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Abstract

Visual grounding (VG) refers to detecting the spe-
cific objects in images based on linguistic ex-
pressions, and it has profound significance in the
advanced interpretation of natural images. In re-
mote sensing image interpretation, visual ground-
ing is limited by characteristics such as the com-
plex scenes and diverse object sizes. To solve this
problem, we propose a novel remote sensing visual
grounding (RSVG) framework, named language-
guided hybrid representation learning Transformer
(LGFormer). Specifically, we designed a multi-
modal dual-encoder Transformer structure called
the adaptive multimodal feature fusion module.
This structure innovatively integrates text and vi-
sual features as hybrid queries, enabling early-stage
decoding queries to perceive the target position
accurately. Then, the different modal information
from the dual encoders is aggregated by hybrid
queries to obtain the final object embedding for co-
ordinate regression. Besides, a multi-scale cross-
modal feature enhancement module (MSCM) is de-
signed to enhance the self-representation of the ex-
tracted text and visual features and align them se-
mantically. As for the hybrid queries, we use lin-
guistic guidance to select visual features as the vi-
sual part and sentence-level features as the textual
part. Finally, the LGFormer model we designed
achieved the best results compared to existing mod-
els on the DIOR-RSVG and OPT-RSVG datasets.

1 Introduction

The task of visual grounding on remote sensing images
(RSVQG) is to locate specific objects according to the natu-
ral language expression [Sun ef al., 2022]. Unlike traditional
object detection tasks [Girshick et al., 2015; Carion et al.,
20201, visual grounding is not simply to classify and detect
all the objects included in the training set, but to locate the
unique objects described by natural language. Compared with
natural images that have been discussed for a long time in the
computer community, remote sensing (RS) images have more
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significant target scale changes and complex background in-
terferences. Therefore, RSVG is extremely challenging. The
area covered by an RS image can range from several square
kilometers to thousands of square kilometers, and the scenes
can include urban streets, port ships, mountains and rivers,
etc. In such large-scale scenes, it is impossible for humans
to quickly find some areas of interest manually, which also
highlights the significance of this research. More importantly,
RSVG has no professional requirements for users, allowing
all users to easily implement target retrieval on RS images.
This makes RSVG a broad research prospect in fields such
as military reconnaissance, natural disaster surveillance, agri-
cultural management, and urban development planning.

As an advanced research direction, RSVG is still underex-
plored. [Sun et al., 2022] were the first to propose applying
visual grounding to remote sensing images and introduced
the RSVG dataset and the GeoVG method. GeoVG includes
an image encoder, a language encoder, and a fusion module.
This method uses the CNN network DarkNet-53 [Redmon
and Farhadi, 2018], which incorporates an adaptive region
attention module, as the image encoder, and the BERT [De-
vlin et al., 2019] as the language encoder. The fusion mod-
ule uses an attention network to integrate textual information
into visual features, thereby obtaining fused visual features
that can be used for target coordinate regression. [Zhan et
al., 2023] proposed a new method for RSVG called MGVLF
and a new dataset called DIOR-RSVG, constructed based on
the DIOR [Li et al., 2020] dataset. MGVLF takes into ac-
count the significant size differences of target objects in re-
mote sensing images. A single-scale feature map struggles
to effectively capture the detailed information of targets of
different sizes simultaneously. Therefore, it uses multi-scale
visual feature maps to provide visual information at differ-
ent levels. MGVLF also extracts multi-granularity text fea-
tures, including sentence-level features that provide global
contextual information and word-level features that provide
local semantic information. In the recent work LQVG [Lan
et al., 2024], the authors argue that the target object occupies
a small spatial area in remote sensing images, and its visual
representation is limited in the cross-modal features obtained
by concatenating visual and textual features. This makes it
difficult for a single learnable token to effectively gather tar-
get information through the self-attention mechanism in the
cross-modal fusion module. Thus, they proposed a language
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query-based Transformer framework, using multiple repeated
sentence-level text embeddings as queries to aggregate tar-
get object information from multi-scale visual features, and
using this as the final object embedding, thereby improving
localization accuracy. The work of LPVA [Li et al., 2024]
believes that past methods relied solely on visual information
when extracting features through the visual backbone, with-
out considering the potential correlation between visual and
textual information. This may cause attention drift during the
feature extraction process, leading to the extraction of visual
features of objects that are inconsistent with the textual de-
scription. To address this, they designed a progressive atten-
tion module and a multi-level feature enhancement decoder,
which dynamically adjusts visual features using linguistic in-
formation, successfully solving the problem of attention drift.

