstrate
that the GNN-based reasoning mode selection module does
contribute to the performance of the L2T method. However,
its primary benefit lies in reducing the number of reasoning
steps needed. Clearly, methods incorporating the GNN-based
reasoning mode selection module require significantly fewer
reasoning steps compared to those without it.

Computational Consumption Analysis
We also analyzed the computational consumption of L2T, us-
ing the number of tokens as a metric to measure computa-
tional cost. The experimental results are presented in Table 6.
As shown, the computational resources consumed by L2T are
comparable to those of other methods and outperform GoT.
This demonstrates that L2T can accomplish complex reason-
ing tasks and achieve favorable results without requiring ex-
cessive computational resources. We also provide a detailed
breakdown of the computational overhead in Table ??.

Category L2T ToT GoT
24 Points 26 48 30
3 × 3 Sudoku 22 32 28
TruthQuest 14 26 18
Creative Writing 21 32 20

Table 7: Comparison of LLM access counts for different methods.
Bold denotes the minimum value.

Process Analysis
In order to conduct a more in-depth analysis of the working
process of L2T, we recorded the temperature and top-p values
output by the GNN-based reasoning mode selection module
during its operation. The results are shown in Figure 4. An
interesting observation is that temperature and top-p exhibit a
significant correlation. For the Creative Writing task, the val-
ues display an inverse relationship—when one value is rela-
tively high, the other tends to be relatively low. In contrast,
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(a) Results of Creative Writing.
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(c) Visualization.

Figure 4: The temperature and top-p value within the reasoning pro-
cess.

for the Game of 24 task, the values show a direct relation-
ship—when one value is high, the other is also high. This in-
dicates that the trained GNN-based reasoning mode selection
module adopts distinct strategies tailored to different tasks.
To further clarify this, we provide a concrete visualization of
this strategy in Figure 4(c), offering a more explicit visualiza-
tion of the parameter variations during the inference process
is provided.

5 Conclusion
This paper proposes a novel LLM reasoning method, L2T.
This method utilizes a graph-based framework to represent
the reasoning process of LLMs and applies graph learning
techniques to learn and analyze this reasoning graph, subse-
quently generating corresponding reasoning strategies. L2T
incorporates two types of graph learning approaches: one
based on LLMs and the other based on GNNs. It elimi-
nates the need for specifically designed prompts for differ-
ent problems and can integrate reinforcement learning meth-
ods to continuously self-optimize during successive problem-
solving processes. Extensive experiments demonstrate the ef-
fectiveness of L2T.
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