Despite the significant progress made by the aforemen-
tioned methods in the RSVG task, the performance in prac-
tical applications still needs improvement. Moreover, we be-
lieve that existing methods are not efficient in utilizing the ex-
tracted features when obtaining object embeddings, resulting
in poor performance of object embeddings during regression.
Simply using a learnable representation to initialize object
embeddings is insufficient to fully learn the complete target
localization information. Recently, some methods have used
the embedding of a single modality as a query to fuse infor-
mation from another modality’s features, and then used this
as the object embedding. However, this still struggles to pro-
vide sufficient fusion prior information for the initial query,
making it difficult to handle the differences and interferences
between different modality features in complex remote sens-
ing image scenarios, resulting in weak robustness.

In light of this, the motivation of this study is to propose a
novel method that improves the quality and robustness of ob-
ject embeddings by more efficiently integrating multimodal
features, thereby enhancing the performance of RSVG. In
this paper, we propose a language-guided hybrid representa-
tion learning Transformer framework (LGFormer) using hy-
brid queries for RSVG. Specifically, our model includes an
image encoder, a text encoder, a multi-scale cross-modal fea-
ture enhancement module (MSCM), a language-guided visual
feature filtering module, and a adaptive multimodal feature
fusion module. The image encoder uses a convolutional neu-
ral network (CNN) and a vision transformer (ViT) network
in parallel to extract multi-scale features from the image.
BERT extracts multi-granularity features from text, including
sentence-level features and word-level features. After pass-
ing through the MSCM module, the extracted text and visual
features will be refined into embedding vectors and aligned
in the semantic space. Next, we will use the text embeddings
to filter the visual embeddings, and the filtered visual em-
beddings will be combined with sentence-level embeddings
to serve as hybrid queries for the adaptive multimodal fea-
ture fusion module. Our adaptive multimodal feature fusion
module is similar to the traditional detect transformer struc-
ture, but it includes an additional encoder. In this way, hybrid
queries can simultaneously interact and fuse with text and vi-
sual bimodal features during the decoding stage, improving
the efficiency of utilizing key features from different modali-
ties. Due to the prior characteristics of the content initialized

by the hybrid queries, it inherently possesses the ability to
perceive the target. Ultimately, the object embeddings we ob-
tained achieved higher coordinate regression accuracy.

Overall, the main contributions of this paper consist of the
following three points.

1. The language-guided hybrid representation learning
Transformer (LGFormer) is proposed for the task of re-
mote sensing visual grounding. It allows decoding query
to improve the efficiency of utilizing the extracted fea-
tures from different modalities, thereby obtaining more
accurate object embeddings.

2. The hybrid query is designed to initialize the decoding
query. The hybrid query consists of sentence-level fea-
tures and multi-scale visual features, providing rich prior
information to ensure its semantic understanding ability
and cross-domain adaptability during the decoding pro-
cess.

3. Alanguage-guided visual feature filtering method is pro-
posed. By using textual features to select visual features,
we ensure that the multimodal information in the hybrid
query is semantically highly relevant, thereby correctly
guiding the aggregation of contextual information of the
referred objects.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 elaborates on the
proposed LGFormer method. Section 4 provides a compre-
hensive overview of the experimental setup and results. Fi-
nally, we conclude the paper in Section 5.

2 Related Work

2.1 Visual Grounding on Natural Image

The following will review visual grounding on natural images
from three aspects: two-stage methods, one-stage methods,
and Transformer-based methods.

1) Two-Stage Method: The two-stage method typically di-
vides visual grounding into two independent processes: re-
gion generation and text-region matching. This is somewhat
similar to traditional two-stage object detection methods [Gir-
shick et al., 2015; Girshick, 2015; Ren et al., 2017]. The
first stage of region generation is generally achieved using
pre-trained object detectors [Ren ef al., 2017; Redmon, 2016;
Liu et al., 2016]. The related research in the second stage
is the focus of this direction, where language expressions
are used to select the best-matched region among the many
generated. Earlier methods [Nagaraja et al., 2016; Wang et
al., 2016] generally achieved good matching results by opti-
mizing feature embedding networks with maximum margin
ranking loss to maximize the similarity between object-query
pairs. SCRC [Hu er al., 2016] takes text queries, candidate
regions, their spatial configurations, and global context as in-
put, generating scores for each candidate region. MattNet [Yu
et al., 2018] introduces a modular design and improves the
accuracy of object localization by better modeling language
descriptions related to subjects, locations, and relationships.
Recent research has further improved the two-stage method
by better modeling object relationships [Yang ef al., 2019a;
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Figure 1: Overview of the proposed LGFormer framework. The MSCM module aligns the extracted multi-scale visual features and multi-

granularity text features, then uses the text features as a guide to

filter the visual features. The filtered results are then combined with

sentence-level features to form hybrid queries. In the adaptive multimodal feature fusion module, hybrid queries are used for information
retrieval and aggregation of multimodal features to obtain the final object embeddings for prediction.

Yang et al., 2020a; Wang et al., 2019] or utilizing phrase co-
occurrence [Bajaj et al., 2019; Dogan et al., 2019]. However,
the drawbacks of the two-stage method are also evident. Its
filtering operation on a large number of invalid candidate re-
gions leads to a significant waste of computational resources
and time. Moreover, the performance of the second stage is
directly constrained by the quality of the candidate regions
provided by the first stage.

2) One-stage methods: One-stage methods support directly
extracting information and predicting the coordinates of tar-
gets on visual features after densely integrating text features.
The early FAOA [Yang er al., 2019b] integrated text em-
beddings into the YOLOV3 detector [Redmon and Farhadi,
2018], achieving end-to-end visual grounding. RCCF [Liao
et al., 2020] uses text features as filters to verify and filter
visual features. Recently, ReSC [Yang er al., 2020b] pro-
posed a recursive subquery construction framework, which
improves one-stage visual grounding by addressing the local-
ization limitations of long and complex queries.

3) Transformer-based methods: Transformer [Ashish,
2017] has achieved significant success in both natural lan-
guage processing and computer vision. TransVG [Deng et
al., 2021] first proposed a transformer-based visual ground-
ing method, achieving cross-modal fusion through a trans-
former encoder. It concatenates query tokens with visual
and textual features, which are then fed into the fusion mod-
ule to aggregate useful information for coordinate regres-
sion. TransVG++ [Deng et al., 2023] further transformed the
model into a pure transformer structure, unifying visual fea-
ture encoding and multimodal fusion, thereby improving the
performance. In the VLTVG [Yang er al., 2022], the authors
developed a visual-language verification module before the
object localization stage to adjust the relationship between vi-
sual features and text features. QRNet [Ye et al., 2022] used
a query-aware dynamic attention mechanism and multi-scale
fusion to adjust the intermediate features in the visual back-

bone, thereby addressing the issue of inconsistency between
the visual features extracted from the visual backbone and the
features truly required for multimodal reasoning.

2.2 Visual Grounding on RS Images

The research of RSVG started late and is more challeng-
ing. Due to complex size variations and background inter-
ference, it is more difficult to separate the target’s contours
from the image. Sun et al. [Sun er al., 2022] first proposed
the RSVG task, and introduced the GeoVG method and the
RSVG dataset. GeoVG enhances its spatial location under-
standing capability through an adaptive region attention mod-
ule. [Zhan et al., 2023] proposed the MGVLF and the DIOR-
RSVG dataset. MGVLF integrates multi-scale visual features
with multi-granularity textual features to help improve local-
ization performance. Recently, [Lan et al., 2024] proposed
a multimodal Transformer using language queries, where the
language queries use multiple sentence-level feature embed-
dings instead of a single learnable token to aggregate the con-
textual information of the referenced objects. [Li et al., 2024]
argue that existing methods lack interaction with textual in-
formation when extracting visual features, leading to atten-
tion drift. Therefore, they incorporated language guidance
into the visual backbone of their LPVA, enhancing precise at-
tention to the guided objects, and achieved good results on
their proposed OPT-RSVG dataset.

3 Method

3.1 Overview

As shown in Figure 1, the proposed LGFormer consists of
four main parts: visual and text encoders, a multi-scale cross-
modal feature enhancement module, a language-guided vi-
sual feature filtering module and a adaptive multimodal fea-
ture fusion module. During the inference process, the encoder
extracts features from the given image-text pairs, obtaining
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the corresponding multi-scale visual features F,, and multi-
granularity text features F;. Subsequently, the extracted fea-
tures will be aligned in the semantic space through the cross-
attention mechanism in the MSCM module, resulting in fur-
ther refined visual and textual features. Next, we use the re-
fined textual features as language guidance to filter the refined
visual features in the language-guided visual feature filtering
module, and concatenate the output with the sentence-level
features to form hybrid queries. Meanwhile, the refined vi-
sual and text features are respectively fed into the two dif-
ferent modality encoder branches of the adaptive multimodal
feature fusion module. Their outputs, along with the hybrid
queries, are decoded in the fusion decoder to obtain the object
embeddings of the referenced objects. Finally, the object em-
beddings are used for category prediction and bounding box
coordinate regression through the MLP head.

3.2 Visual-Text Fundamental Feature
Representation

The feature extraction encoder consists of two parts: the vi-
sual encoder and the text encoder.

1) Visual Encoder: We adopted a parallel combination of
CNN model with ResNet [He et al., 2016] and vision trans-
former (ViT) [Dosovitskiy et al., 2021] as the main backbone
for visual extraction. ViT encodes image patches like it pro-
cesses sequence data, thereby better capturing global infor-
mation and long-range dependencies within the image. This
is particularly effective for understanding large-scale features
such as land cover distribution and topography in remote
sensing images. CNN, due to its convolutional structure with
local receptive fields, is better at extracting local features.
Specifically, we obtained the outputs of the last four layers
of ViT and the last three layers of ResNet. Additionally, we
performed another downsampling with a stride of 2 on the
output of the last layer of ResNet to obtain the output of the
fourth layer.

2) Text Encoder: For language expressions, we use a
pre-trained BERT with 12 hidden layers to obtain multi-
granularity text information. Specifically, we obtain the out-
put of the last layer of BERT as the sentence-level features
F¢, and the average of the outputs of the last four layers as
the word-level features F;”. Sentence-level features are re-
sponsible for providing overall contextual information, help-
ing to understand the approximate location of the target object
within the scene. Word-level features focus on specific object
names, colors, shapes, and other attribute words in the text,
used for precise matching of targets in RS images. I} repre-
sents the final extracted text embeddings: F} = [F;, F}'].

3.3 Multi-Scale Cross-Modal Feature
Enhancement

As shown in Figure 2, in the multi-scale cross-modal feature
enhancement module (MSCM), we simply use two cross-
attention modules to perform feature fusion from vision to
text and from text to vision, respectively. Since the principles
of the two cross-modal fusions are the same, we will explain
the cross-fusion from vision to text as an example. First, the
multi-scale visual embeddings are projected into Query (Q)
through the W€ linear projection, while the multi-granularity

Visual Features
KV |

Text to Image Cross-Attention

Refined

Text Feat
ext Features Text Features

Refined

Visual Features )
Visual Features

Image to Text Cross-Attention

kv T
T
Text Features

Figure 2: Illustration of the proposed multi-scale cross-modal fea-
ture enhancement (MSCM) module. The two cross-attention layers
contained in the MSCM module are both implemented using a multi-
head attention mechanism.

text embeddings are projected into Key (K) and Value (V)
through the W and WV linear projections, respectively.
For the i-th iteration, the attention mechanism calculates the

cross-modal weight A%, using the following formula:

i T
A! = Softmax (Q(\/%)> , (1)

subsequently, we use the computed A" and multiply them
with Value to obtain the attention output. Finally, we update
the visual embedding F}, through multiplication, thereby ob-

taining the refined visual feature Fgl.
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3.4 Language-Guided Visual Feature Filtering

To construct the hybrid query for decoding, we use sentence-
level embeddings and multi-scale visual embeddings to ini-
tialize the query. However, due to the large number of em-
bedding vectors obtained after refining visual features, it is
impractical to use all visual embeddings as the visual compo-
nent of the subsequent hybrid query. Therefore, we use text
features to filter them. Specifically, we calculate the similar-
ity between text embeddings and all visual embeddings using
the dot product, and then find the top k visual embeddings in
descending order of similarity to form the visual part. The
calculation formula is as follows:

I, = Topk(Max(_l)(XvX;r)), )

here, I}, represents the indices of the top & visual embeddings.
Topy, refers to the operation of obtaining the indices of these
embeddings in the visual embedding tensor based on the in-
put content. M az™Y and the symbol T represent the op-
erations of taking the maximum along the -1 dimension and
transposing the matrix, respectively. The input X, of this cal-
culation formula represents visual features, and the input X,
represents text features.

3.5 Adaptive Multimodal Feature Fusion

Adaptive multimodal feature fusion module aims to effi-
ciently obtain object embeddings to assist with coordinate re-
gression. To enrich the prior information of the initial queries,
we construct hybrid queries by combining sentence-level em-
beddings and k filtered visual embeddings. Note that we orig-
inally used the hidden representations from the last layer out-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Object embeddings

Add & Norm

Add & Norm

Position Text
encoding _)GE\ features

MH-Attention

1

4X

Add & Norm

I
Add & Norm
Add & Norm
MS-DCA

I

Add & Norm

Add & Norm

MS-DSA
Position 5 Visual
encoding features

Figure 3: Detailed Structure of Adaptive Multimodal Feature Fusion
Module. The adaptive multimodal feature fusion module consists of
a text feature encoder, a visual feature encoder, and a cross-modal
decoder.

Hybrid queries

put of BERT as sentence-level embeddings, but when forming
the hybrid queries, we only select the [CLS] embedding from
this output as the text part of the queries.

The detailed structure is shown in Figure 3. The two
encoders receive refined visual and textual features as in-
put and further optimize these multimodal features, allow-
ing the model to focus on key parts. Notably, considering
that the visual encoder branch and the subsequent decoder
input visual features are all multi-scale, we introduce the
multi-scale deformable attention mechanism (MS-DA) from
Deformable-DETR [Zhu et al., 2020]. MS-DA combines the
sparse spatial sampling of deformable convolution [Dai et
al., 2017] and multi-scale feature fusion, greatly meeting the
demand for multi-scale information in RSVG. Additionally,
both the encoder branches and the decoder are composed of
four stacked blocks each. Specifically, each block of the vi-
sual encoder branch consists of an MS-DSA module and an
FFN module. Similarly, by simply replacing the MS-DSA
module with a standard multi-head self-attention module, we
can obtain the block for the text encoder branch. The de-
coder block consists of a multi-head self-attention module,
two cross-attention modules, and an FEN module. The two
cross-attention modules are used for cross-modal interaction
between hybrid queries and text embeddings, as well as visual
embeddings. Guided by prior knowledge, the hybrid queries
interact with features of different modalities in the decoder,
aggregating key information of referred objects. Ultimately,
we obtain efficient object embeddings for target localization.

3.6 Loss Function

The model ultimately predicts object categories and regresses
box coordinates based on object embeddings. Therefore, our
loss function includes both classification loss and regression
loss.

The focal loss function is employed in our classification
loss calculation. It utilizes a dynamic scaling factor to pro-
gressively lessen the importance of samples that are simple

to differentiate during the training process. This allows the
model to rapidly concentrate on the more challenging sam-
ples that are difficult to distinguish. The mathematical ex-
pression for focal loss is given below:

Lfocai(pi) = —a;(1 — p;)7 log(p;) €]

In the above formula, p; represents the model’s predicted
probability for each category, «; is the balance factor used to
balance the weights of positive and negative samples, and ~y
is the dynamic adjustment factor.

For the calculation of regression loss, we use a combina-
tion of L1 loss and GIoU loss [Rezatofighi et al., 2019]. L1
loss can directly measure the distance difference between the
predicted box and the ground truth box, allowing for rapid
convergence in the early stages of training. GIoU loss is a
loss function based on the overlap of bounding boxes, which
can better reflect the geometric relationship between the pre-
dicted box and the ground truth box. Combining the two
can simultaneously leverage the rapid convergence charac-
teristics of L1 loss and the geometric constraint capabilities
of GlIoU loss, allowing the model to quickly optimize in the
early stages of training and better adjust the shape and posi-
tion of the bounding boxes in subsequent stages. Specifically,
the calculation formulas for L1 and GIoU losses are as fol-
lows:

L X
L1=N;\yi—ﬁi|a ®)
Lgrov =1 —GloU, (6)

GroU = 1ov — £ =AYD) (é - B), (7)

here, y; represents the coordinates of the ground truth box,
and y; represents the coordinates of the predicted box. In the
GloU calculation formula, A and B represent the areas of the
ground truth box and the predicted box, respectively, and C
represents the area of the smallest enclosing rectangle of the
ground truth box and the predicted box. IoU is the intersec-
tion over union of the ground truth box and the predicted box.

4 Experiments

4.1 Datasets

1) DIOR-RSVG: The DIOR-RSVG dataset [Zhan et al.,
2023] was constructed based on DIOR [Li et al., 2020]. This
dataset consists of 17,402 RS images of size 800x800 and
38,320 corresponding language expressions. There are a to-
tal of 20 object categories, and the average number of words
in the language expressions is 7.47. In the released version
of DIOR-RSVG we used, the split ratios for the training set,
validation set, and test set image-text pairs are 70%, 10%, and
20%, respectively.

2) OPT-RSVG: OPT-RSVG [Li et al., 2024] includes a
wider range of target scales, not only with a similar number
of small objects as DIOR-RSVG, but also with a higher pro-
portion of small and large targets, increasing the challenge of
remote sensing object recognition. The OPT-RSVG dataset
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Methods Venue Visual Enc. Text Enc. Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanloU cumloU
TransVG CVPR’21 ResNet-50 BERT 7241 6738 60.05 49.10 27.84 63.56 76.27
LBYL-Net CVPR’21 DarkNet-53 BERT 7378 69.22 6556 47.89 15.69 6592 76.37
QRNet CVPR’22 Swin-S BERT 75.84 70.82 6227 49.63 25.69 66.80 83.02
VLTVG CVPR’22 ResNet50 BERT 6941 65.16 5844 4656 2437 5996 71.97
MGVLF TGRS’23  ResNet50 BERT 7598 72.06 6523 5489 35.65 6748 78.63
LQVG TGRS’24  ResNet50 BERT 8341 81.03 7591 6552 4353 74.02 82.22
LPVA TGRS’24  ResNet50 BERT 8227 77.44 7225 6098 39.55 7235 85.11
Ours - ResNet50(&)ViT BERT  88.81 86.73 81.76 70.16 46.21 78.72 85.65
Table 1: Compared with state-of-the-art methods on the DIOR-RSVG test set
Methods Venue Visual Enc. Text Enc. Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 meanloU cumloU
TransVG CVPR’21 ResNet-50 BERT 69.96 64.17 54.68 38.01 12.75 59.80 69.31
LBYL-Net CVPR’21 DarkNet-53 BERT 7022 6539 58.65 37.54 9.46 60.57  70.28
QRNet CVPR’22 Swin-S BERT 72.03 6594 5690 40.70 1335 60.82 75.39
VLTVG CVPR’22 ResNet50 BERT 71.84 66.54 57.79 41.63 14.62 60.78 70.69
MGVLF TGRS’23  ResNet50 BERT 72.19 66.86 58.02 4251 1530 61.51 71.80
LQVG TGRS’24  ResNet50 BERT 86.09 83.17 76.88 62.01 29.80 73.94 78.16
LPVA TGRS’24 ResNet50 BERT  78.03 73.32 6222 49.60 25.61 6620 76.30
Ours - ResNet50(&)ViT BERT  86.81 84.57 79.07 65.01 3397 7535 79.94

Table 2: Compared with state-of-the-art methods on the OPT-RSVG test set

contains 25,452 RS images and 48,952 pairs of language ex-
pressions, with the language expressions divided into English
and Chinese versions. Additionally, this dataset includes 14
object categories. The official division ratios for the training
set, validation set, and test set provided by the OPT-RSVG
dataset are 40%, 10%, and 50%, respectively. Note that we
only used the English version of the language expressions in
our experiments.

4.2 Implementation Details

The LGFormer we proposed is implemented using Pytorch,
just like the other deep learning models we compared it
with. In the model’s image encoder, we use the pre-trained
ResNet50 as the CNN branch and stack 8 transformer encoder
layers to form the ViT branch. At the same time, we use the
pre-trained BERT-base as the text encoder. The hidden di-
mensions of the feature extraction backbones for both vision
and text are 768. As for the adaptive multimodal feature fu-
sion module, our encoder and decoder are each composed of
four stacked layers, with a hidden dimension of C=256. The
number of hybrid queries N=10 (one sentence-level embed-
ding and k=9 visual embeddings).

During the training process, we conducted distributed
training on four RTX 3090 GPUs (24 GB VRAM). On the
DIOR-RSVG dataset, we conducted a total of 40 training
epochs. We froze the text encoder and the CNN branch in
the visual encoder during the first 20 training epochs, and
only froze the text encoder during the last 20 training epochs.
For the OPT-RSVG dataset, we fine-tuned the model trained
on the DIOR-RSVG training set for 15 epochs. In all train-
ing sessions, we set the batch size to 2 per GPU and used
AdamW as the optimizer. The initial learning rate for the text

encoder BERT is le-5, and the rest are 1le-4. It is worth not-
ing that during the training process of the two datasets, the
size of each image is randomly resized to the range of [480,
560, 640, 720, 800], but this operation is not performed dur-
ing inference.

4.3 Evaluation Metrics

To evaluate the effectiveness of our model, we chose the same
evaluation method as most RSVG papers. When the thresh-
old of the intersection area to the union area between the
predicted box and the ground-truth box surpasses a specific
threshold, the predicted box is deemed accurate. The IoU
thresholds we used range from 0.5 to 0.9, denoted as Pr@0.5,
Pr@0.6, Pr@0.7, Pr@0.8, and Pr@0.9. In addition, we also
use meanloU and cumloU as evaluation metrics, and their
specific calculation formulas are as follows.

1 I
meanloU = ~ ; ﬁtt’ ()
Zt I
cumloU = , 9)
Zt Ut (

here, t represents the index of the image-text data and N is
the size of the data. I; and U, represent the intersection and
union of the areas of the predicted box and ground-truth box,
respectively.

4.4 Compared with State-of-the-Art Method

We compared the performance of the proposed method with
other SOTA methods on DIOR-RSVG and OPT-RSVG. The
best and second-best performances are highlighted in bold
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Figure 4: Visualization results comparison between our LGFormer and other existing SOTAs on DIOR-RSVG. GT is indicated by green
boxes, while the output boxes of our LGFormer, LQVG, and LPVA are indicated by red boxes.

and underlined, respectively. Note that the performance data
of other deep learning models are cited from reference [Li et
al., 2024], which is also the latest SOTA method we com-
pared against. To ensure fairness, the hardware platforms
used for training and testing were consistent with those in
reference [Li et al., 2024].

As shown in Table 1 and Table 2, our LGFormer achieved
the best performance on both the datasets, validating the ef-
fectiveness of our method. Compared to latest works LQVG
and LPVA, the proposed method achieves highest accuracy
on all evaluation metrics across the DIOR-RSVG and OPT-
RSVG datasets. In early transformer-based methods such as
TransVG, QRNet, VLTVG, and MGVLF, a single learnable
query is used to aggregate key contextual information of ob-
jects from visual and textual features in cross-attention. Re-
cent works LQVG and LPVA use language modality-based
features to initialize queries. In our work, we proposed
a adaptive multimodal feature fusion module using hybrid
queries, combining sentence-level features and filtered visual
features as initial queries, and demonstrated the superior per-
formance of this framework through experimental results.

Figure 4 shows the visualization of the comparison re-
sults between LGFormer and other SOTA methods. From
the first set of comparison images, it can be seen that only
our LGFormer successfully located the correct target. LQVG
incorrectly identified the platform as the airplane, while the
airplane located by LPVA was in a different position than re-
quired by the language description. From the second set of
comparison images, it can be seen that, apart from our model
correctly locating the target, both LQVG and LPVA incor-
rectly identified the middle container as the target vehicle. In
summary, it is clear that our LGFormer performs the best.
This is because the hybrid queries we used contain rich prior
information, which is beneficial in guiding the queries to re-
trieve and aggregate the visual and text features during the
subsequent decoding process. Moreover, the proposed adap-
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Figure 5: Analysis of Fault Case.

tive multimodal feature fusion module further optimizes the
refined visual and text features by using the deformable en-
coder and transformer encoder, so that the hybrid queries can
make full use of the contextual information of the referred
object in the fusion decoding process. Ultimately, we gener-
ated object embeddings with better prediction accuracy while
fully utilizing multimodal features.

4.5 Fault Analysis

As shown in Figure 5, we observed that when multiple objects
of the same category appear in an image, inadequate descrip-
tions can lead to incomplete localization. For instance, there
are two airplanes in Figure 5 (a). When the instruction is "the
large airplane”, the model only partially localizes the ground
truth. But when we add more detailed location qualifiers like
”on top”, the model locates almost all the ground truth. Sim-
ilar results can be seen in Figures 5 (b) and (c). When objects
of the same category as the target but different sizes appear in
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Figure 6: Analysis of Hybrid query numbers.

the same figure, the lack of sufficient location qualifiers will
result in incomplete localization. However, complete local-
ization is obtained after adding detailed qualifiers. This sug-
gests that failures may arise when images contain objects of
the same category but different scales. And this finding high-
lights the need to address this limitation in our future work.

4.6 Ablation Study

Hybrid query number: Our proposed LGFormer takes hybrid
queries as the basis for decoding queries. The hybrid queries
consist of sentence-level text representation and filtered vi-
sual representation, incorporating both textual and visual in-
formation. This provides rich prior knowledge for the initial
decoding queries, enabling the model to learn more accurate
localization information. To explore the impact of the num-
ber of hybrid queries on the model performance, we pre-train
the model for five epochs on the DIOR-RSVG dataset and
increase the number of hybrid queries from 4 to 12, respec-
tively. As shown in Figure 6, we can see that the model per-
forms best when the number of queries increases to 10. Af-
ter that, as the number of queries continues to increase, the
model’s performance actually declines.

5 Conclusion

In this paper, we propose a language-guided hybrid represen-
tation learning framework called LGFormer. This structure
uses hybrid queries we designed, which allow the queries to
possess rich prior information during the decoding process,
guiding themselves in the decoding process to extract mul-
timodal contextual information. To better construct hybrid
queries, we used sentence-level features and visual features
obtained through the proposed language-guided visual fea-
ture filtering method. Finally, extensive experiments have
shown that our model has achieved state-of-the-art perfor-
mance on the DIOR-RSVG and OPT-RSVG datasets. How-
ever, there is still room for improvement in our model’s per-
formance, and our current method only allows for the local-
ization of one object at a time. In the future, we will explore
the visual grounding of complex objects in remote sensing
images, while considering collaborative learning strategies
for multi-source images.
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